多项式的乘法教案

2024-09-30

  在教学工作者开展教学活动前,通常会被要求编写教案,教案是实施教学的主要依据,有着至关重要的作用。如何把教案做到重点突出呢?下面是小编为大家收集的多项式的乘法教案,仅供参考,大家一起来看看吧。

多项式的乘法教案1

  〖教学目标〗

  1、经历探索多项式的乘法运算法则的过程,掌握多项式与多项式相乘的法则。

  2、会运用单项式与单项式,单项式与多项式,多项式与多项式相乘的法则,化简整式。

  3、会用多项式的乘法解决简单的实际问题。

  〖教学重点与难点〗

  教学重点:多项式与多项式相乘的运算。

  教学难点:例2包含了多种运算,过程比较复杂是本节的难点。

  〖教学过程〗

  一、创设情境,引出课题

  小明找来一张铅画纸包数学课本,已知课本长a厘米,宽b厘米,厚c厘米,小明想将课本封面与封底的每一边都包进去m厘米,问如果你是小明你会在铅画纸上裁下一块多大面积的长方形?

  二、引出新知,探究示例

  1、合作探索学习:有一家厨房的平面布局如图1

  (1)请用三种不同的方法表示厨房的.总面积。

  (2)这三种不同的方法表示的面积应当相等,你能用运算律解释吗?

  (3)通过上面的讨论,你能总结出单项式与多项式相乘的运算规律吗?

  (让学生以同桌合作的形式进行探索,然后表达交流)

  答:(1)总面积:(a+n)(b+m);a(b+m)+n(b+m)或b(a+n)+m(a+n);ab+am+nb+nm

  (2)总面积相等,由此可得到(a+n)(b+m)=a(b+m)+n(b+m)……①

  =ab+am+nb+nm……②

  第①步运用分配律把(b+m)看成一个数,第②步再运用分配律。

  (3)由(a+n)(b+m)=ab+am+nb+nm师生共同总结得出多项式与多项式相乘的法则:

  (学生归纳,教师板书)

  2、运用新知,计算例题

  例1:计算

  (1)(x+y)(a+2b)(2)(3x—1)(x+3)(3)(x—1)2

  解:(1)(x+y)(a+2b)=x?a+x?(2b)+y?a+y?(2b)=ax+2bx+ay+2by

  (2)(3x—1)(x+3)=3x2+9x—x—3=3x2+8x—3

  (3)(x—1)2=(x—1)(x—1)=x2—x—x+1=x2—2x+1

  教师在示范过程中引导学生注意这三题都按多项式相乘的法则进行,运算过程中注意符号,防止漏乘,结果要合并同类项。

  反馈练习:课内练习1

  例2,先化简,再求值:(2a—3)(3a+1)—ba(a—4),其中a=

  解:(2a—3)(3a+1)—ba(a—4)=6a2+2a—9a—3—6a2+24a=17a—3

  当a=时,原式=17a—3=17×()—3=—19—3=—22

  注意的几点:(1)必须先化简,再求值,注意符号及解题格式。

  (2)当代入的是一个负数时,添上括号。

  (3)在运算过程中,把带分数化为假分数来计算。

  反馈练习:1、计算当y=—2时,(3y+2)(y—4)—(y—2)(y—3)的值。

  2、课内练习2、3。

  三、分层训练,能力升级

  1、填空

  (1)(2x—1)(x—1)=

  (2)x(x2—1)—(x+1)(x2+1)=

  (3)若(x—a)(x+2)=x2—6x—16,则a=

  (4)方程y(y—1)—(y—2)(y+3)=2的解为

  2、某地区有一块原长m米,宽a米的长方形林区增长了200米,加宽了15米,则现在这块地的面积为平方米。

  3、某人以一年期的定期储蓄把20xx元钱存入银行,当年的年利率为x,第二年的年利率减少10%,则第二年到期时他的本利和为多少元?

  四、小结

  让学生谈谈通过这节课的学习,有哪些收获与疑问?教师及时总结内容并解答疑惑。

  五、布置作业

  课本的分层作业题。

多项式的乘法教案2

  学习目标

  1、经历探索多项式乘法法则的过程,理解多项式乘法法则。

  2、学会用多项式乘法法则进行计算。

  3、要有用几何图形理解代数知识的能力和复杂问题转化为简单问题的转化思想。

  学习重难点

  重点是掌握多项式的乘法法则并加以运用。

  难点是理解多项式乘法法则的推导过程和运用法则进行计算。

  教学过程设计

  看一看

  认真阅读教材,记住以下知识:

  1、多项式乘法的法则:

  2、归纳易错点:

  做一做:

  1.计算:

  (1)(a+2b)(a-b)=_________;

  (2)(3a-2)(2a+5)=________;

  (3)(x-3)(3x-4)=_________;

  (4)(3x-y)(x+2y)=________.

  2.计算:(4x2-2xy+y2)(2x+y).

  3.计算(a-b)(a-b)其结果为()

  A.a2-b2B.a2+b2

  C.a2-2ab+b2D.a2-2ab-b2

  4.(x+a)(x-3)的积的一次项系数为零,则a的值是()

  A.1B.2C.3D.4

  5.下面计算中,正确的是()

  A.(m-1)(m-2)=m2-3m-2

  B.(1-2a)(2+a)=2a2-3a+2

  C.(x+y)(x-y)=x2-y2

  D.(x+y)(x+y)=x2+y2

  6.如果(x+3)(x+a)=x2-2x-15,则a等于()

  A.2B.-8C.-12D.-5

  想一想

  你还有哪些地方不是很懂?请写出来。

  _______________________________

  _______________________________

  ________________________________.

  预习展示:

  一、计算(1)(x+y)(a+2b)

  (2)(3x-1)(x+3)

  二、先化简,再求值:

  (2a-3)(3a+1)-6a(a-4)其中a=2/17

  应用探究

  计算

  (1)(a+b)(a-b)

  (2)(a+b)2

  (3)(a+b)(a2-ab+b2)

  (4)(a+b+c)(c+d+e)

  拓展提高

  1.当y为何值时,(-2y+1)与(2-y)互为负倒数.

  2.已知(x+2)(x2+ax+b)的积不含x的二次项和一次项,求a、b的值.

  3.已知:A=x2+x+1,B=x+p-1,化简:AB-pA,当x=-1时,求其值.

  堂堂清

  1.解方程:(2x+3)(x-4)-(x+2)(x-3)=x2+6.

  2.先化简,再求值:5x(x2+2x+1)-x(x-4)(5x-3),其中x=1.

  教后反思

  在前面学习了单项式与单项式相乘,单项式与多项式相乘的'法则之后,有继续来学习多项式与多项式的乘法法则,对学生来说掌握起来并不困难,但是学生的计算能力不是很强,所以计算起来很浪费时间,并且计算容易出错。

多项式的乘法教案3

  【教学目标

  1、经历探索多项式乘法法则的过程,理解多项式乘法法则。

  2、学会用多项式乘法法则进行计算。

  3、培养学生用几何图形理解代数知识的能力和复杂问题转化为简单问题的转化思想。

  【教学重点、难点

  重点是掌握多项式的乘法法则并加以运用。

  难点是理解多项式乘法法则的推导过程和运用法则进行计算。

  【教学过程

  一、回顾与思考

  教师引导学生复习:单项式×多项式运算法则;整式的乘法实际上就是

  单项式×单项式; 单项式×多项式; 和今天学多项式×多项式

  二、创设情景,导入课题

  展示:节前语和图片。

  展示:课本中三图

  图5-5

  图5-6

  图5-7

  一间厨房的平面布局如图5-5,试用几种方法表示厨房的总面积。(师生共同探索,鼓励学生用不同的表示方法完成,然后总结)

  由图5-6得总面积为(a+n)(b+m);由图5-7得总面积为a(b+m)+n(b+m)

  或ab+am+nb+nm ; 此时提出问题《多项多的乘法》。

  三、探索法则与应用

  (a+n)(b+m)=a(b+m)+n(b+m)=ab+am+nb+nm

  根据分配律,我们也能得到下面等式:

  (a+n)(b+m)=ab+am+nb+nm

  1、在学生发言的基础上,教师总结多项式×多项式的乘法法则并板书法则。

  让学生体会法则的理论依据:

  乘法对加法的分配律

  多项式乘以多项式先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的'积相加。

  2、例题讲题

  例1 计算(1)(x+y)(a+2b)

  (2)(3x-1)(x+3)强调法则的作用。

  例2 先化简,再求值:

  (2a-3)(3a+1)-6a(a-4)其中a=2/17

  解:(2a-3)(3a+1)-6a(a-4)

  =6a2+2a-9a-3-6a2+24a

  =17a-3

  当a=2/17时,原式=17×2/17-3=-1

  3、课内练习

  见课本P114

  四、拓展延伸,探索挑战

  1、拓展演练

  (1)(a+b)(a-b) (2)(a+b)2 (3)(a+b)(a2-ab+b2)

  (4)(a+b+c)(c+d+e)

  2、探索

  课本P115 第6题

  五、归纳小结,充实结构

  指导学生总结本节课的知识点、学习过程等的自我评价。主要针对以下两个方面:

  1、多项式×多项式 ;

  2、整式的乘法

  六、知识留恋、课后韵味

  布置作业:作业本,一课一练。

  • 相关推荐

【多项式的乘法教案】相关文章:

整式的乘法小结与复习教案03-20

多项式除以单项式的教案范文(通用6篇)10-15

《乘法的初步认识》教案(通用6篇)02-25

《2-6的乘法口诀(一)》教案(精选10篇)12-31

关于多项式除以单项式的教学设计(通用12篇)07-20

《2、3乘法口诀》的教学反思02-26

《乘法分配律》教学设计02-23

三年级下册《笔算乘法(不进位)》教案(精选12篇)05-19

数学《表内乘法二》教学反思02-02

不进位乘法教学反思(精选10篇)11-21