正弦函数、余弦函数图像教案及反思

2023-02-26 教案

  篇一:正弦函数、余弦函数图像教案及反思

  教材分析

  三角函数是基本初等函数之一,是描述周期现象的重要数学模型,是函数大家庭的一员。除了基本初等函数的共性外,三角函数也有其个性的特征,如图像、周期性、单调性等,所以本节内容有着承上启下的作用;另外,学习完三角函数的定义之后,必然要研究其性质,而研究函数的性质最常用、最形象直观的方法就是作出其图像,再通过图像研究其性质。由于正弦线、余弦线已经从“形”的角度描述了三角函数,因此利用单位圆中的三角函数线画正弦函数图象是一个自然的想法.当然,我们还可以通过三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图. 教学目标

  1.通过简谐振动实验演示,让学生对函数图像有一些直观的感知,形成正弦曲线的初步认识,进而探索正弦曲线准确的作法,养成善于发现、善于探究的良好习惯.学会遇到新问题时善于调动所学过的知识,较好地运用新旧知识之间的联系,提高分析问题、解决问题的能力.

  2.通过本节学习,理解正弦函数、余弦函数图象的画法.借助图象变换,了解函数之间的内在联系.通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法”作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象.

  3.通过本节的学习,让学生体会数学中的图形美,体验善于动手操作、合作探究的学习方法带来的成功愉悦.渗透由抽象到具体的思想,加深数形结合思想的认识,理解动与静的辩证关系,树立科学的辩证唯物主义观. 重点难点

  教学重点:正弦函数、余弦函数的图象.

  教学难点:将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系.

  教学用具:多媒体教学、几何画板软件、ppt控件 教学过程 导入新课

  1.(复习导入)首先复习相关准备知识:三角函数、三角函数线。遇到一个新的函数,非常自然的是画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然的想知道y=sinx与y=cosx的图象是怎样的呢?回忆我们是如何画出它们图象的(列表描点法:列表、描点、连线)?

  2.(物理实验导入)视频观看“简谐运动”实验.得到一条曲线,它就是简谐运动的图象.物理中把简谐运动的图象叫做“正弦曲线”或“余弦曲线”.有了上述实验,你对正弦函数、余弦函数的图象是否有了一个直观的印象?画函数的图象,最基本的方法是我们以前熟知的列表描点法,但不够精确.下面我们利用正弦线画出比较精确的正弦函数图象. 推进新课

  新知探究 提出问题

  问题①:作正弦函数图象的各点的纵坐标都是查三角函数表得到的数值,由于对一般角的三角函数值都是近似值,不易描出对应点的精确位置.我们如何得到任意角的三角函数值并用线段长(或用有向线段数值)表示x角的三角函数值?怎样得到函数图象上点的两个坐标的准确数据呢?简单地说,就是如何得到y=sinx,x∈[0,2π]的精确图象呢?

  问题②:如何得到y=sinx,x∈R时的图象?

  对问题①,第一步,可以想象把单位圆圆周剪开并12等分,再把x轴上从0到2π这一段分成12等份.由于单位圆周长是2π,这样就解决了横坐标问题.过⊙O1上的各分点作x轴的垂线,就可以得到对应于0、2π等角的正弦线,这样就解决了纵坐标问题(相6432当于“列表”).第二步,把角x的正弦线向右平移,使它的起点与x轴上的点x重合,这就得到了函数对(x,y)(相当于“描点”).第三步,再把这些正弦线的终点用平滑曲线连接起来,我们就得到函数y=sinx在[0,2π]上的一段光滑曲线(相当于“连线”).如图1所示(这一过程用课件演示,让学生仔细观察怎样平移和连线过程.然后让学生动手作图,形成对正弦函数图象的感知).这是本节的难点,教师要和学生共同探讨

  对问题②,因为终边相同的角有相同的三角函数值,所以函数y=sinx在x∈[2kπ,2(k+1)π],k∈Z且k≠0上的图象与函数y=sinx在x∈[0,2π]上的图象的形状完全一致,只是位置不同.于是我们只要将函数y=sinx,x∈[0,2π]的图象向左、右平行移动(每次2π个单位长度),就可以得到正弦函数y=sinx,x∈R的图象.(这一过程用课件处理,让同学们仔细观察整个图的形成过程,感知周期性)

  操作结果、总结提炼:①利用正弦线,通过等分单位圆及平移即可得到y=sinx,x∈[0,2π]的图象. ②左、右平移,每次2π个长度单位即可. 提出问题

  如何画出余弦函数y=cosx,x∈R的图象?你能从正弦函数与余弦函数的关系出发,利用正弦函数图象得到余弦函数图象吗?

  意图:如果再用余弦线作余弦函数的图象那太麻烦了,根据已学的知识,教师引导学生观察诱导公式,思考探究两个函数之间的关系,通过怎样的坐标变换可得到余弦函数图象?让学生从函数解析式之间的关系思考,进而学习通过图象变换画余弦函数图象的方法.让学生动手做一做,体会正弦函数图象与余弦函数图象的异同,感知两个函数的整体形状,为下一步学习正弦函数、余弦函数的性质打下基础. 讨论结果:

  把正弦函数y=sinx,x∈R的图象向左平移个单位长度即可得到余弦函数图象

  正弦函数y=sinx,x∈R的图象和余弦函数y=cosx,x∈R的图象分别叫做正弦曲线和余弦曲线点.

  提出问题 问题①:以上方法作图,虽然精确,但不太实用,自然我们想寻求快捷地画出正弦函数图象的方法.你认为哪些点是关键性的点? 问题②:你能确定余弦函数图象的关键点,并作出它在[0,2π]上的图象吗? 活动:对问题①,教师可引导学生从图象的整体入手观察正弦函数的图象,发现在[0,2π]上有五个点起关键作用,只要描出这五个点后,函数y=sinx在[0,2π]上的图象的形状就基本上确定了.这五点如下: (0,0),(3,1),(π,0),(,-1),(2π,0).

  因此,在精确度要求不太高时,我们常常先找出这五个关键点,然后用光滑的曲线将它们连接起来,就可快速得到函数的简图.这种近似的“五点(画图)法”是非常实用的,要求熟练掌握.

  对问题②,引导学生通过类比,很容易确定在[0,2π]上起关键作用的五个点,并指导学生通过描这五个点作出在[0,2π]上的图象. 讨论结果:①略. ②关键点也有五个,它们是:(0,1),(3,0),(π,-1),(,0),(2π,1).

  学生练习巩固:1。用五点法作出函数y=sinx在[0,2π]上的图象;2. 用五点法作出函数y=cosx

  在[0,2π]上的图象 应用示例

  例1 画出下列函数的简图 (1)y=1+sinx,x∈[0,2π];(2)y=-cosx,x∈[0,2π]描点并将它们用光滑的曲线连接起来

  课堂小结

  以提问的方式,先由学生反思学习内容并回答,教师再作补充完善.

  1.怎样利用“周而复始”的特点,把区间[0,2π]上的图象扩展到整个定义域的?

  2.如何利用图象变换从正弦曲线得到余弦曲线?

  这节课学习了正弦函数、余弦函数图象的画法.除了它们共同的代数描点法、几何描点法之外,余弦函数图象还可由平移交换法得到.“五点法”作图是比较方便、实用的方法,应熟练掌握.数形结合思想、运动变化观点都是学习本课内容的重要思想方法.

  3.课后请同学们利用三角函数线(把单位圆8等分)来作出正弦函数图象?(思考为什么要进行8等分)

  教学反思:

  这节课从整体上看,比较圆满完成了既定的教学目标:正弦函数、余弦函数的图像,以及掌握五点法,利用五点法作出函数的图像,注意函数之间的内在联系。学生掌握了三角函数的定义之后,自然而然就会去研究函数的性质,而研究函数的性质一般从函数的图像入手,本节课学生的动手操作要求较高,需要学生在练习本上画图;这节课从教学过程看,逻辑行强,过渡比较自然,幻灯片制作精美,特别是几何画板的控件,让学生能够直观看到图像的变化趋势,还有电子白板的灵活运用,可以使用新建屏幕页,让学生看到我们老师如何操作,给学生示范。

  当然,在教学中也存在一些问题:前面复习回顾的内容用时过多,导致后面的时间有些紧,例题可以讲一个详细的,后面让学生完成;正弦函数的图像分析透彻之后,对于余弦函数可以略讲。

  篇二:教学设计与反思

  一、教学内容分析

  本节内容是高一数学必修4(苏教版)第三章《三角恒等变换》第一节的内容,重点放在两角差的余弦公式的推导和证明上,其次是利用公式解决一些简单的三角函数问题。 在学习本章之前,已经学习了三角函数及向量的有关知识,从而为沟通代数、几何与三角函数的联系提供了重要的工具。本章我们将使用这些工具探讨三角函数值的运算。本节内容不仅是推导正弦和(差)角公式、正切和(差)角公式及倍角公式的基础,对于三角变换,三角恒等式的证明,三角函数式的化简、求值等三角问题的解决有重要的支撑作用,而且其推导过程本身就具有重要的教育价值。

  二、学生学习情况分析

  本节课的主要内容是“两角差的余弦公式的推导及证明”,用到的工具有“单位圆中三角函数的定义”和“平面向量数量积的定义及坐标表示”,都属于基础知识,内容简单,容易理解和接受。但是在向量法证明的过程中,向量夹角的范围是[0,π],与两角差α-β的范围不一致,学生对角的范围说明不清,是本节课的难点。

  三、设计思想

  教学理念:以“研究性学习”为载体,培养学生自主学习、小组合作的能力。

  教学原则:注重学生自主学习与探究能力的培养,体现学生个性的发展与小组合作共性的融合。

  教学方法:先学后教,小组合作,师生互动。

  四、教学目标

  知识与技能:了解用向量法推导两角差的余弦公式的过程,掌握两角和(差)的余弦公式并能运用公式进行简单的三角函数式的化简、求值。

  过程与方法:自主探究两角差的余弦公式的表现形式,经历用向量的数量积推导两角差的余弦公式的过程,并能独立利用余弦的差角公式推出余弦的和角公式,理解化归思想在三角变换中的作用。

  情感态度与价值观:体验和感受数学发现和创造的过程,感悟事物之间普遍联系和转化的关系。

  五、教学重点与难点

  重点:两角差的余弦公式的推导及证明。

  难点:引入向量法证明两角差的余弦公式及两角差范围的说明。

  六、教学程序设计

  1.情境创设,课上展示。

  课前探究:

  课上展示:请同学们展示一下课前所得到的结果吧。

  设计意图:课前以问题串的形式给学生指明研究方向。问题层层递进,从特殊到一般,使学生的研究具有一定的坡度性。既让学生容易上手,又让学生在研究过程中慢慢深入与提高。

  主要目的:让学生自主发现两角差的余弦公式的表达形式。

  通过课上展示,学生把课下研究出来的成果与全班同学共享,产生共鸣,为进一步研究两角差的余弦公式做好准备,同时增强表达能力及自信心。

  2.合作探究,小组展示。

  探究一:两角差的余弦公式的推导

  问题4:问题2中我们所得到的结论对于任意角还成立吗?你能证明吗?

  问题5:观察我们得到结论的形式,你能联想到什么呢?

  探究二:两角和的余弦公式的推导

  问题6:你能根据差角的余弦公式推导出和角的余弦公式吗?

  问题7:比较差角的余弦公式与和角的余弦公式,它们在结构上有何异同点?

  通过小组展示,各个小组之间产生思维的碰撞,迸出火花,得到新的灵感与智慧。从而培养学生团结协作与小组合作的能力。

  3.巩固知识,例题讲解。

  例1:利用两角和与差的余弦公式证明下列诱导公式:

  例3:化简cos100°cos40°+sin80°sin40°

  设计意图:教师对各小组展示内容做适当点评,并且对“向量法证明的优点”,“向量法证明过程的完善”,“向量法中向量夹角与两角差的范围的统一”做简要讲解。

  例1,例2都是公式的直接应用。例1让学生体会诱导公式将余弦的和差角公式推导出正弦的和差角公式,为下节课埋下伏笔。例2中根据cos15°的值求sin15°的值,tan15°的值的过程都是为推导正弦和差公式,正切和差公式做铺垫。

  变式将例2中具体的角变成抽象的角,利用同角三角函数公式求解。在由sinα的值求cosα的值或由cosβ的值求sinβ的值时,要注意根据角的范围确定三角函数值的符号。 例3:是公式的逆用,培养学生逆向思维的能力,让学生对公式结构再认识。

  4.提升总结,巩固练习。

  提升总结:针对上面的3个例题,谈谈你学到了什么?

  (2)利用两角和差的余弦公式求值时,应注意观察、分析题设和公式的结构特点,从整体上把握公式,灵活的运用公式。

  (3)在解题过程中,要注意角的范围,确定三角函数值的符号,以防增根、漏根。 设计意图:主要以学生总结为主,老师做适当点评及补充。

  七、教学反思

  本节课主要以学生的自主学习、小组合作为主,充分发挥了学生的自主探究能力和团队协作能力,提高了学生发现问题、探究问题和解决问题的能力。情境创设中利用三个问题让学生在课前提前熟悉本节课所学的内容“是什么”,“我能得到哪些结论”,调动了学生的思维与学习的积极性,激发了学生的求知欲。但是

  但是如果给出图像,则又会限制数学优秀的学生的解题思路与方法,这对矛盾是由学生的差异所决定的。教师在课堂上应指导、启发学生,注意教学的示范性,明确解题的规范性,实现学生在学习过程中知识的跨越。总之,教学有法,教无定法,贵在得法,为了提高课堂教学效率,我们要从学生的实际出发,以学法带动教法,为高效课堂保驾护航。

  篇三:正弦函数余弦函数图像教学反思

  由于学生已具备初等函数、三角函数线知识,为研究正弦函数图象提供了知识上的积累;因此本教学设计理念是:通过问题的提出,引起学生的好奇,用操作性活动激发学生求知欲,为发现新知识创设一个最佳的心理和认识环境,引导学生关注正弦函数的图象及其作法;并借助电脑多媒体使教师的设计问题与活动的引导密切结合,强调学生“活动”的内化,以此达到使学生有效地对当前所学知识的意义建构的目的,感觉效果很好。

  课后反思:

  比较成功的地方:

  1.教学思路清晰,各个环节过渡比较自然,课堂教学设计得比较紧凑.

  2.教学设计对于正弦曲线、余弦曲线首先从实验入手形成直观印象,然后探究画法,列表,描点、连线——“描点法”作图,对于函数y=sinx,当x取值时,y的值大都是近似值,加之作图上的误差,很难认识新函数y=sinx的图象的真实面貌.因为在前面已经学习过三角函数线,这就为用几何法作图提供了基础.这样设计比较自然,合理,符合学生认知的基本规律.

  3.利用正弦线作出y=sinx在[0, 2?]内的图象,再得到正弦曲线,这里借助角周而复始的变化,体会后面性质“周期”,这样的设计由局部到整体,符合探究的一般方法.

  4.对于“五点法”老师让学生通过观察、学生讨论、进一步合作

  交流得到“五点法”作图,也是本节课中一大的亮点,充分体现以学生为主的教学思路.

  5.通过展示课件,生动形象地再现三角函数线的平移和曲线形成过程.使原本枯燥地知识变得生动有趣,激发学生的兴趣.

  6.在得到正弦函数的图象后,通过一个探究,引导学生利用诱导公式,结合图象变换研究余弦函数的图象,体现了新课改中倡导的“自主探究、合作交流”的教学理念,有利于培养学生主动探究的意识. 需要改进的地方:

  1.时间的把握要恰当,否则会影响课堂后面内容的安排.

  2.在由正弦函数的图象得到余弦函数的图象的探究过程中,设计了让学生“自主探究、合作交流”的教学思路,但学生对“合作—交流”的热情不够,不太主动——在调动学生积极参与课堂活动方面做得不够好.

  3.由于导入的过程时间稍长,加之本节课的容量过大,尽管在例题的教学过程中及时的改变了教学策略,把例1中的第(2)小题交由学生练习,还是导致了学生练习时间较少.

  • 相关推荐

【正弦函数、余弦函数图像教案及反思】相关文章:

常用函数图像03-11

(精选)常用函数图像03-11

正弦函数公式总结09-14

(优秀)常用函数图像03-12

《反比例函数的图像》教学反思09-14

(经典)常用函数图像15篇03-12

《对数函数的图像与性质》说课稿11-11

常用函数图像15篇[荐]03-11

常用函数图像优选[15篇]03-12

一次函数的图像和性质教学反思03-16