如何抓好数学教学工作
一、保持和提高学生学习数学的兴趣
兴趣是最好的老师,兴趣对于一个人认识新事物,探求新知识的重要性,起着非凡的影响作用。小学数学教学中,首要应重视培养学生正确的学习动机、良好的心理品质。
二、重视学生的发散思维,培养创新能力
新课标中的教学目标,是帮助每个学生进行有效的学习,能够按照自己的性向得到尽可能的发挥,以获取新的知识,因为学生的大部分创新都是通过发散思维获得的。因此,课堂教学必须以培养学生的创新精神为目标,改进教学方式,把学习的主动权交给学生,多给学生一些思考的时间、多一些表现机会、多一些创造的信心、多一些成功的体会。
三、提高教师素质,注重教学水平
教学的一切活动始终围绕学生,教学的一切因素最终作用于学生。面对数学新课程、新教材的实施,更应提高课堂教学效果,这就要求教师必须适应时代要求,更新观念,在实施课堂教学时,不能仅仅满足于将书本上的有限知识传授给学生,而要根据学生身心的发展规律、年龄特点,认真研究、探讨教学方式方法。要从学生全面发展的目标出发来组织和实施自己的课堂教学。课改要求新时期的教师应该能够驾驭各种类型的学生,并使他们各自的特长都充分得到发挥,这就要求教师需要终生学习,拓宽知识面,提高自身的整体素质修养,改进传统的教学模式,创新教学方法和技巧,只有这样才会真正地实现与时俱进。
高一数学必修一教案(精选10篇)
作为一名教师,常常需要准备教案,教案是实施教学的主要依据,有着至关重要的作用。教案应该怎么写才好呢?以下是小编帮大家整理的高一数学必修一教案(精选10篇),欢迎大家借鉴与参考,希望对大家有所帮助。
高一数学必修一教案1
重点难点教学:
1.正确理解映射的概念;
2.函数相等的两个条件;
3.求函数的定义域和值域。
教学过程:
1. 使学生熟练掌握函数的概念和映射的定义;
2. 使学生能够根据已知条件求出函数的定义域和值域; 3. 使学生掌握函数的三种表示方法。
教学内容:
1.函数的定义
设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么称:fAB81为从集合A到集合B的一个函数(function),记作:yfxxA
其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{|}fxxA83叫值域(range)。显然,值域是集合B的子集。
注意:
① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
2.构成函数的三要素 定义域、对应关系和值域。
3、映射的定义
设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意
一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从 集合A到集合B的一个映射。
4. 区间及写法:
设a、b是两个实数,且a
(1) 满足不等式axb8080的实数x的集合叫做闭区间,表示为[a,b];
(2) 满足不等式axb8787的实数x的集合叫做开区间,表示为(a,b);
5.函数的三种表示方法
①解析法
②列表法
③图像法
高一数学必修一教案2
教学目标
1.使学生掌握的概念,图象和性质.
(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.
(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.
(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.
2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.
3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.教学建议
教材分析
(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.
(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.
(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.
教法建议
(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.
(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.
关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.
高一数学必修一教案3
教学目的:
(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
课 型:
新授课
教学重点:
集合的交集与并集的概念;
教学难点:
集合的交集与并集 “是什么”,“为什么”,“怎样做”;
教学过程:
一、 引入课题
我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?
思考(P9思考题),引入并集概念。
二、 新课教学
1、 并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)
记作:A∪B 读作:“A并B”
即: A∪B={x|x∈A,或x∈B}
Venn图表示:
说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
例题1求集合A与B的并集
① A={6,8,10,12} B={3,6,9,12}
② A={x|-1≤x≤2} B={x|0≤x≤3}
(过度)问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。
2、交集
一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。
记作:A∩B 读作:“A交B”
即: A∩B={x|∈A,且x∈B}
交集的Venn图表示
说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。
例题2求集合A与B的交集
③ A={6,8,10,12} B={3,6,9,12}
④ A={x|-1≤x≤2} B={x|0≤x≤3}
拓展:求下列各图中集合A与B的并集与交集(用彩笔图出)
说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集
3、例题讲解
例3(P12例1):理解所给集合的含义,可借助venn图分析
例4 P12例2):先“化简”所给集合,搞清楚各自所含元素后,再进行运算。
4、 集合基本运算的一些结论:
A∩B A,A∩B B,A∩A=A,A∩ = ,A∩B=B∩A
A A∪B,B A∪B,A∪A=A,A∪ =A,A∪B=B∪A
若A∩B=A,则A B,反之也成立
若A∪B=B,则A B,反之也成立
若x∈(A∩B),则x∈A且x∈B
若x∈(A∪B),则x∈A,或x∈B
高一数学必修一教案4
一、教材
首先谈谈我对教材的理解,《两条直线平行与垂直的判定》是人教A版高中数学必修2第三章3.1.2的内容,本节课的内容是两条直线平行与垂直的判定的推导及其应用,学生对于直线平行和垂直的概念已经十分熟悉,并且在上节课学习了直线的倾斜角与斜率,为本节课的学习打下了基础。
二、学情
教材是我们教学的工具,是载体。但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。
三、教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
掌握两条直线平行与垂直的判定,能够根据其判定两条直线的位置关系。
(二)过程与方法
在经历两条直线平行与垂直的判定过程中,提升逻辑推理能力。
(三)情感态度价值观
在猜想论证的过程中,体会数学的严谨性。
四、教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:两条直线平行与垂直的判定。本节课的教学难点是:两条直线平行与垂直的'判定的推导。
五、教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,那么我采用复习导入,回顾上节课所学的直线的倾斜角与斜率并顺势提问:能否通过直线的斜率,来判断两条直线的位置关系呢?
利用上节课所学的知识进行导入,很好的克服学生的畏难情绪。
(二)新知探索
接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。
高一数学必修一教案5
一、教学目标
1.知识与技能:
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法:
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观:
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪。
四、教学过程
(一)创设情景,揭示课题
1、由六根火柴最多可搭成几个三角形?(空间:4个)
2在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?
3、展示具有柱、锥、台、球结构特征的空间物体。
问题:请根据某种标准对以上空间物体进行分类。
(二)、研探新知
空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;
旋转体(轴):圆柱、圆锥、圆台、球。
1、棱柱的结构特征:
(1)观察棱柱的几何物体以及投影出棱柱的图片,
思考:它们各自的特点是什么?共同特点是什么?
(学生讨论)
(2)棱柱的主要结构特征(棱柱的概念):
①有两个面互相平行;
②其余各面都是平行四边形;
③每相邻两上四边形的公共边互相平行。
(3)棱柱的表示法及分类:
(4)相关概念:底面(底)、侧面、侧棱、顶点。
2、棱锥、棱台的结构特征:
(1)实物模型演示,投影图片;
(2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。
棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。
棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
3、圆柱的结构特征:
(1)实物模型演示,投影图片——如何得到圆柱?
(2)根据圆柱的概念、相关概念及圆柱的表示。
4、圆锥、圆台、球的结构特征:
(1)实物模型演示,投影图片
——如何得到圆锥、圆台、球?
(2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。
5、柱体、锥体、台体的概念及关系:
探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?
圆柱、圆锥、圆台呢?
6、简单组合体的结构特征:
(1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。
(2)实物模型演示,投影图片——说出组成这些物体的几何结构特征。
(3)列举身边物体,说出它们是由哪些基本几何体组成的。
(三)排难解惑,发展思维
1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?(反例说明)
2、棱柱的何两个平面都可以作为棱柱的底面吗?
3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
高一数学必修一教案6
一、教学目标
1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。
2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。
二、教学重点:画出简单几何体、简单组合体的三视图;
难点:识别三视图所表示的空间几何体。
三、学法指导:
观察、动手实践、讨论、类比。
四、教学过程
(一)创设情景,揭开课题
展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。
(二)讲授新课
1、中心投影与平行投影:
中心投影:光由一点向外散射形成的投影;
平行投影:在一束平行光线照射下形成的投影。
正投影:在平行投影中,投影线正对着投影面。
2、三视图:
正视图:光线从几何体的前面向后面正投影,得到的投影图;
侧视图:光线从几何体的左面向右面正投影,得到的投影图;
俯视图:光线从几何体的上面向下面正投影,得到的投影图。
三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
三视图的画法规则:长对正,高平齐,宽相等。
长对正:正视图与俯视图的长相等,且相互对正;
高平齐:正视图与侧视图的高度相等,且相互对齐;
宽相等:俯视图与侧视图的宽度相等。
3、画长方体的三视图:
正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。
长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。
4、画圆柱、圆锥的三视图:
5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。
高一数学必修一教案7
教学目标与解析
1、教学目标
(1)理解函数的概念;
(2)了解区间的概念;
2、目标解析
(1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;
问题诊断分析在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。
教学过程
问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.
1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?
1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?
设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。
问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有的一个臭氧层空洞面积S与之相对应。
问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。
设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。
问题4:上述三个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义?
4.1在一个函数中,自变量x和函数值y的变化范围都是集合,这两个集合分别叫什么名称?
4.2在从集合A到集合B的一个函数f:A→B中,集合A是函数的定义域,集合B是函数的值域吗?怎样理解f(x)=1,x∈R?
4.3一个函数由哪几个部分组成?如果给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么?
高一数学必修一教案8
一、说课内容:
苏教版高一年级数学下册第六章第一节的二次函数的概念及相关习题
二、教材分析:
1、教材的地位和作用
这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:
(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.
3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:
1、从创设情境入手,通过知识再现,孕伏教学过程
2、从学生活动出发,通过以旧引新,顺势教学过程
3、利用探索、研究手段,通过思维深入,领悟教学过程
四、教学过程:
(一)复习提问
1.什么叫函数?我们之前学过了那些函数?
(一次函数,正比例函数,反比例函数)
2.它们的形式是怎样的?
(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)
3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?
设计意图复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较.
(二)引入新课
函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)
例1、(1)圆的半径是r(cm)时,面积s (cm)与半径之间的关系是什么?
解:s=πr(r>0)
例2、用周长为20m的篱笆围成矩形场地,场地面积y(m)与矩形一边长x(m)之间的关系是什么?
解: y=x(20/2-x)=x(10-x)=-x+10x (0
例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?
解: y=100(1+x)
=100(x+2x+1)
= 100x+200x+100(0
教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?
设计意图通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系:
(1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。
(2)自变量的最高次数是2(这与一次函数不同)。
(三)讲解新课
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。
巩固对二次函数概念的理解:
1、强调“形如”,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。
2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)
3、为什么二次函数定义中要求a≠0 ?
(若a=0,ax2+bx+c就不是关于x的二次多项式了)
4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以为零?
由例1可知,b和c均可为零.
若b=0,则y=ax2+c;
若c=0,则y=ax2+bx;
若b=c=0,则y=ax2.
注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.
设计意图这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。
判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
(1)y=3(x-1)+1 (2)
(3)s=3-2t (4)y=(x+3)- x
(5) s=10πr (6) y=2+2x
(8)y=x4+2x2+1(可指出y是关于x2的二次函数)
设计意图理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。
五、教学设计思考
以实现教学目标为前提
以现代教育理论为依据
以现代信息技术为手段
贯穿一个原则——以学生为主体的原则
突出一个特色——充分鼓励表扬的特色
渗透一个意识——应用数学的意识
高一数学必修一教案9
教学目标
1.了解映射的概念,象与原象的概念,和一一映射的概念.
(1)明确映射是特殊的对应即由集合 ,集合 和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;
(2)能准确使用数学符号表示映射, 把握映射与一一映射的区别;
(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.
2.在概念形成过程中,培养学生的观察,比较和归纳的能力.
3.通过映射概念的学习,逐步提高学生对知识的探究能力.
教材分析
(1)知识结构
映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:
由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.
(2)重点,难点分析
本节的教学重点和难点是映射和一一映射概念的形成与认识.
①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 中的唯一这点要求的理解;
映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集 合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多. 其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.
②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.
教法建议
牐牐1)在映射概念引入时,可先从学生熟悉的对应入手, 选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.
(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:xx
这种表示方法比较简明,抽象,且能看到三者之间的关系.除此之外,映射的一般表示方法为 ,从这个符号中也能看到映射是由三部分构成的整体,这对后面认识函数是三件事构成的整体是非常有帮助的.
(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢, 引出一一映射概念.
(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.
(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.
高一数学必修一教案10
学习引导
一、自主学习
1. 阅读课本 练习止.
2. 回答问题
(1)课本内容分成几个层次?每个层次的中心内容是什么?
(2)层次间的联系是什么?
(3)对数函数的定义是什么?
(4)对数函数与指数函数有什么关系?
3. 完成 练习
4. 小结.
二、方法指导
1. 在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.
2. 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.同学们在学习时应该把两个函数进行类比,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质
思考引导
一、提问题
1. 对数函数的自变量和函数分别在指数函数中是什么?
2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?
3.是否所有的函数都有反函数?试举例说明.
二、变题目
1. 试求下列函数的反函数:
(1) ; (2) ;
(3) ; (4) .
2. 求下列函数的定义域:
(1) ; (2) ; (3) .
3. 已知 则 = ; 的定义域为 .
总结引导
1.对数函数的有关概念
(1)把函数 叫做对数函数, 叫做对数函数的底数;
(2)以10为底数的对数函数 为常用对数函数;
(3)以无理数 为底数的对数函数 为自然对数函数.
2. 反函数的概念
在指数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ;在对数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ,像这样的两个函数叫做互为反函数.
3. 与对数函数有关的定义域的求法:
4. 举例说明如何求反函数.
拓展引导
一、课外作业: 习题3-5 A组 1,2,3, B组1,
二、课外思考:
1. 求定义域: .
2. 求使函数 的函数值恒为负值的 的取值范围.
【高一数学必修一教案】相关文章:
高一数学必修3映射教案03-22
高一语文必修一《雨巷》教案12-04
高一必修一作文10-27
高一数学必修一知识点总结08-09
高一数学必修四学习方法08-04
高一必修一离骚原文06-29
高一必修英语作文10-26
《登高》优质课教案(人教版高一必修三)12-06
高一语文必修《古希腊的石头》教案12-29
高一牛津英语必修一作文12-24