函数图像

2024-03-12 好文

常用函数图像1

  从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。

  通过课堂的实际实施感觉上也不是尽善尽美,还有令人不满意的地方。教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。这样,教师才能灵活的把握课堂教学。而现在,教师缺乏的正是这一点,还是为了教而教。按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。从这一角度讲,教师应在把握知识的基础上。结合学生的表现,灵活多样的处理知识。学生是学习的主体,学生活动是新教材的一大特点。新教材在知识安排上,往往从实例引入,抽象出数学模型。通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。侧重于学生能力的培养,让学生知道学什么,如何学。因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。一是通过画函数图象理解一次函数图象的形状,二是两点法画一次函数的图象,三是探究一次函数的图象与k、b符号的关系。

  在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。值得老师们探讨。为了达到上述目的,我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。如在活动一中,要求学生观察图象的'形状,两条直线的位置关系。

  在活动二中,强调两点法(直线与坐标轴的交点)画直线。在活动三中,探究k、b符号与直线经过的象限与增减性的关系。学生目标明确,操作性强,受到了较好的效果。本节课的重点是由一次函数的解析式确定函数图象,研究函数性质。由函数图象的位置判断解析式中k、b符号。体现了数学中非常重要地数形结合的思想。这段内容的教学,还是从学生活动出发,从具体的实例研究起,观察图象的位置和性质,在按照k、b的符号分类讨论,使学生建立起数形之间的联系。还要找到数形间的结合点,明确k的符号决定直线的什么位置,b的符号又决定了什么。为了加深学生对知识的理解,课上设计了由解析式画函数图象的草图,由草图的位置判断解析式中k、b的符号的练习,收到了一定的效果。

常用函数图像2

  在本节课中我采用“类比——探究——讨论”教学法。在学习了正弦函数图像与性质,平移正弦线得到正弦函数图像的方法类比作正切函数图像。设计问题让学生进一步探究正切函数的性质与图像,学生通过对这些“有结构”的材料进行探究,获得对正切函数的感性认识和形成正切函数图像的了解。

  通过创设问题情境,引发认知冲突,较好地调动了学生的积极性和主动性,符合新课程理念的精神。通过多媒体显示得出函数图像。引导学生在有限的时间内完成正切函数性质的归纳和总结,让学生思考、动手画图、课堂交流、亲身实践。通过互相交流、启发、补充、争论,使学生对正切函数图像与性质的认识从感性的认识上升到理性认识,获得一定水平层次的科学概念。这节课主要是教给学生“动手做,动脑想;多训练,勤钻研。”的学习方法。这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径;思考问题的方法。使学生真正成为教学的.主体。

  学生才会逐步感到数学美,会产生一种成功感,从而提高学生学习数学的兴趣。在课堂教学中注重学生的学,让学生自己思考得到问题的答案,以至于后半段课堂时间仓促,课堂练习只能变成课后练习。在以后的教学中会注意调节好学生的研究时间

常用函数图像3

  一、教材的地位和作用

  本 节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会“两点法”的简便,向学生渗透数形结合的数学思想, 以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一 次函数性质作准备。

  (一)教学目标的确定

  教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。

  1、知识目标

  (1)能用“两点法”画出一次函数的图象。

  (2)结合图象,理解直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响。

  2、能力目标

  (1)通过操作、观察,培养学生动手和归纳的能力。

  (2)结合具体情境向学生渗透数形结合的数学思想。

  3、情感目标

  (1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。

  (2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。

  (二)教学重点、难点

  用“两点法”画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。

  二、学情分析

  1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合“两点确定一条直线”,学生能画出一次函数图象。

  2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。

  3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  三、教学方法

  我采用自主探究—→合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。

  四、教学设计

  一、设疑,导入新课(2分钟)

  师:同学们,上节课我们学习了一次函数,你能说一说什么样的函数是一次函数吗?

  生1:函数的解析式都是用自变量的一次整式表示的,我们称这样的函数为一次函数。

  生2:一次函数通常可以表示为y=kx+b的形式,其中k、b为常数,k≠0。

  生3:正比例函数也是一次函数。

  师:(同学们回答的都很好)通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢?

  这节课让我们一起来研究 “一次函数的.图象”。(板书)

  二、自主探究——小组交流、归纳——问题升华:

  1、师:问(1)你们知道一次函数是什么形状吗?(4分钟)

  生:不知道。

  师:那就让我们一起做一做,看一看:(出示幻灯片)

  用描点法作出下列一次函数的图象。

  (1)y= 0.5x (2) y= 0.5x+2

  (3)y= 3x (4) y= 3x + 2

  师:(为了节约时间)要求:用描点法时,最少5个点;以小组为单位,由小组长分配,每人画一个图象。画完后,小组订正,看是否画的正确?

  然后讨论解决问题(1):观察你和你的同伴画出的图象,你认为一次函数的图象是什么形状?

  小组汇报:一次函数的图象是直线。

  师:所有的一次函数图象都是直线吗?

  生:是。

  师:那么一次函数y=kx+b(其中k、b为常数,k≠0),也可以称为直线y=kx+b(其中k、b为常数,k≠0)。(板书)

  师:(出示幻灯片)问(2):观察你和你的同伴所画的图象在位置上有没有不同之处?(2分钟)

  讨论正比例函数的图象与一般的一次函数图象在位置上有没有不同之处。

  小组1:正比例函数图象经过原点。

  小组2:正比例函数图象经过原点,一般的一次函数不经过原点。

  师出示幻灯片3(使学生再一次加深印象)

  师:问(3):对于画一次函数y=kx+b(其中k)b为常数,k≠0)的图象——直线,你认为有没有更为简便的方法?

  (一边思考,可以和同桌交流)(2分钟)

  生1:用3个点。

  生2:老师我这个更简单,用两个点。因为两点确定一条直线嘛!

  生3:如画y=0.5x的图象,经过(0,0)点和(2,1)点这两个点做直线就行。

  师:我们都认为画一次函数图象,只过两个点画直线就行。

  (幻灯片4:师,动画演示用“两点法”画一次函数的过程)

  师:做一做,请你用“两点法”在刚才的直角坐标系中,画出其余三个一次函数的图象。(比一比谁画的既快又好)(4分钟)

  师:问(4):和你的同伴比一比,看谁取的那两个点更为简便一些?

  组1:若是正比例函数,我们组先取(0,0)点,如画y=0.5x的图象,我们再了取(2,

  1)点。这样找的坐标都是整数。

  组2:我们组认为尽量都找整数。

  组3:我们组认为都从两条坐标轴上找点,这样比较准确。如y=3x+2,我们取点(0,3)和点(-2/3,0)

  组4:我们组认为,正比例函数经过(0,0)点和(1,k)点;一般的一次函数经过(0,b)点和(-b/k,0)点。

  师:同学们说的都很好。我觉得可以根据情况来取点。

  2、师:我们现在已经用:“两点法”把四个一次函数图象准确而又迅速地画在了一个直角坐标系中,这四个函数图象之间在位置上有没有什么关系呢?

  问(1):(由自己所画的图象)观察下列各对一次函数图象在位置上有什么关系?(独自观察——学生回答)(3分钟)

  ①y=0.5x与y=0.5x+2;②y=3x与y=3x+2;③y=0.5x与y=3x;④y=0.5x+2与y=3x+2。

  生1:①y=0.5x与y=0.5x+2;两直线平行。

  生2:②y=3x与y=3x+2;两直线平行。

  生3:③y=0.5x与y=3x;两直线相交。

  生4:④y=0.5x+2与y=3x+2;两直线相交。

  师:其他同学有没有补充?

  生5:③y=0.5x与y=3x都是正比例函数;两直线相交,并且交点是点(0,0)点。

  生6:老师,我也发现了④y=0.5x+2与y=3x+2的图象相交,并且交点是点(0,2)。

  师:(出示幻灯片5)同学们回答都不错,我们要向生5和生6学习,学习他们的细致思考。

常用函数图像4

  一、教学内容分析

  本节内容是高一数学必修4(苏教版)第三章《三角恒等变换》第一节的内容,重点放在两角差的余弦公式的推导和证明上,其次是利用公式解决一些简单的三角函数问题。 在学习本章之前,已经学习了三角函数及向量的有关知识,从而为沟通代数、几何与三角函数的联系提供了重要的工具。本章我们将使用这些工具探讨三角函数值的运算。本节内容不仅是推导正弦和(差)角公式、正切和(差)角公式及倍角公式的基础,对于三角变换,三角恒等式的证明,三角函数式的化简、求值等三角问题的解决有重要的支撑作用,而且其推导过程本身就具有重要的教育价值。

  二、学生学习情况分析

  本节课的主要内容是“两角差的余弦公式的推导及证明”,用到的工具有“单位圆中三角函数的定义”和“平面向量数量积的定义及坐标表示”,都属于基础知识,内容简单,容易理解和接受。但是在向量法证明的过程中,向量夹角的范围是[0,π],与两角差α-β的范围不一致,学生对角的范围说明不清,是本节课的难点。

  三、设计思想

  教学理念:以“研究性学习”为载体,培养学生自主学习、小组合作的能力。

  教学原则:注重学生自主学习与探究能力的培养,体现学生个性的发展与小组合作共性的融合。

  教学方法:先学后教,小组合作,师生互动。

  四、教学目标

  知识与技能:了解用向量法推导两角差的余弦公式的过程,掌握两角和(差)的余弦公式并能运用公式进行简单的三角函数式的化简、求值。

  过程与方法:自主探究两角差的余弦公式的表现形式,经历用向量的数量积推导两角差的余弦公式的过程,并能独立利用余弦的差角公式推出余弦的和角公式,理解化归思想在三角变换中的作用。

  情感态度与价值观:体验和感受数学发现和创造的过程,感悟事物之间普遍联系和转化的关系。

  五、教学重点与难点

  重点:两角差的余弦公式的推导及证明。

  难点:引入向量法证明两角差的余弦公式及两角差范围的说明。

  六、教学程序设计

  1.情境创设,课上展示。

  课前探究:

  课上展示:请同学们展示一下课前所得到的结果吧。

  设计意图:课前以问题串的形式给学生指明研究方向。问题层层递进,从特殊到一般,使学生的研究具有一定的坡度性。既让学生容易上手,又让学生在研究过程中慢慢深入与提高。

  主要目的:让学生自主发现两角差的余弦公式的表达形式。

  通过课上展示,学生把课下研究出来的成果与全班同学共享,产生共鸣,为进一步研究两角差的余弦公式做好准备,同时增强表达能力及自信心。

  2.合作探究,小组展示。

  探究一:两角差的余弦公式的推导

  问题4:问题2中我们所得到的结论对于任意角还成立吗?你能证明吗?

  问题5:观察我们得到结论的形式,你能联想到什么呢?

  探究二:两角和的余弦公式的推导

  问题6:你能根据差角的余弦公式推导出和角的`余弦公式吗?

  问题7:比较差角的余弦公式与和角的余弦公式,它们在结构上有何异同点?

  通过小组展示,各个小组之间产生思维的碰撞,迸出火花,得到新的灵感与智慧。从而培养学生团结协作与小组合作的能力。

  3.巩固知识,例题讲解。

  例1:利用两角和与差的余弦公式证明下列诱导公式:

  例3:化简cos100°cos40°+sin80°sin40°

  设计意图:教师对各小组展示内容做适当点评,并且对“向量法证明的优点”,“向量法证明过程的完善”,“向量法中向量夹角与两角差的范围的统一”做简要讲解。

  例1,例2都是公式的直接应用。例1让学生体会诱导公式将余弦的和差角公式推导出正弦的和差角公式,为下节课埋下伏笔。例2中根据cos15°的值求sin15°的值,tan15°的值的过程都是为推导正弦和差公式,正切和差公式做铺垫。

  变式将例2中具体的角变成抽象的角,利用同角三角函数公式求解。在由sinα的值求cosα的值或由cosβ的值求sinβ的值时,要注意根据角的范围确定三角函数值的符号。 例3:是公式的逆用,培养学生逆向思维的能力,让学生对公式结构再认识。

  4.提升总结,巩固练习。

  提升总结:针对上面的3个例题,谈谈你学到了什么?

  (2)利用两角和差的余弦公式求值时,应注意观察、分析题设和公式的结构特点,从整体上把握公式,灵活的运用公式。

  (3)在解题过程中,要注意角的范围,确定三角函数值的符号,以防增根、漏根。 设计意图:主要以学生总结为主,老师做适当点评及补充。

  七、教学反思

  本节课主要以学生的自主学习、小组合作为主,充分发挥了学生的自主探究能力和团队协作能力,提高了学生发现问题、探究问题和解决问题的能力。情境创设中利用三个问题让学生在课前提前熟悉本节课所学的内容“是什么”,“我能得到哪些结论”,调动了学生的思维与学习的积极性,激发了学生的求知欲。但是

  但是如果给出图像,则又会限制数学优秀的学生的解题思路与方法,这对矛盾是由学生的差异所决定的。教师在课堂上应指导、启发学生,注意教学的示范性,明确解题的规范性,实现学生在学习过程中知识的跨越。总之,教学有法,教无定法,贵在得法,为了提高课堂教学效率,我们要从学生的实际出发,以学法带动教法,为高效课堂保驾护航。

常用函数图像5

  一、说教材:

  1.在教材中的地位和作用

  本节内容是高等教育出版社出版的中等职业教育课程改革国家规划新教材《数学(基础模块)》上册第四章第二节第一课时,属于数与代数领域的知识。在之前,学生已学习了函数的概念与性质掌握了研究函数的一般思路,并将幂指数从整数推广到了实数范围的知识,这为过度到本节的学习起着铺垫作用,本节内容是函数内容的深化,又是后续学习对数函数及等比数列的性质的基础,有非常高的实用价值例如在细胞分裂、贷款利息、考古中年份的测算都有较大的应用。也是教材中起承上启下作用的核心知识之一。因此,在指数函数是函数的重要内容之中,在高中阶段有不可替代的作用。

  二、说学情:

  2.学情分析

  心理特点:中职生的共性是一般学习数学的兴趣不高,学习比较被动,自主学习能力比较差,因此在课堂的一开始就要激发学生学习数学的动机,学习动机是直接推动学生学好数学达到学习目的的内在动力,直接影响学习效果。变“要我学”为“我要学”。

  此外职高生生理上表现为少年好动,注意力易分散抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。

  知识障碍上:知识掌握上,学生刚刚学习了函数的定义、图象、性质,已经掌握了研究函数的一般思路,对于本节课的学习会有很大帮助。许多学生出现知识遗忘,所以应全面系统的去回顾与讲述;学生学习本节课的知识障碍,底数对函数图象的影响学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。

  三、说教学目标:

  知识与技能:理解指数函数的概念,掌握指数函数的图像及其性质,并用指数函数的性质解决一些问题。

  过程与方法: 让学生经历“特殊→一般→特殊”的认识过程,完善认知结构,领会数形结合、分类讨论、归纳推理等数学思想方法;通过运用多媒体的教学手段,引领学生主动探索指数函数性质,体会学习数学规律的方法,体验成功的乐趣。

  情感态度价值观:让学生感受数学问题探索的乐趣和成功的喜悦,体会数学的理性、严谨及数与形的.和谐统一美;使学生获得研究函数的规律和方法,提高学生的学习能力养成积极主动,勇于探索,不断创新的学习习惯和品质。

  四、说教学方法:

  教法的选择与教学手段:基于本节课的特点,应着重采用多种的教学方法和手段,其理论依据是坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  (1)故事激趣法:通过小故事牵动学生的思维,在他们不会解决又急于的心理之间制造一种悬念,激起学生强烈的求知欲望;

  (2)多种教学方法结合:教学形式上开展分组比赛、课堂抢答等多种形式的活动,使学生在学习中有光荣感、成就感,使他们获得学习的乐趣。

  (3)任务驱动法:根据学生的心理发展规律,采用学生参与程度高讨论教学法。在老师启发引导下,运用问题解决式教法,师生交谈法,图像法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。

  五、说教学过程:

  1、导入新课(2分钟)

  创设情境 ,兴趣导入:从前有个财主,为人刻薄吝啬,常常克扣工人的工钱,因此附近村民都不愿意到他那里打工。有一天,这个财主家来了一位年轻人,要求打工一个月,报酬是:第一天的工钱只要一分钱,第二天是二分钱,第三天是四分钱……以后每天的工钱是前一天的2倍,直到30天期满。这个财主听了,心想这工钱也真便宜,就马上与这个年轻人签订了合同。可是一个月后,这个财主却破产了,因为他付不了那么多的工钱。那么这工钱到底有多少呢?

  财主应付给打工者的工钱为1073741824分≈1073万元

  (为了激发学生探究的好奇心和学习的兴趣,引起注意,让学生在不会解决又急于的心理状态下学习)

  2、探索新知(7分钟)

  问题1:某种物质的细胞分裂,由1个分裂成2个,2个分裂成4个,4个分裂成8个,……,1个这样的细胞分裂x次后,得到的细胞个数y与x的关系式是什么?

  问题2:《庄子天下篇》中写道:“一尺之棰,日取其半,万世不竭。”请你写出截取x次后,木棰剩余量y关于x的关系式?

  归纳:函数 中,指数x为自变量,底2为常数.

  概念:一般地,形如 的函数叫做指数函数,其中底 ( )为常量.指数函数的定义域为 ,值域为

  (设计意图:两个例子恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。 )

  3、分组讨论(8分钟)

  4、例题讲解(12分钟)

  5、强化练习(8分钟)

  6、课堂总结(2分钟)

  7、布置作业(1分钟)

常用函数图像6

  我们的学生已经对反比例函数的概念有了一定的认识,在此基础上我们进行图像和性质的探索,是很好的一节探索课,可以通过探索来发展学生的数学思维,让不同的学生得到不同的发展。这节课主要是通过学生自主探究、观察、类比学习,探索得出反比例函数的图象和性质,使学生经历了一次自主获取新知的成功体验,充分体现了新课程的教学理念和自主探究的学习方法。自主探究学习是近年来兴起的一种全新的教学方式,它主要着力于学生的学,鼓励学生以类似科学研究的模式,进行主动探索。它把目标指向学生的创新能力、问题意识,以及关注现实、关注人类发展的意识和责任感的培养,而不仅仅是知识的传播和掌握。其有利于改变学生学习数学的方式,它强调“做中学”,力图通过学生“做”的主动探究过程来培养他们的创新精神、动手能力和解决问题的能力。而立足于课堂,深入钻研教材,是数学课堂教学中实施探究性学习的基础。对教学中体会较深的内容如下:

  首先为达到自主探究、培养学生的动手能力、观察能力和问题意识的教学目的,教师要努力为学生创设必要的情境。人们的学习往往从问题开始,因为这样的学习具有方向性与原动力。一节高质量的数学课常常是由好的数学问题启发并激励学生学习的充实过程。因此,我把教学设计的主体“教学情境设计”设计成由若干个有一定逻辑顺序的问题。即通过复习反比例函数的定义,我给出两个反比例函数,画出它的图象。使他们经历观察实验、猜测发现、交流反思等理性思维的基本过程,使他们领悟发现和提出问题的艺术,引导他们更加主动、有兴趣地学,富有探索地学,逐步培养学生的问题意识,孕育创新精神。

  其次我感觉准确、美观的画出反比例函数的图像,也应是本节课的难点,原因之一画函数的图像第一步是列表,列表时取哪些点?不取哪些点?取多少?密集程度如何?对刚接触反比例函数的学生来说,都是必须解决好的问题,否则划出的图像必然是五花八门,错误百出。原因之二,学生画函数图像的经验源于正比例函数和一次函数,由于二者的图像均为直线,所以有可能对画反比例函数图像造成一定的干扰。因此我给了学生大约十分钟的.时间,并让学生在黑板上去花。在画的过程中问题很多通过问题的出现给予纠正,让学生减少作图中的不必要错误。

  最后图画好以后我让学生结合函数观察图像回答了一系列问题,从而让学生总结并归纳出函数的图像和性质,并通过课件呈现,整个过程中学生的参与性很高。为了让学生的思维得到进一步发展我也设计了两个问题,我首先是让学生从对称的角度去观察看能发现什么,然后我让学生在图像上任取一个点向两坐标轴作垂线与坐标轴围成的矩形面积等于多少,又有什么发现学生自己总结,再让学生去发现围成的三角形面积是多少。从而得到我们想要的结论。在课前我就想我们这些班的学生能发现出来吗,令我吃惊的是他们没有问题。整节课我都是大胆放手给学生,学生也觉得这样的课堂很容易集中他们的注意力,让他们的大脑真正动起来了。我虽然没有杨东老师的课堂那么精彩,但我觉得我的这一节课也很成功。我上完这节课最大的体会就是深挖教材备好课,在课堂上让学生成为真正的主人,这样的教学才是最有效的。转变学生的学习方式,向四十分钟要效率也是我在平时的教学中一直追求的。虽然总体教学效果很不错,但是我觉得自己还是存在不足:首先:有些急躁,而且还表现出来了,课堂语言不够精炼。其次:对教学时间把握不准,分配我感觉不均。最后:备课这个环节做的不到位,不是没有认真备,而是经验有点缺乏,每次和能手名师的课相比都觉得自己有很多不足之处,今后要加强学习,提高驾驭课堂的能力。

常用函数图像7

  作法

  (1)列表:表中给出一些自变量的值及其对应的函数值。

  (2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。

  一般地,y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。

  正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出即可。

  (3)连线: 按照横坐标由小到大的顺序把描出的各点用平滑曲线连接起来。

  性质

  (1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。

  (2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。

  k,b决定函数图像的位置:

  y=kx时,y与x成正比例:

  当k>0时,直线必通过第一、三象限,y随x的增大而增大;

  当k<0时,直线必通过第二、四象限,y随x的增大而减小。

  y=kx+b时:

  当 k>0,b>0, 这时此函数的图象经过第一、二、三象限;

  当 k>0,b<0,这时此函数的图象经过第一、三、四象限;

  当 k<0,b>0,这时此函数的图象经过第一、二、四象限;

  当 k<0,b<0,这时此函数的图象经过第二、三、四象限。

  当b>0时,直线必通过第一、三象限;

  当b<0时,直线必通过第二、四象限。

  特别地,当b=0时,直线经过原点O(0,0)。

  这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。当k<0时,直线只通过第二、四象限,不会通过第一、三象限。

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的'公共原点O称为直角坐标系的原点。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

常用函数图像8

  【知识与技能】

  1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.

  2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.

  【过程与方法

  经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的`良好思维习惯.

  【情感态度】

  通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.

  【教学重点】

  1.会画y=ax2(a>0)的图象.

  2.理解,掌握图象的性质.

  【教学难点】

  二次函数图象及性质探究过程和方法的体会教学过程.

  一、情境导入,初步认识

  问题1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?

  问题2 如何用描点法画一个函数图象呢?

  【教学说明】

  ①略;

  ②列表、描点、连线.

  二、思考探究,获取新知

  探究1 画二次函数y=ax2(a>0)的图象.

  画二次函数y=ax2的图象.

  【教学说明】

  ①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.

  ②从列表和描点中,体会图象关于y轴对称的特征.

  ③强调画抛物线的三个误区.

  误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.

  误区二:并非对称点,存在漏点现象,导致抛物线变形.

  误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.

常用函数图像9

  高一数学下册一单元试题:对数函数及其图像与性质

  1.设a=log54,b=(log53)2,c=log45,则()

  A.a

  C.a

  解析:选D.a=log541,log531,故b

  2.已知f(x)=loga|x-1|在(0,1)上递减,那么f(x)在(1,+)上()

  A.递增无最大值 B.递减无最小值

  C.递增有最大值 D.递减有最小值

  解析:选A.设y=logau,u=|x-1|.

  x(0,1)时,u=|x-1|为减函数,a1.

  x(1,+)时,u=x-1为增函数,无最大值.

  f(x)=loga(x-1)为增函数,无最大值.

  3.已知函数f(x)=ax+logax(a0且a1)在[1,2]上的最大值与最小值之和为loga2+6,则a的值为()

  A.12 B.14

  C.2 D.4

  解析:选C.由题可知函数f(x)=ax+logax在[1,2]上是单调函数,所以其最大值与最小值之和为f(1)+f(2)=a+loga1+a2+loga2=loga2+6,整理可得a2+a-6=0,解得a=2或a=-3(舍去),故a=2.

  4.函数y=log13(-x2+4x+12)的单调递减区间是________.

  解析:y=log13u,u=-x2+4x+12.

  令u=-x2+4x+120,得-2

  x(-2,2]时,u=-x2+4x+12为增函数,

  y=log13(-x2+4x+12)为减函数.

  答案:(-2,2]

  5.若loga21,则实数a的取值范围是()

  A.(1,2) B.(0,1)(2,+)

  C.(0,1)(1,2) D.(0,12)

  解析:选B.当a1时,loga22;当0

  6.若loga2

  A.0

  C.a1 D.b1

  解析:选B.∵loga2

  7.已知函数f(x)=2log12x的值域为[-1,1],则函数f(x)的定义域是()

  A.[22,2] B.[-1,1]

  C.[12,2] D.(-,22][2,+)

  解析:选A.函数f(x)=2log12x在(0,+)上为减函数,则-12log12x1,可得-12log12x12,X k b 1 . c o m

  解得222.

  8.若函数f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和为a,则a的值为()

  A.14 B.12

  C.2 D.4

  解析:选B.当a1时,a+loga2+1=a,loga2=-1,a=12,与a

  当0

  loga2=-1,a=12.

  9.函数f(x)=loga[(a-1)x+1]在定义域上()

  A.是增函数 B.是减函数

  C.先增后减 D.先减后增

  解析:选A.当a1时,y=logat为增函数,t=(a-1)x+1为增函数,f(x)=loga[(a-1)x+1]为增函数;当0

  f(x)=loga[(a-1)x+1]为增函数.

  10.(20xx年高考全国卷Ⅱ)设a=lge,b=(lg e)2,c=lg e,则()

  A.ac B.ab

  C.cb D.ca

  解析:选B.∵1

  ∵0

  又c-b=12lg e-(lg e)2=12lg e(1-2lg e)

  =12lg elg10e20,cb,故选B.

  11.已知0

  解析:∵00.

  又∵0

  答案:3

  12.f(x)=log21+xa-x的图象关于原点对称,则实数a的值为________.

  解析:由图象关于原点对称可知函数为奇函数,

  所以f(-x)+f(x)=0,即

  log21-xa+x+log21+xa-x=0log21-x2a2-x2=0=log21,

  所以1-x2a2-x2=1a=1(负根舍去).

  答案:1

  13.函数y=logax在[2,+)上恒有|y|1,则a取值范围是________.

  解析:若a1,x[2,+),|y|=logaxloga2,即loga21,11,a12,12

  答案:12

  14.已知f(x)=6-ax-4ax1logax x1是R上的增函数,求a的取值范围.

  解:f(x)是R上的增函数,

  则当x1时,y=logax是增函数,

  a1.

  又当x1时,函数y=(6-a)x-4a是增函数.

  6-a0,a6.

  又(6-a)1-4aloga1,得a65.

  656.

  综上所述,656.

  15.解下列不等式.

  (1)log2(2x+3)log2(5x-6);

  (2)logx121.

  解:(1)原不等式等价于2x+305x-602x+35x-6,

  解得65

  所以原不等式的.解集为(65,3).

  (2)∵logx12log212log2x1+1log2x0

  log2x+1log2x-1

  2-1012

  原不等式的解集为(12,1).

  16.函数f(x)=log12(3x2-ax+5)在[-1,+)上是减函数,求实数a的取值范围.

  解:令t=3x2-ax+5,则y=log12t在[-1,+)上单调递减,故t=3x2-ax+5在[-1,+)单调递增,且t0(即当x=-1时t0).

  因为t=3x2-ax+5的对称轴为x=a6,所以a6-18+aa-8-8

常用函数图像10

  一、教材分析

  这是本章的第二节,研究对象是反比例函数的图像及其性质,其学习以正比例函数的图像及其性质为基础,在学习过程中可以借助前面学习的正比例函数的有关知识和研究方法,确定研究方向,因势利导,从而类比形成新的知识结构体系,整个过程特别注重让学生自己探索发现,培养学生类比、观察、猜想、归纳等独立思考的能力,在函数知识里边,还渗透了数形结合的思想,方程的思想,“运动—变化”的辩证唯物主义思想,并且能进一步加强代数与几何的联系.,可为后阶段学习一次函数、二次函数的有关知识打下良好的基础。

  二、学情分析

  我校这届学生,多是务工子女,基本能力和技能较低,因此在教学时要为学生创设自主探索合作交流的环境,以直观,操作观察,概括和交流作为重要的活动方式,通过这些活动逐步提高从函数图像中获取信息的能力,提高感知水平。

  学生在第一节中已经学习过“正比例函数”的内容,对函数已经有了初步的认识,在此基础上研究讨论反比例函数图像及其性质对后继学习产生积极影响,再说学生可以结合实例经历列表、描点、作图等活动,理解函数的整体直观形象,为学生探索反比例函数的性质提供了思维活动空间,可以使学生更牢固地掌握由他们自己发现的反比例函数的性质。

  三、教学目标

  1 进一步熟悉画函数图像的主要步骤,能利用描点法正确画出反比例函数的图像。

  2 逐步提高从函数图像中获取信息的能力,探索并掌握反比例函数图像的主要性质。

  3 通过类比、观察、猜想、归纳等激发探究新知识的热情,经历体验知识产生、形成和发展的过程,增强学习数学的兴趣。

  4 在动手作图的过程中,体会做中学的乐趣,养成勤于动手,乐于探索和与他人合作交流的习惯。

  四、教学重点与难点

  教学重点:理解反比例函数的图像,掌握反比例函数的性质

  教学难点:对反比例函数性质的理解。

  五、教法分析和学法指导

  本课教学采用探讨研究法、发现法、讲、练结合法.其依据是:

  ⑴遵循教材的结构特点和学生的认知能力。

  ⑵教学方法改革发展的新趋势:注重启发式,加强对学生学法的研究和指导。

  ⑶教师的主导作用和学生的主体参与有机的结合。

  六、教学过程

  (一)创设问题情境,引入新课

  师:同学们还记得我们学过的正比例函数吗?正比例函数的图像是什么图形?你在画图时需要采用哪几个步骤?

  生:记得,是一条经过原点的直线。 (1)列表(2)描点(3)连线

  设计意图:回顾正比例函数图像作法的基本步骤,为学习反比例函数的图像和性质做准备。

  (二)提出问题,探究新知

  师:上节课我们学习了反比例函数的一般解析式是什么?

  生: 反比例函数的一般解析式是

  师:请同学们来猜想一下反比例函数的图像是什么?让我们一起画个反比例函数的图像看看,好吗?

  操 作:同桌两人分别画出反比例函数 或 的函数图像。(分组进行列表画图)(课前已经准备好方格纸片和彩色笔、铅笔)

  按照研究正比例函数图像即一般函数图像的一般步骤,通过列表、描点、连线来画出它们的图像。

  以小组为单位,先列出表格,再进行描点、连线。注意:①列表时自变量取值要均匀和对称②x≠0③选整数较好计算和描点。(教师提示)

  设计意图:让学生亲自动手操作,会画反比例函数的图像,可以培养学生的动手能力,激发学生学好数学的兴趣,去为发现反比例函数的性质做准备。分组画图的目的是为后面的合作交流做铺垫。采用彩色笔,通过颜色变化,有利于反映和发现问题。

  通过学生自己画的图像,经过仔细观察,从而得出反比例函数的图像是双曲线。(教师可做提示一般一个分支取4~6个点)

  比 一 比:同桌两人分别画出函数 或 的图像,看谁画得又快又好。(展示学生作品)

  设计意图:通过比一比的方式,提高学生的画图技能和计算能力,利用对好作品的展示又可激发学生学习的兴趣,增强自信心。

  (三)探索比较,发现规律

  师:下面大家分四人一小组讨论,根据大家所画出的函数图像,从以下几个方面出发,你能发现反比例函数的图像及性质有哪些?

  1 你能发现它们的共同特征以及不同点吗?

  2 函数图像分别位于哪几个象限?

  3 在每一个象限内,y随的x变化有怎样的变化?

  设计意图:提高学生从函数图像中获取信息的能力,探索并掌握反比例函数的主要性质,体会分类讨论的思想,数形结合思想的运用,并引导学生积极参与探索活动,注意多和同伴交流看法。

  师:讨论结束后,由各小组选代表说说讨论结果。

  师生行为:

  学生分组针对上面3个问题,结合画出的图形分类讨论,归纳总结出反比例函数的图像的性质:

  (1)反比例函数y = (k为常数,k≠0)的图像是双曲线。

  (2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y随x值的`增大而减小。

  (3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y随x值的增大而增大。

  (四)运用新知、拓展训练

  (抢答题)

  1.反比例函数的解析式是 。它的图像是 。

  2.当k< 0 时,反比例函数 的图像的两个分支分别分布在第 象限内;在每一象限中,y值随x值的增大而 。

  3.已知函数 ,如果y随着x增大而减小,那么k的取值范围是 。

  4.反比例函数 ,那么在x﹤0时,y的值随x的增大而 。

  5.在函数 中,当m= 时,它是反比例函数。y随x的增大而

  6. 若两点(x1, y1),(x2, y2)反比例函数 的图像上有,且x1< x2<0,则y1与y2的关系是( )

  A. y1> y2 B. y1< y2

  C. y1=y2 D.大小无法确定

  设计意图:检验学生对本课知识的掌握及应用情况。通过练习,既培养学生思维的敏捷性,又激发学生的参与和竞争意识.在抢答过程中,教师给予适当评讲,并积极调动学生的参与热情,让整个课堂充满活跃的气氛.

  (五)归纳总结,布置作业

  师:让学生谈谈收获(讨论后请几位学生发言)

  1、你学到了哪些知识?

  2、你还有哪些疑问?

  设计意图:通过学生自由讨论、总结、概括本节所学习的内容,使学生进一步了解反比例函数的图像及其性质,让他们体验到学习数学的快乐,在交流中与全班同学分享。

  思考题:

  仔细观察反比例函数的图像,除已学过的性质外,还可以观察出什么特别的性质?

  设计意图:此题是一个简单的开放性问题,为学有余力并对数学有浓厚兴趣的学生设计,目的是为他们提供一定的学习材料,给学生较大的思维空间和思考时间,培养其发散思维,鼓励学生在学习中发现和探索.

  七、反思

  1、同桌互动画图像,改变传统的被动接受知识的教学方式,鼓励学生自己探索、合作交流。对于我班部分个别学生来说画图技巧较弱,课后需再加强辅导。

  2、由于本节课的内容与正比例函数有着密切联系,学生能在旧知识中寻找模型,而最后的运用新知、拓展训练中的第6题,提升了一定的高度,有一小部分同学不那么容易理解,需要进行适当的点拨。

常用函数图像11

  教学目标

  (一)知识教学点:

  1.会用描点法根据解析式或表格画出函数的图象

  2.会由函数的图象获取函数的性质。

  (二)能力训练点:

  1.在选择恰当数值进行列表的教学中,培养学生分析问题和解决问题的能力;

  2.在描点画图的过程中培养学生的动手能力;

  3.通过函数图象的教学,向学生渗透数形结合的思想方法.

  (三)德育渗透点:

  通过函数图象的教学,使学生体会事物是互相联系的和有规律地变化着的.

  教学重点、难点和疑点

  1.教学重点:会用描点法画出函数的图象,由函数的图象获取函数的性质.

  2.教学难点:由函数的图象获取函数的性质.

  教学步骤 :

  (一)复习提问,引入新课,明确目标,

  提问:

  1.上节课我们学习了一种表示函数的方法,是什么?什么是函数?什么是变量?什么是常量?

  2.它是不是唯一的表示函数的方法呢?

  (再通过一个销售问题的实例来进行复习引入。出示幻灯片) 出售一种豆子,每千克2元,写出豆子的总金额y(元)与所售豆子的数 量x(千克)之间的函数关系式,并指出自变量的取值范围。 解析法:

  y=2x 看一看,咱们还可以把上式列出表格 列表法:

  数量(千克) 1 2 3 4 5 6 7

  金额(元) 2 4 6 8 10 12 14

  解析法:

  y=2x(x≥0) 如果想直观地了解售出的金额与 数量之间的.关系,你有什么办法吗?

  (1,2) (2,4) (3,6) (4,8) (5,10)(6,12) (7,14) 自变量与函数的每对对应值就是一些有序数对。你有什么想法?

  如果把自变量与函数的每对对应值分别作为点的横、纵坐标,在平面直角 坐标系中描出这些点,会有什么结果呢? (咱们还可以用画图像的方法来表示函数)

  有些问题中的函数关系很难列式子表示,但是可以用图来直观地反映,例如用心电图表示心脏生物电流与时间的关系.即使对于能列式表示的函数关系,如也能画图表示则会使函数关系更清晰.

  这节课我们就来学习函数的图象表示方法.(板书课题)

  (二)整体感知

  看实例:正方形的边长x与面积S的函数关系为:

  S=X2(X≥0), 其中自变量的取值范围是________.我们还可以利用在坐标系中画图的方法来表示S与的关系.

  计算并填写下表:

  X 0 0.5 1 1.5 2 2.5 3 3.5 4

  S

  上面,通过列表给出与S的对应值,也可以表示S与的函数关系,这种表示函数的方法叫做列表法.

  提问:1.看上表,给出的实际是一列实数对,如果规定把自变量的值写在前面,函数S的值写在后面,我们就得到一列什么样的实数对?

  (三)整体感知 ,新课学习。

  1、看实例:正方形的边长x与面积S的函数关系为:

  S=X2 其中自变量的取值范围是_X≥0_.我们还可以利用在坐标系中画图的方法来表示S与x的关系. (出示幻灯片)

  想一想,有序实数对与什么有关?有什么样的关系?

  通过这两个问题,可使学生很自然地把上面的列表与坐标平面联系起来,就可以顺利引出函数与坐标平面内的图形的联系.

  能否把上表中给出的有序实数对在坐标平面内描出相应的点? (板演画图,归纳总结)

  一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 如图的曲线即函数S=X2(X≥0)的图象.

  2、归纳:表示函数关系的方法:

  ①、解析法:准确地反映了函数与自变量之间的数量关系。

  ②、列表法:具体地反映了自变量与函数的数值对应关系。

  ③、图象法:直观地反映了函数随自变量的变化而变化的规律。

  3、老师演示,学生观察:函数y=x4的图像。

  通过例题归纳由函数解析式画图象,一般按下列步骤进行:

  (1).列表:列表给出自变量与函数的一些对应值;

  (2).描点:以表中对应值为坐标,在坐标平面内描出相应的点;

  (3).连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连结起来.

  4、练习:作出函数y=2x+1的图象

  5、例题精讲,图像的运用:

  ①、观察:如图是自动测温仪记录的图象,它反映了北京的春季某天气温T如何随时间t的变化而变化.你从图象中得到了哪些信息?(图见P.11图11.1-4)

  学生讲论,全班交流,归纳总结

  ②、例2 下面的图象反映的过程是:小明从家去菜地浇水,又去玉米地锄草,然后回家.其中 表示时间,y表示小明离他家的距离. 根据图象回答下列问题:(图见课本P.12图11.1-5)

  (1) 菜地离小明家多远? 小明走到菜地用了多少时间?

  (2) 小明给菜地浇水用了多少时间?

  (3) 菜地离玉米地多远? 小明从菜地到玉米地用了多少时间?

  (4) 小明给玉米地锄草用了多少时间?

  (5) 玉米地离小明家多远?小明从玉米地走回家的平均速度是多少?

  (四)拓展练习:

  1、某厂今年前五个月生产某种产品的月产量Q(件)关于时间t (月)的函数图象如图所示,则对这种产品来说,下列说法正确的是( ).

  A、1月至3月每月产量逐月增加,4、5两月每月产量逐月减少

  B、1月至3月每月产量逐月增加,4、5两月每月产量与3月持平

  C、1月至3月每月产量逐月增加, 4、5两个月停止生产

  D、1月至3月每月产量不变, 4、5两月停止生产

  2、三峡工程去年在6月1日至6月10日下闸蓄水期间,水库水位 由106米升至135米,高峡平湖初现人间。假使水库水位匀速上 升,那么下列图象中,能正确反映这10天水位h(米)随时间t (天)变化的是( )

  3.小明从家里出发,外散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家.

  下面的图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.请你由图具体说明小明散步的情况.

  4、如图是一种古代的计时器——“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间。用x表示时间,y表示壶底到水面的高度,下面的哪个图像适合表示一小段时间内y与x的函数关系(暂时不考虑水量变化时对压力的影响)?(出示幻灯片)

  5、一枝蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列3幅图象中能大致刻画出这枝蜡烛点燃后剩下的长度h(厘米)与点燃时间t之间的函数关系的是( ).

  (五)、课堂小结,提高认识:

  1、回忆一下,本节课你学会了什么?

  (一般来说,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像。)

  2.画函数图象的方法:

  描点法:

  (1)列表

  (2)描点

  (3)连线(平滑)

  3、函数的表示方法:解析法,列表法,图像法。

  4、画函数图象的步骤从函数图象获取信息的步骤:

  ①、画出函数的图象。

  ②、观察图象,发现数量关系及其变化规律。

  (六)、布置作业 :

  1、课本107页第7题。

  2、画出函数的图象。

常用函数图像12

  1数轴

  11 有向直线

  在科学技术和日常生活中,为了区别一条直线的两个不同方向,可以规定其中一方向为正向,另一方向为负相

  规定了正方向的直线,叫做有向直线,读作有向直线l

  12 数轴

  我们把数轴上任意一点所对应的实数称为点的坐标

  对于每一个坐标(实数),在数周上可以找到唯一的点与之对应这就是直线的坐标化

  数轴上任意一条有向线段的数量等于它的终点坐标与起点坐标的差任意一条有向线段的长度等于它两个断电坐标差的绝对值

  2 平面直角坐标系

  21 平面的直角坐标化

  在平面内任取一点o为作为原点(基准点),过o引两条互相垂直的,以o为公共原点的数轴,一般地,两个数轴选取相同的单位长度这样就构成了一个平面直角坐标系x轴叫横轴,y轴叫纵轴,它们都叫直角坐标系的坐标轴;公共原点o称为直角坐标系的原点;我们把建立了直角坐标系的平面叫直角坐标平面简称坐标平面两坐标轴把坐标平面分成四个部分,它们叫做四个象限

  22 两点间的距离

  23 中点公式

  3 函数

  31 常量,变量和函数

  在某一过程中可以去不同数值的量,叫做变量在整个过程中保持统一数值的量或数,叫做常量或常数

  一般地,设在变活过程中有两个互相关联的变量x,y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与之对应,那么就称y是x的函数,x叫做自变量

  1. 函数的定义域

  2. 对应法则

  (1) 解析法

  就是用等式来表示一个变量是另一个变量的函数,这个等式叫做函数的解析表达式(函数关系式)

  (2) 列表法

  (3) 图像法

  3 函数的值域

  一般的,当函数f(x)的自变量x去定义域D中的一个确定的值a,函数有唯一确定的对应值这个对应值,称为x=a时的函数值,简称函数值,记作:f(a)

  32 函数的图像

  若把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在直角坐标平面上描出一个点(x,f(x))的集合构成一个图形F,而集F成为函数y=f(x)的图像

  知道函数的解析式,要画函数的图像,一般分为列表,描点,连线三个步骤

  4 正比例函数

  41 正比例函数

  一般地,函数y=kx(k是不等于零的常数)叫做正比例函数,其中常数k叫做变量y与x之间的比例函数确定了比例函数k,就可以确定一个正比例函数

  正比例函数y=kx有下列性质:

  (3) 当k>0时,它的图像经过第一,三象限,y随着x的值增大而增大;当k<0时,他的图像经过第二,四象限,y随着x的增大而减小

  (2)随着比例函数的绝对值的增加,函数图像渐渐离开x轴而接近于y轴,因此,比例系数k和直线y=kx与x轴正方向所成的角有关据此,k叫做直线y=kx的斜率

  42 反比例函数

  一般地,函数y=k/x(k是不等于0的常数)叫做反比例函数

  反比例函数y=k/x有下列性质:

  (7) 当k>0时,他的图像的.两个分支分别位于第一,三象限内,在每一个象限内,y随x的值增大而减小;当k<0时,它的图像的两个分支分别位于第二、四象限内,在每一个象限内,y随x的增大而增大

  (8) 它的图像的两个分支都无限接近但永远不能达到x轴和y轴

  5 一次函数及其图像

  51 一次函数及其图像

  如果k=0时,函数变形为y=b,无论x在其定义域内取何值,y都有唯一确定的值b与之对应,这样的函数我们称它为常函数

  直线y=kx+b与y轴交与点(0,b),b叫做直线y=kx+b在y轴上的截距,简称纵截距

  52 一次函数的性质

  函数y=f(小),在a〈x〈b上,如果函数值随着自变量x的值增加而增加,那么我们说函数f(x)在a〈x

  如果分别画出两个二元一次方程所对应的一次函数图像,交点的坐标就是这个方程组的解,这种求二元一次方程组的解法叫图像法

  初中数学正方形定理公式

  关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。

  正方形定理公式

  正方形的特征:

  ①正方形的四边相等;

  ②正方形的四个角都是直角;

  ③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;

  正方形的判定:

  ①有一个角是直角的菱形是正方形;

  ②有一组邻边相等的矩形是正方形。

  希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。

  初中数学平行四边形定理公式

  同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。

  平行四边形

  平行四边形的性质:

  ①平行四边形的对边相等;

  ②平行四边形的对角相等;

  ③平行四边形的对角线互相平分;

  平行四边形的判定:

  ①两组对角分别相等的四边形是平行四边形;

  ②两组对边分别相等的四边形是平行四边形;

  ③对角线互相平分的四边形是平行四边形;

  ④一组对边平行且相等的四边形是平行四边形。

  上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。

  初中数学直角三角形定理公式

  下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。

  直角三角形的性质:

  ①直角三角形的两个锐角互为余角;

  ②直角三角形斜边上的中线等于斜边的一半;

  ③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);

  ④直角三角形中30度

  角所对的直角边等于斜边的一半;

  直角三角形的判定:

  ①有两个角互余的三角形是直角三角形;

  ②如果三角形的三边长a、b 、c有下面关系a^2+b^2=c^2

  ,那么这个三角形是直角三角形(勾股定理的逆定理)。

  以上对数学直角三角形定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。

  初中数学等腰三角形的性质定理公式

  下面是对等腰三角形的性质定理公式的内容学习,希望同学们认真看看。

  等腰三角形的性质:

  ①等腰三角形的两个底角相等;

  ②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)

  上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。

  初中数学三角形定理公式

  对于三角形定理公式的学习,我们做下面的内容讲解学习哦。

  三角形

  三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;

  三角形的内角和定理:三角形的三个内角的和等于180度;

  三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;

  三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

  三角形的三条角平分线交于一点(内心);

  三角形的三边的垂直平分线交于一点(外心);

  三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

  以上对三角形定理公式的内容讲解学习,希望同学们都能很好的掌握,并在考试中取得很好的成绩哦。

常用函数图像13

  本专题虽然为复习专题,但对于职中的学生来说,仍为学习的一个难点,因此教师要把握好难度,主要在学生了解知识的发生发展过程的基础上,让学生熟记结论,能正确的运用结论即可。主要思路以学生探索为主,教师点拨、启发、引导和利用几何画板、课件动画演示为辅,整个教学过程遵循学生认识事物从“特殊”到“一般”的规律。

  以前该部分内容的教学通常是通过取值、列表、描点、画图然后静态的让学生观察、总结,最后得出它们之间图像变化的特点,不仅教学内容少,所耗时间长,课堂气氛枯燥、学生参与的活动少、学习的积极性较低。通过信息技术的使用,改变常规教学中的处理方式,通过动画演示,直观生动,让学生通过实验、观察、体会和交流,使得函数图像的对称变换、伸缩变换、平移变换变得形象、直观,学生易于理解和掌握。学生的学习兴趣浓厚、参与活动多、课堂气氛活跃,使课堂教学落到了实处,主体作用得到了真正的体现,综合能力和素质也得到了培养,这充分体现了信息技术具有的优势。

  在第一课时函数图像的平移变化教学中,通过游戏引入,激发学生的学习兴趣,为整节课奠定一个活跃的氛围。再通过学生熟知的初等函数图像之间的关系,让学生从“特殊到一般”总结规律。在上课时,教师可根据学生的基础进行调整。如果学生基础较好的可以把它推广到一般的函数

  也即沿着轴正半轴平移为“-”,沿着负半轴平移的为(+)

  口诀:左“+”右“-”

  如果学生的基础较差,可以设计几个简单的函数,利用几何画板观察图像变化,直接给出结论,而不给出这样的表达式。另外一个,采用特殊记忆:口诀记忆:左“+”右“-”,形象易记。通过教师课堂上口述练习,学生抢答,为学生创造更多的成功体验,培养学生的自信心。在讲左右平移的时候注意自变量得系数不为1的时候,应该先把系数提取再进行平移。例如函数向右平移3各单位,学生很容易犯这样的错误,直接在后面减去3得到.这是本节课的一个难点,教师可通过几何画板进行实验,让学生深刻理解平移后的表达式应该是。在教学过程中,整个课堂从开始到结束,学生都能够保持着高的参与度,并很好的完成专项练习。

  第二课时函数图像的对称变换,较为系统的从关于、轴对称到关于点对称,从点的对称到整一个图像的对称,思路清晰明了,通过课件动画演示,让学生易于找到规律,从感性的认识上升到理性认识,培养学生的分析与归纳能力大有帮助。对基础较好的`学生可以将含绝对值的函数图像选择性的学习,拓广学生的思维。

  第三节课函数图像的伸缩变换,从生活实例引入,由学生熟悉的基本初等函数正弦函数为典例,动画演示,从形的直观再到数(解析式)的表示,学生比较容易入手。特别是对于家电专业的学生,特殊的专业模型电流的图像,让学生更能感觉到学有所用。采用观察法,减少推导过程,让学生直接运用结论,大大降低难度,让学生感到应用知识并不难。

  函数图像的变换在高职考中主要考查对变换前后图像形状判断、变换前后函数解析式的表示。因此设计练习时侧重于常见题型的演练,注意把握好难度。特别注意在几种变换综合时,图像的平移变换中注意左右平移针对自变量x,上下平移针对函数值y.特别是改变平移途径先伸缩后平移的方法。例如将函数图像向右平移2个单位,得到的图像,再向下平移3个单位得到,而不是。

常用函数图像14

  一、说教材

  1、教材的地位和作用

  函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本函数之一。本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数在生产、生活实践中都有许多应用。本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数等提供了必要的基础知识。

  2、教学目标的确定及依据

  根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:

  (1)知识目标:掌握对数函数的图像与性质;初步学会用对数函数的性质解决简单的问题。

  (2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、分析、归纳等逻辑思维能力。

  (3)情感目标:构造和谐的教学氛围,增加互动,促进师生情感交流,培养学生严谨的.科学态度,欣赏数学的精确和美妙之处,调动学生学习数学的积极性。

  3、教学重点与难点

  重点:对数函数的图像与性质。

  难点:对数函数性质中对于在《对数函数的图像与性质》说课稿与《对数函数的图像与性质》说课稿两种情况函数值的不同变化。

  二、说教法

  学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法。根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:

  1、教学方法:

  (1)启发引导学生观察、联想、思考、分析、归纳;

  (2)采用“从特殊到一般”、“从具体到抽象”的方法;

  (3)渗透数形结合、分类讨论等数学思想方法。

  (4)用探究性教学、提问式教学和分层教学

  2、教学手段:

  计算机多媒体辅助教学。

  三、说学法

  “授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

  (1)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质。

  (2)主动式学习:学生自己归纳得出对数函数的图像与性质。

  四、说教程

  1、温故知新

  我通过复习y=log2x和y=log0。5x的图像,让学生熟悉两个具体的对数函数的图像。

  设计意图:这与本节内容有密切关系,有利于引出新课。为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。

  2、探求新知

  研究对数函数的图像与性质。关键是学生自主的对函数《对数函数的图像与性质》说课稿和《对数函数的图像与性质》说课稿的图像分析归纳,引导学生填写表格(该表格一列填有《对数函数的图像与性质》说课稿在《对数函数的图像与性质》说课稿及《对数函数的图像与性质》说课稿两种情况下的图像与性质),采用“从特殊到一般”、“从具体到抽象”的方法,归纳总结出《对数函数的图像与性质》说课稿的图像与性质。

  在学生得出对数函数的图像和性质后,教师再加以升华,强调“数形结合”记忆其性质,做到“心中有图”。另外,对于对数函数的性质3和性质4在用多媒体演示时,有意识地用(1)(2)进行分类表示,培养学生的分类意识。

  设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过观察、联想、思考、分析、探索,在此过程中,这充分体现了探究定向性学习和主动合作式学习。

  3、课堂研究,巩固应用

  例1主要利用对数函数《对数函数的图像与性质》说课稿的定义域是《对数函数的图像与性质》说课稿来求解。

  例2利用对数函数的单调性,比较两个同底对数值的大小。在这个例题中,注意第三小题的点拨,选择和中间量0或1比较,第四小题要分底数《对数函数的图像与性质》说课稿及《对数函数的图像与性质》说课稿两种情况。

  例3解对数不等式,实际是例2的一种逆向运算,已知对数值的大小,比较真数,任然要使用对数函数的单调性。

  设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充分体现了数形结合和分类讨论的数学思想方法。同时为课外研究题的解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔。

  4、巩固练习

  使学生学会知识的迁移,两个练习紧扣本节内容,利用课堂研究中体现的重要的数形结合和分类讨论的数学思想方法,学生课后完全有能力解决这个问题。

  5、课堂小结

  引导学生进行知识回顾,使学生对本节课有一个整体把握。从两方面进行小结:

  (1)掌握对数函数的图像与性质,体会数形结合的思想方法;

  (2)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的

  解法,体会分类讨论的思想方法。

  6、作业:p97习题3,4,5

  选做题6题

常用函数图像15

  【学习目标】

  1、学习利用正、余弦函数的图像和性质解决一些简单应用;

  2、比较单位圆和图像法研究三角函数的性质时各自的特点;

  3、进一步熟悉正、余弦函数的最值、单调性、奇偶性、图像的对称性的应用;

  【学习重点】

  正、余弦函数的图像和性质的简单应用

  【学习难点】

  运用函数观点和数形结合思想研究函数性质

  【学习过程】

  一、预习自学(把握基础)

  (温习课本第18页、28页、31页、32页关于正、余弦函数的图像和性质的内容,解决下列内容)

  1、角α终边和单位圆交于点P(u,v)时,sinα= ;csα= ;

  若P(x,)是角α终边上一点,则sinα= ; csα= ;

  2、描点法画余弦曲线时的五个关键点是:

  3、说说正、余弦函数的性质有哪些相同点和不同点?(画出表格比较)

  二、合作探究(巩固深化,发展思维)

  例1.书第24页A组第6题

  例2.书第24页B组第4题

  例3、书第35页B组第1题

  三、达标检测(相信自我,收获成功)

  1、函数=2csx, 412【导学案】正、余弦函数的图像和性质的应用 的'增区间为 ;减区间为 。

  2、书第35页B组第2题(分csx<0和csx≥0两种情况化简解析式后画出图像)

  (1)该函数图像为:

  (2)定义域为 ;值域为 ;x= 时,

  函数最大值为 ;最小正周期为 ;奇偶性为 ;

  (3)该函数图像的对称性是 ;

  增区间为 ;

  减区间为 。

  (4)函数在[-2π,2π]上的图像与直线=-1的交点个数是 。

  四、学习体会

  我的疑惑:

【函数图像】相关文章:

(精选)常用函数图像03-11

常用函数图像03-11

(优秀)常用函数图像03-12

常用函数图像15篇[荐]03-11

函数知识点03-01

[精选]函数知识点03-01

函数知识点(合集)03-02

数学必修一函数知识点03-03

函数知识点必备(15篇)03-04

看3d图像最有效的训练方法05-04