角平分线的性质教案

2022-05-18

角平分线的性质教案

  角平分线的性质

  教学目标

  1.了解角平分线的性质,并运用其解决一些实际问题。

  2.经历操作,推理等活动,探索角平分线的性质,发展空间观念,在解决问题的过程中进行有条理的思考和表达。

  教材分析

  重点:角平分线性质的探索。

  难点:角平分线性质的应用。

  教学方法:

  预学----探究----精导----提升

  教学过程

  一创设问题情境,预学角平分线的性质

  阅读课本P128-P129,并完成预学检测。

  二合作探究

  如图,OC为∠AOB的角平分线,P为OC上任意一点。

  提问:

  1.如何画出∠AOB的平分线?

  2.若点P到角两边的距离分别为PD,PE,量一量,PD,PC是否相等?你能说明为什么吗?

  让学生活动起来,通过测量,比较,得出结论。

  教师鼓励学生大胆猜测,肯定它们的发现。

  归纳:角平分线上任意一点到角两边的距离相等。

  三想一想,巩固角平分线的性质

  三条公路两两相交,为更好的使公路得到维护,决定在三角区建立一个公路维护站,那么这个维护站应该建在哪里?才能使维护站到三条公路的距离都相等?

  三做一做,拓展课题

  如图,P为△ABC的外角平分线上一点,且PE⊥AB,PD⊥AC,E,D分别是垂足,试探索BE与PB+PD的大小关系。

  让学生充分讨论,鼓励学生自主完成。

  教师归纳:

  因为射线AP是△ABC的外角∠CAE平分线,

  所以PD=PE(角平分线上的点到角两边的距离相等)

  所以PB+PD=PB+PE

  又PB+PE>BE(三角形两边之和大于第三边)

  所以PB+PD>BE

  思考:若CP也平分△ABC中的∠ACB的外角,则射线BP有怎样的性质?点P又有怎样的位置?

  四课堂练习

  课本P130练习

  五小结

  本节课学习了角平分线的性质:角平分线上的点到这个角两边的距离相等,反过来,到一个角两边距离相等的点,在这个角的平分线上,三角形的三条角平分线交于一点,且这一点到三角形三边的距离相等。

  六作业

  1.课本P130习题A组T1,T2

  2.基础训练同步练习。

  3.选作拓展题。

  七课后反思:

  新旧教法对比:新教法更有利于培养学生合作学习的能力。

  学生对于角平分线的性质可以倒背如流,但就是容易把到角两边的距离看错,在以后的教学中要多加强对距离的认识。

  学案

  学习目标:

  1了解角平分线的性质。

  2并运用角平分线的性质解决一些实际问题。

  预学检测:

  1角平分线上任意一点到 相等。

  2⑴如图,已知∠1=∠2,DE⊥AB,

  DF⊥AC,垂足分别为E、F,则DE____DF.

  ⑵已知DE⊥AB,DF⊥AC,垂足分别

  为E、F,且DE=DF,则∠1_____∠2.

  学点训练:

  1.如图,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D.下列结论中错误的是()

  A.PC=PDB.OC=OD

  C.∠CPO=∠DPOD.OC=PC

  2.如图,△ABC中,∠C=90°,AC=BC,

  AD是∠BAC的平分线,DE⊥AB于E,

  若AC=10cm,则△DBE的周长等于()

  A.10cmB.8cmC.6cmD.9cm

  巩固练习:

  已知:如图,在△ABC中,∠A=90°,AB=AC,

  BD平分∠ABC.求证:BC=AB+AD

  拓展提升:

  如图,P为△ABC的外角平分线上一点,且PE⊥AB,PD⊥AC,E,D分别是垂足,试探索BE与PB+PD的大小关系。

  • 相关推荐

【角平分线的性质教案】相关文章:

三角形的角平分线和中线教案设计06-19

《线段的垂直平分线的性质》教学设计07-02

初中数学角平分线的公式定理总结11-01

《空气的性质》优秀教案06-21

《认识角》的经典教案06-26

角的度量经典教案06-06

角的认识教案06-08

《角的度量》教案06-09

《认识角》教案07-10

等式和它的性质教案(精选6篇)11-10