常用函数图像1
《新课程标准》强调教学过程是师生交往、共同发展的互动过程.在教学过程中要处理好传授知识与培养能力的关系,注重培养学生的独立性,引导学生质疑、调查、探究,在实践中学习,使学习成为在教师指导下主动的、富有个性的过程.课堂应较多地出现师生互动、平等参与的生动局面,学习方式开始逐步多样化,乐于探究、主动参与、勤于动手成为教学过程中教师的共识.为此,本节课主要通过开放式的提出问题,让学生经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法,让学生初步认识具体的反比例函数图象的特征,体会事物是有规律地变化着的观点.用科学的方法解决问题,培养学生科学的态度与精神.借助于多媒体课件,让学生更能直观的知道图象的形成过程,有助于学生对数学知识的理解和掌握.
在“反比例函数的图象和性质”这一课的教学过程中,“数”与“形”的转化,是贯穿始终的一条主线。主要反映在以下几个方面。 第一,反比例函数的图象和性质,是“数”与“形”的统一体,由“解析式”到“作图”,再到“性质”,都充分体现了由“数”到“形”,再由“形”到“数”的转化过程,是数形结合思想的具体应用。本课的教学设计与实施中,通过“描点法”作图、观察几个具体的反比例
函数的图象、课件演示展示“由动点生成函数图象”,很好地反映了“数”、“形”之间的这种内在的联系。第二,在“列表取值为何不能取零”、“反比例函数的图象为何与坐标轴不会相交”、“特殊的反比例函数性质能否推广到一般”这几个问题中,如果单纯依靠观察图象,是无法得出具有“说服力”的结论的,这就需要“回归”解析式,再引导学生进行分析。即我们可以借助直观图形,帮助我们思考相关的问题,但仅有图形的直观是不够的,必须考虑“已经”形式化的“数”的本质“特征”,使“数”、“形”之间达到统一。于是,在教学中,我们同样关注了对“解析式”的分析。第三,在总结得出反比例函数的图象和性质之后,我们为学生提供了一组题目,目的也是为学生提供一个体会“数形结合”、应用“数形结合”分析问题的平台,使学生经历利用“图形直观”来认识、解决与函数有关问题的过程。
不足与改进:在整个课堂教学过程中,教师围绕主题、有针对性的提出问题,学生小组合作探讨问题得出结论,然而部分小组在合作探究上还有所欠缺,讨论的'不够激烈完善。我的改进设想是:留给时间让学生提出问题,师生共同讨论、交流,让学生的学习更富有主动性;在画出反比例函数的图象后,没有让学生趁热打铁“看图说话”,说出具体的图象的特征;在画出反比例函数的图象后,追加这样一个问题:“请同学们仔细观察图象并进行讨论,这个反比例函数的图象区别于一次函数的图象有那些不同的特征呢?” 留给时间让学生讨论、交流,这样改进之后,必将能更大的激发学生的探索热情,更能
体现学生的创新能力,同时也为进一步学习反比例函数的图象的特征埋下伏笔,能增强学生学习的信心.
常用函数图像2
从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。
通过课堂的实际实施感觉上也不是尽善尽美,还有令人不满意的地方。教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。这样,教师才能灵活的把握课堂教学。而现在,教师缺乏的正是这一点,还是为了教而教。按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。从这一角度讲,教师应在把握知识的基础上。结合学生的表现,灵活多样的处理知识。学生是学习的主体,学生活动是新教材的一大特点。新教材在知识安排上,往往从实例引入,抽象出数学模型。通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。侧重于学生能力的培养,让学生知道学什么,如何学。因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。一是通过画函数图象理解一次函数图象的形状,二是两点法画一次函数的图象,三是探究一次函数的图象与k、b符号的关系。
在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。值得老师们探讨。为了达到上述目的',我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。如在活动一中,要求学生观察图象的形状,两条直线的位置关系。
在活动二中,强调两点法(直线与坐标轴的交点)画直线。在活动三中,探究k、b符号与直线经过的象限与增减性的关系。学生目标明确,操作性强,受到了较好的效果。本节课的重点是由一次函数的解析式确定函数图象,研究函数性质。由函数图象的位置判断解析式中k、b符号。体现了数学中非常重要地数形结合的思想。这段内容的教学,还是从学生活动出发,从具体的实例研究起,观察图象的位置和性质,在按照k、b的符号分类讨论,使学生建立起数形之间的联系。还要找到数形间的结合点,明确k的符号决定直线的什么位置,b的符号又决定了什么。为了加深学生对知识的理解,课上设计了由解析式画函数图象的草图,由草图的位置判断解析式中k、b的符号的练习,收到了一定的效果。
常用函数图像3
高一数学下册一单元试题:对数函数及其图像与性质
1.设a=log54,b=(log53)2,c=log45,则()
A.a
C.a
解析:选D.a=log541,log531,故b
2.已知f(x)=loga|x-1|在(0,1)上递减,那么f(x)在(1,+)上()
A.递增无最大值 B.递减无最小值
C.递增有最大值 D.递减有最小值
解析:选A.设y=logau,u=|x-1|.
x(0,1)时,u=|x-1|为减函数,a1.
x(1,+)时,u=x-1为增函数,无最大值.
f(x)=loga(x-1)为增函数,无最大值.
3.已知函数f(x)=ax+logax(a0且a1)在[1,2]上的最大值与最小值之和为loga2+6,则a的值为()
A.12 B.14
C.2 D.4
解析:选C.由题可知函数f(x)=ax+logax在[1,2]上是单调函数,所以其最大值与最小值之和为f(1)+f(2)=a+loga1+a2+loga2=loga2+6,整理可得a2+a-6=0,解得a=2或a=-3(舍去),故a=2.
4.函数y=log13(-x2+4x+12)的单调递减区间是________.
解析:y=log13u,u=-x2+4x+12.
令u=-x2+4x+120,得-2
x(-2,2]时,u=-x2+4x+12为增函数,
y=log13(-x2+4x+12)为减函数.
答案:(-2,2]
5.若loga21,则实数a的取值范围是()
A.(1,2) B.(0,1)(2,+)
C.(0,1)(1,2) D.(0,12)
解析:选B.当a1时,loga22;当0
6.若loga2
A.0
C.a1 D.b1
解析:选B.∵loga2
7.已知函数f(x)=2log12x的值域为[-1,1],则函数f(x)的定义域是()
A.[22,2] B.[-1,1]
C.[12,2] D.(-,22][2,+)
解析:选A.函数f(x)=2log12x在(0,+)上为减函数,则-12log12x1,可得-12log12x12,X k b 1 . c o m
解得222.
8.若函数f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和为a,则a的值为()
A.14 B.12
C.2 D.4
解析:选B.当a1时,a+loga2+1=a,loga2=-1,a=12,与a
当0
loga2=-1,a=12.
9.函数f(x)=loga[(a-1)x+1]在定义域上()
A.是增函数 B.是减函数
C.先增后减 D.先减后增
解析:选A.当a1时,y=logat为增函数,t=(a-1)x+1为增函数,f(x)=loga[(a-1)x+1]为增函数;当0
f(x)=loga[(a-1)x+1]为增函数.
10.(20xx年高考全国卷Ⅱ)设a=lge,b=(lg e)2,c=lg e,则()
A.ac B.ab
C.cb D.ca
解析:选B.∵1
∵0
又c-b=12lg e-(lg e)2=12lg e(1-2lg e)
=12lg elg10e20,cb,故选B.
11.已知0
解析:∵00.
又∵0
答案:3
12.f(x)=log21+xa-x的图象关于原点对称,则实数a的值为________.
解析:由图象关于原点对称可知函数为奇函数,
所以f(-x)+f(x)=0,即
log21-xa+x+log21+xa-x=0log21-x2a2-x2=0=log21,
所以1-x2a2-x2=1a=1(负根舍去).
答案:1
13.函数y=logax在[2,+)上恒有|y|1,则a取值范围是________.
解析:若a1,x[2,+),|y|=logaxloga2,即loga21,11,a12,12
答案:12
14.已知f(x)=6-ax-4ax1logax x1是R上的增函数,求a的'取值范围.
解:f(x)是R上的增函数,
则当x1时,y=logax是增函数,
a1.
又当x1时,函数y=(6-a)x-4a是增函数.
6-a0,a6.
又(6-a)1-4aloga1,得a65.
656.
综上所述,656.
15.解下列不等式.
(1)log2(2x+3)log2(5x-6);
(2)logx121.
解:(1)原不等式等价于2x+305x-602x+35x-6,
解得65
所以原不等式的解集为(65,3).
(2)∵logx12log212log2x1+1log2x0
log2x+1log2x-1
2-1012
原不等式的解集为(12,1).
16.函数f(x)=log12(3x2-ax+5)在[-1,+)上是减函数,求实数a的取值范围.
解:令t=3x2-ax+5,则y=log12t在[-1,+)上单调递减,故t=3x2-ax+5在[-1,+)单调递增,且t0(即当x=-1时t0).
因为t=3x2-ax+5的对称轴为x=a6,所以a6-18+aa-8-8
常用函数图像4
一、说教材
1、教材的地位和作用
函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本函数之一。本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数在生产、生活实践中都有许多应用。本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数等提供了必要的基础知识。
2、教学目标的确定及依据
根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:
(1)知识目标:掌握对数函数的图像与性质;初步学会用对数函数的性质解决简单的问题。
(2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、分析、归纳等逻辑思维能力。
(3)情感目标:构造和谐的教学氛围,增加互动,促进师生情感交流,培养学生严谨的科学态度,欣赏数学的精确和美妙之处,调动学生学习数学的积极性。
3、教学重点与难点
重点:对数函数的图像与性质。
难点:对数函数性质中对于在《对数函数的图像与性质》说课稿与《对数函数的图像与性质》说课稿两种情况函数值的不同变化。
二、说教法
学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法。根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:
1、教学方法:
(1)启发引导学生观察、联想、思考、分析、归纳;
(2)采用“从特殊到一般”、“从具体到抽象”的方法;
(3)渗透数形结合、分类讨论等数学思想方法。
(4)用探究性教学、提问式教学和分层教学
2、教学手段:
计算机多媒体辅助教学。
三、说学法
“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质。
(2)主动式学习:学生自己归纳得出对数函数的图像与性质。
四、说教程
1、温故知新
我通过复习y=log2x和y=log0。5x的图像,让学生熟悉两个具体的`对数函数的图像。
设计意图:这与本节内容有密切关系,有利于引出新课。为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。
2、探求新知
研究对数函数的图像与性质。关键是学生自主的对函数《对数函数的图像与性质》说课稿和《对数函数的图像与性质》说课稿的图像分析归纳,引导学生填写表格(该表格一列填有《对数函数的图像与性质》说课稿在《对数函数的图像与性质》说课稿及《对数函数的图像与性质》说课稿两种情况下的图像与性质),采用“从特殊到一般”、“从具体到抽象”的方法,归纳总结出《对数函数的图像与性质》说课稿的图像与性质。
在学生得出对数函数的图像和性质后,教师再加以升华,强调“数形结合”记忆其性质,做到“心中有图”。另外,对于对数函数的性质3和性质4在用多媒体演示时,有意识地用(1)(2)进行分类表示,培养学生的分类意识。
设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过观察、联想、思考、分析、探索,在此过程中,这充分体现了探究定向性学习和主动合作式学习。
3、课堂研究,巩固应用
例1主要利用对数函数《对数函数的图像与性质》说课稿的定义域是《对数函数的图像与性质》说课稿来求解。
例2利用对数函数的单调性,比较两个同底对数值的大小。在这个例题中,注意第三小题的点拨,选择和中间量0或1比较,第四小题要分底数《对数函数的图像与性质》说课稿及《对数函数的图像与性质》说课稿两种情况。
例3解对数不等式,实际是例2的一种逆向运算,已知对数值的大小,比较真数,任然要使用对数函数的单调性。
设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充分体现了数形结合和分类讨论的数学思想方法。同时为课外研究题的解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔。
4、巩固练习
使学生学会知识的迁移,两个练习紧扣本节内容,利用课堂研究中体现的重要的数形结合和分类讨论的数学思想方法,学生课后完全有能力解决这个问题。
5、课堂小结
引导学生进行知识回顾,使学生对本节课有一个整体把握。从两方面进行小结:
(1)掌握对数函数的图像与性质,体会数形结合的思想方法;
(2)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的
解法,体会分类讨论的思想方法。
6、作业:p97习题3,4,5
选做题6题
常用函数图像5
作法
(1)列表:表中给出一些自变量的值及其对应的函数值。
(2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
一般地,y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出即可。
(3)连线: 按照横坐标由小到大的顺序把描出的各点用平滑曲线连接起来。
性质
(1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。
k,b决定函数图像的位置:
y=kx时,y与x成正比例:
当k>0时,直线必通过第一、三象限,y随x的增大而增大;
当k<0时,直线必通过第二、四象限,y随x的增大而减小。
y=kx+b时:
当 k>0,b>0, 这时此函数的图象经过第一、二、三象限;
当 k>0,b<0,这时此函数的图象经过第一、三、四象限;
当 k<0,b>0,这时此函数的图象经过第一、二、四象限;
当 k<0,b<0,这时此函数的图象经过第二、三、四象限。
当b>0时,直线必通过第一、三象限;
当b<0时,直线必通过第二、四象限。
特别地,当b=0时,直线经过原点O(0,0)。
这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。当k<0时,直线只通过第二、四象限,不会通过第一、三象限。
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的`规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
常用函数图像6
一、教材分析
1、教学目标:
(1)、能用列表、描点的方法探究反比例函数的图象,并会画出反比例函数的图象。 (2)、进一步理解函数的3种表示方法,即列表法、解析式法和图象法及各自的特点。
(3)、经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法。
2、重点:画反比例函数的图象。
3、难点:根据反比例函数图象初步感知反比例函数的性质。
二、教后反思
1、优点: (1)、让学生经历“回忆——对比——猜想——分析——验证”的思维过程。先让学生画一次函数y=2x+4的.图象。回忆函数图象的画法(列表,描点,连线),再让学生猜想 的图象,并引导学生围绕图象点的横纵坐标的符号特征,来预测它的图象,并与y=2x+4的图象进行对比,最后,学生带着疑问进行探索,画 的图象,并最终验证了自己的猜想。
(2)、在学生亲手画出一次函数y=2x+4的图象后,通过对比辨析反比例函数的图象概念及其特点,使学生得到深刻的认识和理解。
(3)、无限接近的理解。这是难点,学生没有生活经验。为了增加学生的感性认识,我拓展介绍了“无限可分和无限接近”的概念。并用直尺进行演示,使学生对于“无限”的理解有了实例的依托。
(4)、在讲解 的图象是中心对称图形时,列举了特殊的点来对比认识其中心对称性,让学生真正理解。
2、不足:
(1)、反比例函数图象的概念出示过早,特别是图象的两个分支在“一、三或二、四”象限时,学生没有感性认识。
(2)、学案设计有缺陷。直角坐标系和表格准备不当,给学生在操作画图时带来了不必要的干扰。影响了教学效果。
(3)、习题练习不充分,讲解时学生的主动性没有发挥。
3、改进:
(1)、学生画函数图象时,细节不够重视,教师可在课前把范例准备好,
以便学生能够对比发现自己的不足,进而改进。
(2)、对于反比例函数图象的画法,可让学生先小组讨论完成,这样有助于学生对反比例函数的深入理解,也可为后续学习其性质和应用增加一些思维锻炼。
(3)、学案设计要简明,要求和步骤应在学案上清楚表明,以便学生能够清楚认识学习的任务和步骤,也方便教师掌握教学进度。 也许您也喜欢下面的内容:
常用函数图像7
一、教学内容分析
教材地位:幂函数是中学教材中的一个基本内容,即是对正比例函数、反比例函数、二次函数的系统总结,也是对这些函数的概况和一般化、
教学重点:幂函数的图像与性质、
教学难点:以幂函数为背景的图像变换、
二、教学目标设计
能描绘常见幂函数的图像,掌握幂函数的基本性质;理解幂函数图像的演进及单调性质;理解幂函数图形特征与代数特征的对称联系,在函数性质的'应用中体会它的价值。能以幂函数为背景进行基本的函数图像的平移和对称变换、
三、教学流程设计
设置情境→探索研究→总结提炼
→尝试应用→练习回馈→设置评价
五、教学过程设计
1、情境设置
指导学生描画一些典型的幂函数的图像,回忆并归纳幂函数的性质、
2、探索研究
问题:如图所示的分别是幂函数①,②,③,④,⑤,⑥,⑦在坐标系中第一象限内的图像,请尽可能精确地将指数的范围分别确定出来
3、总结提炼
揭示幂函数图像特征与底数的依赖关系、师生共同整理出规律性结论、
4、尝试应用
①(1)研究函数的图像之间的关系;
(2)在同一坐标中作上述函数的图像;
(3)由所作函数的图像判断最后一个函数的奇偶性、单调性、
②已知函数
(1)试求该函数的零点,并作出图像;
(2)是否存在自然数,使=1000,若存在,求出;若不存在,请说明理由、
③作函数的大致图像、
5、练习回馈
课本第83页练习4、1(2)
六、教学评价设计
习题4、1——
B组(根据学生具体情况选用)
常用函数图像8
这节课,我讲授的内容是《反比例函数的图像和性质》第二小节,讲完之后感受颇深:这节课从学生的角度出发,针对下面的中学实际儿设计的,没有流于形式,教学目的就是“用”,所以第三环节“自主检测”是检查以下学生对性质的理解和运用情况,“思考”则是对性质的进一步探究:①题是学生直接观察图像,并给解释清楚;②题让学生动手操作,容易得到轴对称性;③题中心对称性,学生不易观察,但设计了动画演示;“例题解答”是对方法和性质的`总结实践,使学生懂得在平时解题中要善于总结和积累。“走进中考”是为了让学生认识中考题型,是教学为中考服务,这样既激发了学生学习的积极性,有给予了学生冲刺中考的动力!
但也让我感到不足之处很多;
1、把学生估计过高,欠缺对学生的引导铺垫
2、准备仍不充分,觉得轴对称性通过学生的折叠很容易得到,故认为动画不用演示,所以没有设计动画演示,这使课上时间浪费较多。
3、应该让学生成为课堂的主人许多东西应该让他们自主探究并总结。
4、习题设计应该少而精。
5、课堂有前松后紧的感觉,时间没有合理分配。
通过这节课的讲解我发现学生存在一个普遍现象:
1、回答问题时思路不清,语言不规范
2、学生不会写解题过程,书写还需改进。我看清自己在教学方面的不足之处,知道了自己今后努力的方向,“路漫漫其修远兮,吾将上下而求索
常用函数图像9
这节课是青岛版九年级数学下册的一节探究课。在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现"主体参与、自主探索、合作交流、指导引探"的教学理念。整个教学过程主要分为三部分:第一部分是前置性作业,前置作业是前一天发给
2y?ax学生的,主要涉及如何作图、复习二次函数性质等问题。我的
设计目的是让学生在复习这些知识的过程中体会从函数图像来研究函数性质。应该说这样设计既让初三同学复习了旧知又使他们体会到如何研究函数,从哪些方面研究函数,从思维层面锻炼了学生的探究
2y?ax?c的能力。第二部分是学习探究,只要是图象让学生感受
性质以及和二次函数y?ax的联系与区别。第三部分是通过练习和我的'展示让学生锻炼了自我学习的能力和出题的能力。
本节课的优点主要包括:
1、教态自然,能注重身体语言的作用,提问具有启发性。
2、教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。
3、能运用现代化的教学手段教学,尤其是能用几何画板等软件突破重难点
4、二次函数上下左右的平移是我觉得上的比较成功的一部分,主要是借助多媒体的动态展示了二次函数的平移过程,让学生自己总结规2
律,很形象,便于记忆。
本节课的不足之处表现在:
1、目标定位不好,本节课通过画图,由图象观察总结出对称轴、顶点坐标、开口方向等。
2、课堂上讲的太多。有些过程,让学生自主观察总结是完全能收到好的效果的,但是我都替学生总结了,学生还是被动的接受。其实这还是思想的问题,说明我没有真的放开手。真正让学生有了空间,他们也会给我们很大的惊喜。
3、有些内容偏离教学大纲,导致差生吃不好,优生吃不饱。课堂上有个别同学的学习态度不尽人意。
4、备课不够细心,“图象”两个字变成“图像”。
5、课堂应急处理不够老练,同学提出的问题没有及时解答
但在教学中,我自认为热情不够,没有积极调动学生学习热情的语言,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。
总之,在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样才会吸引学生对数学学科的热爱。
常用函数图像10
一次函数图像,是北师大八年级上册的内容。教学这一节时,我没有按照课本的讲解。我着这样安排的,先讲正比例函数的图像和性质,用一课时,今天我就是讲这一节。
先介绍函数的图像、画法。再画正比例函数的图像,引出正比例函数是经过原点的直线。接着介绍怎样作正比例函数的图像。用这种方法,作几个正比例函数的.图像,总结规律。接着练习。
练习之后我备课时又有一个性质要介绍,由于时间的关系,没有讲解,就下课了!
反思:1、课堂中前段时间留给学生的时间长,没完成课前准备的教学任务。
2、本节课讲到第三个性质。
3、练习题要精而且少,难易适中。
4、注意课前准备,上课注意语言。函数教学反思反比例函数教学反思
常用函数图像11
一、说教材:
1.在教材中的地位和作用
本节内容是高等教育出版社出版的中等职业教育课程改革国家规划新教材《数学(基础模块)》上册第四章第二节第一课时,属于数与代数领域的知识。在之前,学生已学习了函数的概念与性质掌握了研究函数的一般思路,并将幂指数从整数推广到了实数范围的知识,这为过度到本节的学习起着铺垫作用,本节内容是函数内容的深化,又是后续学习对数函数及等比数列的性质的基础,有非常高的实用价值例如在细胞分裂、贷款利息、考古中年份的测算都有较大的应用。也是教材中起承上启下作用的核心知识之一。因此,在指数函数是函数的重要内容之中,在高中阶段有不可替代的作用。
二、说学情:
2.学情分析
心理特点:中职生的共性是一般学习数学的兴趣不高,学习比较被动,自主学习能力比较差,因此在课堂的一开始就要激发学生学习数学的动机,学习动机是直接推动学生学好数学达到学习目的的内在动力,直接影响学习效果。变“要我学”为“我要学”。
此外职高生生理上表现为少年好动,注意力易分散抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。
知识障碍上:知识掌握上,学生刚刚学习了函数的定义、图象、性质,已经掌握了研究函数的一般思路,对于本节课的学习会有很大帮助。许多学生出现知识遗忘,所以应全面系统的去回顾与讲述;学生学习本节课的知识障碍,底数对函数图象的影响学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。
三、说教学目标:
知识与技能:理解指数函数的概念,掌握指数函数的图像及其性质,并用指数函数的性质解决一些问题。
过程与方法: 让学生经历“特殊→一般→特殊”的认识过程,完善认知结构,领会数形结合、分类讨论、归纳推理等数学思想方法;通过运用多媒体的教学手段,引领学生主动探索指数函数性质,体会学习数学规律的方法,体验成功的乐趣。
情感态度价值观:让学生感受数学问题探索的乐趣和成功的喜悦,体会数学的理性、严谨及数与形的和谐统一美;使学生获得研究函数的规律和方法,提高学生的学习能力养成积极主动,勇于探索,不断创新的学习习惯和品质。
四、说教学方法:
教法的选择与教学手段:基于本节课的特点,应着重采用多种的`教学方法和手段,其理论依据是坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
(1)故事激趣法:通过小故事牵动学生的思维,在他们不会解决又急于的心理之间制造一种悬念,激起学生强烈的求知欲望;
(2)多种教学方法结合:教学形式上开展分组比赛、课堂抢答等多种形式的活动,使学生在学习中有光荣感、成就感,使他们获得学习的乐趣。
(3)任务驱动法:根据学生的心理发展规律,采用学生参与程度高讨论教学法。在老师启发引导下,运用问题解决式教法,师生交谈法,图像法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。
五、说教学过程:
1、导入新课(2分钟)
创设情境 ,兴趣导入:从前有个财主,为人刻薄吝啬,常常克扣工人的工钱,因此附近村民都不愿意到他那里打工。有一天,这个财主家来了一位年轻人,要求打工一个月,报酬是:第一天的工钱只要一分钱,第二天是二分钱,第三天是四分钱……以后每天的工钱是前一天的2倍,直到30天期满。这个财主听了,心想这工钱也真便宜,就马上与这个年轻人签订了合同。可是一个月后,这个财主却破产了,因为他付不了那么多的工钱。那么这工钱到底有多少呢?
财主应付给打工者的工钱为1073741824分≈1073万元
(为了激发学生探究的好奇心和学习的兴趣,引起注意,让学生在不会解决又急于的心理状态下学习)
2、探索新知(7分钟)
问题1:某种物质的细胞分裂,由1个分裂成2个,2个分裂成4个,4个分裂成8个,……,1个这样的细胞分裂x次后,得到的细胞个数y与x的关系式是什么?
问题2:《庄子天下篇》中写道:“一尺之棰,日取其半,万世不竭。”请你写出截取x次后,木棰剩余量y关于x的关系式?
归纳:函数 中,指数x为自变量,底2为常数.
概念:一般地,形如 的函数叫做指数函数,其中底 ( )为常量.指数函数的定义域为 ,值域为
(设计意图:两个例子恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。 )
3、分组讨论(8分钟)
4、例题讲解(12分钟)
5、强化练习(8分钟)
6、课堂总结(2分钟)
7、布置作业(1分钟)
常用函数图像12
3月4日我们参加了市教研室在三中举办的《反比例函数的图像和性质》分层教学教研活动后受益匪浅。《反比例函数的图像和性质》是初中八年级数学教材中的重点内容,也是难点所在。它安排在学生理解了反比例函数的意义并掌握了用描点法画函数图像的基础上进行教学。如何以新课程的理念设计和实施这节课的课堂教学,一直以来都是初中数学老师关注的焦点。
这节课,两位老师的引入侧重点不同,增中的数学老师从一次函数的图象及其画法单刀切入,给人蹂雪无痕之自然感觉;三中的刘老师先从复习反比例函数的解析式和正比例函数的性质以及画图象步骤入手,本来设计也很好,只可惜第一道选择题“是反比例函数”的正确答案“C:y=”的干扰答案“D:y=”有很多学生误选了而没有详细解释,使学生带着疑问学习,可能会影响效果。两位老师的引入侧重点虽不同,但异路同归,很快就引出本节第一个新内容——画反比例函数图像,最后引导学生分析比较正比例函数和反比例函数的解析式和图像的异同点。课堂上采用整体感悟,自主学习,合作探究,体验感悟的学习方式,使学生通过观察、分析、研讨,掌握了反比例函数的图像和性质。
教学过程中也注重了培养学生的探究,归纳及概括能力。在指导学生探究反比例函数性质及图像的过程中渗透分类讨论思想和数形结合的思想。”
具体地说,两位老师都有如下几个特点:
1、注重了学生动手操作能力的培养,如动手画反比例函数图象
一环节让学生绘画并交流图像的形状。
2、注重及时总结梳理知识,课堂上及时总结,使学生清楚地把
握并记忆重点知识。
3、注重分层指导。所设计的`讲题、练题、作业题比较有梯度。
4、注重学生学习兴趣的培养。
5、培养学生良好的学习品质。如合作探究、分析研讨、设疑等
6、课堂气氛轻松愉快。
总之,这两节课上得很实在。相比之下,我们更欣赏第一节的异地教学,老师为学生的自主学习创设情境与空间,不束缚学生的思维,画图象一开始就用网格,发挥着抽象问题具体化,突破难点的作用。老师的教态大方,语言流畅,驾驭课堂能力很强。整堂课用了各种方法调动了学生的积极性,在传授知识的同时更加注重思想方法的学习和能力的培养,真正令学生乐学、教师悦教。
常用函数图像13
一、教材分析(说教材)
1.教材所处的地位和作用
本节内容是高中数学必修4第一章第七节的内容.它前承正弦余弦函数的图像和性质,后启正切函数的诱导公式问题.
2.教学目标
知识与技能:(1)能借助单位圆理解任意角的正切函数的定义.(2)能画出y=tanx的图像.(3)掌握正切线的基本性质.(4)让学生亲身经历数学研究的过程,学会应用类比推理与数形结合的思想处理问题.
过程与方法:类比正、余弦函数的概念,引入正切函数的概念;让学生通过类比,联系正弦函数图像的作法,通过单位圆中的有向线段得到正切函数的图像;能学以致用,结合图像分析得到正切函数的性质.
情感态度与价值观:使同学们对正切函数的概念有一定的体会;会用联系的观点看问题,建立数形结合的思想,激发学生的学习积极性;培养学生分析问题、解决问题的能力;培养学生形成实事求是的科学态度和锲而不舍的钻研精神. 通过学生自主探究小组合作交流的过程体验探索的乐趣,增强团队意识,增强学习数学的兴趣.
3.重点、难点以及确定的依据和处理的方法
重点:正切函数的图像和性质是本节课的重点,其理论依据是任意函数的图像和性质都是紧密相连的,都是研究的重点对象.对于正切函数来说由于定义域的不连续性导致了图像的间断性.所以要正确探索出图像和性质.处理方法是类比正余弦函数的图像和性质的研究.
难点:画正切函数的图像.依据是正切线能准确画正切函数的图像,但不实用,在应用时一定要学会画简图.在难点的处理上我先让学生通过自己画出特殊角的正切线并平移到直角坐标系中,让学生体会图像与X轴的交点,再利用定义域找到图像间断处的渐近线(用虚线),然后找到一个周期内的几个特殊点,利用周期性画出其它区间的图像.
二、学情分析(说学法)
学生已经有了研究正弦余弦函数图像和性质的经验,这种经验完全可以迁移到对正切函数图像和性质的研究中,在心理上也具备了一定的分辨能力和语言表达能力.因此采用自主合作探究式学习方法,让学生自己通过自学和与他人合作的方式来完成学习任务.教师在重难点的地方给予提示和帮助即可.
三、教学策略(说教法)
(一)教学手段
一般对于三角函数性质的研究总是先作图像,再通过图像来获得对函数性质的直观认识,然后再从代数的角度对性质进行严格的表述.所以对正切函数仍然采用了这样的方法.先根据已有的知识(类比正弦函数和余弦函数的图像与性质)来研究正切函数的图像,然后再根据图像来研究性质.这样处理主要是为了给学生提供研究数学的直观视角,在图像的引导下可以更加有效地研究性质,加入感性思维的成分,并使数形结合的思想体现的更加全面.
(二)教学方法及其理论依据
如何突出重点,突破难点,从而实现教学目标.我在教学中利用课前布置预习任务,课中学生讨论回答问题的形式进行教学,从而为重点和难点知识留下充分的学习时间.教学中坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,采用学生参与程度高的自主探究教学法.在学生课前看书、独立完成思考、小组合作探究讨论的基础上,在教师课前了解学生学情的前提下,让一部分学生回答提出的问题,其他学生进行质疑讨论,教师对学生的质疑点进行解释,最后老师再进行点评和补充.
四、教学流程
(一)复习回顾:正弦函数和余弦函数;
利用单位圆中的正弦线作出正弦函数的图像.
(二)自主探究:
1.正切函数的定义
请学生课前自主学习课本35页7.1的内容,明确以下几个问题:
(1)正切函数的'定义及定义域。
(2)正切函数值在每个象限的符号。
(3)什么是正切线?怎样作?
(4)正切函数是周期函数吗?如果是,周期与最小正周期分别是多少?
分组讨论后解答这几个问题。
通过学生自学探究,由学生自己把正切函数的定义以及相关问题,讨论并回答出来,教师对学生的一些知识疑惑点进行帮助提示.
2.正切函数的图像
让学生类比正弦函数图像的画法自己尝试画出正切函数的图像,对学生画出的正切函数图像进行点评.以鼓励为主然后让学生想一想怎样可以画出整个定义域内的正切函数图像.
3.正切函数的性质
通过多媒体展示,用平移正切线的方法,准确的画出正切函数的图像,并让学生看着图像再直观的理解性质.
(三)例题展示
例1 求函数 《正切函数的定义、图像与性质》说课稿 的定义域.
设计意图:让学生会进行整体代换问题,加强对正切函数定义域的理解.
例2 利用正切函数图像求满足条件的角的范围.
设计意图:强调学生要学会利用图像来做题,注意区间的开闭问题.
(四)课堂小结:学生自己先总结然后老师补充.
(五)思考问题:
1.正切函数是整个定义域上的增函数吗?为什么?
2.正切函数会不会在某一区间内是减函数?为什么?
五、作业布置
完成相应的课后作业.
六、设计说明
1.板书说明:侧黑板留给学生展示,前黑板用来展示多媒体.
2.时间分配:(一) 五分钟(二)六分钟1.十分钟2.十二分钟3.五分钟
(三)五分钟(四)一分钟(五)一分钟
常用函数图像14
今天上午听了我校数学老师唐的《正弦函数图像和性质》一节课,本节课教学设计好,课件制作实用性强,教学流程清楚,环节紧凑、流畅。唐老师授课思路清晰,结构严谨,重难点突出,讲解语言精炼,板书工整,特别注重启发引导,突出学生的主体性地位,引导学生进行主动探究,营造了积极、宽松的教学氛围。具体来说,唐老师的课有如下特点:
1. 教学定位非常准
唐老师对课标的解读、教材的分析有自己独到的见解,教学设计中教学目标、教学重难点把握到位,课堂教学中把握住正弦函数图像及五点法画法这一既是重点又是难点的内容展开,引导学生进行自主探究,深入理解,抓住教学的关键点,有效的`突出了教学重点、突破了教学难点。
2. 课件制作实用性强
唐老师的课件制作针对性强,动画演示效果好,很好的辅助学生理解正弦函数的图像画法的过程。
3. 课堂驾驭能力强
唐老师上课教态自然,语言语调好,板书清楚有条理,个人基本功非常扎实,能与学生进行有效沟通,而且舍得把时间给学生去板演作图、去交流思考思路、去讲解解决问题过程,善于启发调动学生学习的主动性,有较强的驾驭课堂的能力。这是一节非常成功的公开课 。
常用函数图像15
一次函数的概念、图象和性质,是这一章的重点。也是学习其他函数的重要基础,通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。教学完后,对新教材有了一些更深的认识。从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。通过课堂的实际实施感觉上也不是尽善尽美,还有许多令人不满意的地方。究其原因,教师不能就这节课的知识而教这点知识,教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。这样,教师才能灵活的把握课堂教学。而现在,教师缺乏的正是这一点,还是为了教而教。按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。从这一角度讲,教师应在把握知识的基础上。结合学生的表现,灵活多样的处理知识。
学生是学习的主体,学生活动是新教材的一大特点。新教材在知识安排上,往往从实例引入,抽象出数学模型。通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。侧重于学生能力的培养,让学生知道学什么,如何学。因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。一是通过画函数图象理解一次函数图象的形状。二是两点法画一次函数的图象。三是探究一次函数的图象与k、b符号的关系。在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。值得老师们探讨。为了达到上述目的,我把学生分成四个组,每个组探索一种情况,我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。并根据每个组的表现给与一定的评价。如在活动一中,要求学生观察图象的形状,两条直线的位置关系。在活动二中,强调两点法(直线与坐标轴的交点)画直线。在活动三中,探究k、b符号与直线经过的象限与增减性的关系。学生目标明确,操作性强,受到了明显的效果。
本节课的重点是由一次函数的解析式确定函数图象,研究函数性质。由函数图象的位置判断解析式中k、b符号。
概括一次函数图象的性质时,一定要结合函数的图像
一次函数y=kx+b有下列性质:
(1)当k>0时,y随x的增大而______,这时函数的图象从左到右_____;
(2)当k<0时,y随x的增大而______,这时函数的图象从左到右_____.
(3)当b>0时,这时函数的图象与y轴的交点在________.
(4)当b>0时,这时函数的图象与y轴的交点在_________.
一次函数的图像和性质节,很好的体现了数学中非常重要地数形结合的思想。这段内容的'教学,还是从学生活动出发,从具体的实例研究起,观察图象的位置和性质,在按照k、b的符号分类讨论,使学生建立起数形之间的联系。还要找到数形间的结合点,明确k的符号决定直线的什么位置,b的符号又决定了什么。为了加深学生对知识的理解,课上设计了由解析式画函数图象的草图,由草图的位置判断解析式中k、b的符号的练习,收到了很好的效果。
本节课从时间安排上有点前松后紧,这是我一贯的习惯,另外,在练习题的处理上,针对性练习不够充足,一些比较时尚的题型设计的的较少。
总之,作为一名数学教师,应在以后的教学中不断总结,不断创新
以上是我对本节课粗浅的看法,希望和同行们共勉。
【函数图像】相关文章:
常用函数图像03-11
函数知识点03-01
[精选]函数知识点03-01
函数知识点(合集)03-02
数学必修一函数知识点03-03
函数知识点必备(15篇)03-04
看3d图像最有效的训练方法05-04
八年级上册数学函数03-09
八年级上册数学函数(汇总15篇)03-09