作为一位无私奉献的人民教师,通常需要用到教案来辅助教学,教案是实施教学的主要依据,有着至关重要的作用。我们该怎么去写教案呢?下面是小编整理的解一元一次方程的教案,欢迎阅读,希望大家能够喜欢。
解一元一次方程的教案 篇1
【教学任务分析】
教学目标
知识
技能:1.用一元一次方程解决“数字型”问题;
2.能熟练的通过合并,移项解一元一次方程;
3.进一步学习、体会用一元一次方程解决实际问题.
过程
方法通过学生自主探究,师生共同研讨,体验将实际问题转化成数学问题,学会探索数列中的规律,建立等量关系并加以解决,同时进一步渗透化归思想.
情感
态度经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力,体会数学对实践的指导意义.
重点建立一元一次方程解决实际问题的模型.
难点探索并发现实际问题中的等量关系,并列出方程.
【教学环节安排】
环节教学问题设计教学活动设计
情境引入
牵线搭桥,解下列方程:
(1)-5x+5=-6x;(2);
(3)0.5x+0.7=1.9x;
总结解“ax+b=cx+d”类型的一元一次方程的步骤方法.
引出问题即课本例3
问:你能利用所学知识解决有关数列的问题吗?教师:出示题目,提出要求.
学生:独立完成,根据讲评核对、自我评价,了解掌握情况.
探究一:数字问题
例3有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?
【分析】1.引导学生观察这列数有什么规律?
①数值变化规律?②符号变化规律?
结论:后面一个数是前一个数的-3倍.
2.怎样求出这三个数?
①设三个相邻数中的第一个数为x,那么其它两个数怎么表示?
②列出方程:根据三个数的和是-1701列出方程.
③解略
变式:你能设其它的数列方程解出吗?试一试.比比较哪种设法简单.
探究二:百分比问题(习题3.2第8题)
【问题】某乡改种玉米为种优质杂粮后,今年农民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元.这个乡去年农民人均收入是多少元?
【分析】①若设这个乡去年农民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;
②因为今年的人均收入比去年的1.5倍少1200元,所以今年的收入又可以表示为_________元.
③根据“表示同一个量的两个式子相等”可以列出方程为________________________.
解答略教师:引导学生分析.
2.本例是有关数列的数学问题,题要求出三个未知数,这需要学生观察发现它们的排列规律,问题具有一定的挑战性,能激发学生学习探索规律类型的问题.
学生:观察、讨论、阐述自己的发现,并互相交流.
根据分析列出方程并解出,求出所求三个数.
备注:寻找数的排列规律是难点,可让学生小组内讨论发现、解决.
变换设法,列出方程,比较优劣、阐述发现和体会.
教师:出示题目,引导学生,让学生尝试分析,多鼓励.
学生:根据引导思考、回答、阐述自己的观点和认识.
根据共同的.分析,列出方程并解出,
(说明:此题目数以百分比、增长率问题可根据实际情况安排,若没时间,可在习题课上处理)
尝试应用
1、填空
(1)有个三位数,个位上的数字是a,十位上的数字是b,百位上的数字是c,则这个三位数是:_______________.
(2)有一数列,按一定规律排成1,-2,3,2,-4,6,3,-6,9,接下来的三个数为_____________________.
(3)三个连续偶数,设第一个为2x,那么第二个为_______,第三个为______,它们的和是__________;若设中间的一个为x,那么第一个为_____,第三个为______,它们的和是__________.
2.一个三位数,三个数位上的数字的和为17,百位上的数字比十位上的数字大7,个位上的数字是十位上数字的3倍,你能求出这个三位数吗?这是最经常出现的一类数字问题:引导学生分析已知各位上的数字,怎么表示这个数,理解为什么不能表示成cba?这是解决这类问题的基础.
通过(3)题理解连续数的表示法,并感受怎么表示最简单.
通过2题让学生理解怎么设?以及怎么设简单(舍都有联系的一个),并感受用未知数表示多个未知量,顺藤摸瓜,从而列出方程的顺向思维方式.
教师:结合完成题目,汇总讲解,重点在于解法.
成果展示
1.通过本节所学你有哪些收获?
2.谈谈你掌握的方法和学习的感受,以及你对应用方程解决问题的体会.学生自我阐述,教师评价鼓励、补充总结.
补偿提高
1.有一数列,按一定规律排成0,2,6,12,20,30,…,则第8个数为______,第n个数为_____.
2.下面给出的是2010年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,圈出的三个数的和不可能是( ).
A.69B.54C.27D.40
通过练习,掌握数字问题的分类及不同解法,巩固、体会用方程解决问题的思路和思维方式,学会用方程解决问题.
题目设置是对前面学生所出现的问题进行针对性的补偿和补充,也可对学有余力的学生拓展提高.
根据学生完成情况灵活设置问题.
作业
设计作业:
必做题:课本4、5、第94页6题.
选做题:同步探究.教师布置作业,并提出要求.
学生课下独立完成,延续课堂.
解一元一次方程的教案 篇2
第一课时
教学目的
1.了解一元一次方程的概念。
2.掌握含有括号的一元一次方程的解法。
重点、难点
1.重点:解含有括号的一元一次方程的解法。
2.难点:括号前面是负号时,去括号时忘记变号。
教学过程
一、复习提问
1.解下列方程:
(1)5x-2=8 (2)5+2x=4x
2.去括号法则是什么?“移项”要注意什么?
二、新授
一元一次方程的概念
如44x+64=328 3+x=(45+x) y-5=2y+l 问:它们有什么共同特征?
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。
例1.判断下列哪些是一元一次方程
x= 3x-2 x-=-l
5x2-3x+1=0 2x+y=l-3y =5
例2.解方程(1)-2(x-1)=4
(2)3(x-2)+1=x-(2x-1)
强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。
补充:解方程3x-[3(x+1)-(1+4)]=l
说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
三、巩固练习
教科书第9页,练习,l、2、3。
四、小结
学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。
五、作业
1.教科书第12页习题6.2,2第l题。
第二课时
教学目的
掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯。
重点、难点
1、重点:掌握去分母解方程的方法。
2、难点:求各分母的最小公倍数,去分母时,有时要添括号。
教学过程
一、复习提问
1.去括号和添括号法则。
2.求几个数的最小公倍数的方法。
二、新授
例1:解方程(见课本)
解一元一次方程有哪些步骤?
一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。
补充例:解方程 (x+15)=- (x-7)
三、巩固练习
教科书第10页,练习1、2。
四、小结
1.解一元一次方程有哪些步骤?
2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。
五、作业
教科书第13页习题6.2,2第2题。
第三课时
教学目的.
使学生灵活应用解方程的一般步骤,提高综合解题能力。
重点、难点
1、重点:灵活应用解题步骤。
2、难点:在“灵活”二字上下功夫。
教学过程 :
一、 一、 复习
1、一元一次方程的解题步骤。
2、分数的基本性质。
二、新授
例1.解方程(见课本)
分析:此方程的分母是小数,如果能把各分母化为整数,那么就可以用前面学过的方法求解了。那么怎样化简呢?引导学生分析,并求出方程的解。交流体会。
例2.解方程(见课本)
例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整数)
分析:在公式中,V、D、∏都已知,只要把它们的值代入公式,就可以得到关于n的一元一次方程。
三、巩固练习。
根据公式V=V0+at,填写下列表中的空格。
VV0at02848314155476137
四、小结。
若方程的分母是小数,应先利用分数的性质,把分子、分母同时扩大若干倍,此时分子要作为一个整体,需要补上括号,注意不是去分母,不能把方程其余的项也扩大若干倍。
五、作业 。
解一元一次方程的教案 篇3
一、教学目标
知识与技能
1、会根据实际问题中的数量关系列方程解决问题。
2、熟练掌握一元一次方程的解法。
过程与方法
培养学生的数学建模能力,以及分析问题解、决问题的能力。
情感态度与价值观
1、通过问题的解决,培养学生解决问题的能力。
2、通过开放性问题的设计,培养学生的创新能力和挑战自我的意识,增强学生的学习兴趣。
二、重点难点
重点
根据题意,分析各类问题中的等量关系,熟练的列方程解应用题。
难点弄清题意,用列方程解决实际问题。
三、学情分析
学生在上一节课已经学习了一元一次方程的'解法,对于学生来说解方程已不是问题了,本节课是以上一节课为基础,用方程来解决实际问题,只要学生读懂题意,建立数学模型,用一元一次方程会解决就行了。
四、教学过程设计
教学
环节问题设计师生活动备注情境创设
讨论交流:按怎样的解题步骤解方程才最简便?由此你能得到怎样的启发。
创设问题情境,引起学生学习的兴趣。
学生动手解方程
自主探究
问题一:
一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作3天完成的工作量是,此时剩余的工作量是。
问题二:
某项工作,甲单独做需要4小时,乙单独做需要6小时,如果甲先做30分钟,然后甲、乙合作,问甲、乙合作还需要多久才能完成全部工作?
问题三:
整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加两人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同。
解一元一次方程的教案 篇4
教学目标:
1、知识与技能:会解含分母的一元一次方程,掌握解一元一次方程的基本步骤和方法,能根据方程的特点灵活地选择解法。
2、过程与方法:经历一元一次方程一般解法的探究过程,理解等式基本性质在解方程中的作用,学会通过观察,结合方程的特点选择合理的思考方向进行新知识探索。
3、情感、态度与价值观:通过尝试从不同角度寻求解决问题的方法,体会解决问题策略的多样性;在解一元一次放的过程中,体验“化归”的思想。
教学重难点:
重点:解一元一次方程的基本步骤和方法。
难点:含有分母的一元一次方程的解题方法。
教学过程:
一、新课导入:
请同学们和老师一起解方程:
并回答:解一元一次方程的一般步骤和最终的目的是什么?
二、讲授新课
请给同学们介绍纸草书(P95)。
问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.试问这个
数是多少?
并引入让同学运用设未知数的方法,列出相应的方程。
并回答:这个方程和我们以前学习的方程有什么不同?
同学们和老师一起完成解上述方程,并引入去分母。
例1、
例2、
活动:同学们,解一元一次方程的步骤有哪些?要注意哪些?
看一看你会不会错:
(1)解方程:
(2)解方程:
典型例题:解方程:
想一想:去分母时要注意什么问题?
(1)方程两边每一项都要乘以各分母的最小公倍数
(2)去分母后如分子中含有两项,应将该分子添上括号
选一选:
练一练:当m为何值时,整式和的值相等?
议一议:如何解方程:
注意区别:
1、把分母中的小数化为整数是利用分数的基本性质,是对单一的一个分数的`分子分母同乘或除以一个不为0的数,而不是对于整个方程的左右两边同乘或除以一个不为0的数。
2、而去分母则是根据等式性质2,对方程的左右两边同乘或除以一个不为0的数,而不是对于一个单一的分数。
课堂小结:
(1)怎样去分母?应在方程的左右两边都乘以各分母的最小公倍数。
有没有疑问:不是最小公倍数行不行?
(2)去分母的依据是什么?
等式性质2
(3)去分母的注意点是什么?
1、去分母时等式两边各项都要乘以最小公倍数,不可以漏乘。
2、如果分子是含有未知数的代数式,其分子为一个整体应加括号。
(4)解一元一次方程的一般步骤:
布置作业:P98,习题3.3第3题
补充作业:解方程:
(1)
(2)
板书设计:
教学反思:
解一元一次方程的教案 篇5
教学目标:
1.知识目标
(1)通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力。
(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。
2.能力目标
(1)通过学生观察、独立思考等过程,培养学生归纳、概括的能力;
(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。
3.情感目标:
(1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的'精神,养成按客观规律办事的良好习惯;
(2)培养学生严谨的思维品质;
(3)通过学生间的互相交流、沟通,培养他们的协作意识。
教学重点:
1.弄清列方程解应用题的思想方法;
2.用去括号解一元一次方程。
教学难点:
1.括号前面是-号,去括号时,应如何处理,括号前面是-号的,去括号时,括号内的各项要改变符号。
2.在小学根深蒂固用算术方法解应用题的基础上,让学生逐步树立列方程解应用题的思想。
教学过程:
一、 创设情境,提出问题
问题1:我手中有6、x、30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快又对。
学生思考,根据自己对一元一次方程的理解程度自由编题。
问题2:解方程5(x-2)=8
解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。
问题3:某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?
(教学说明:给学生充分的交流空间,在学习过程中体会取长补短的涵义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力)
二、 探索新知
1. 情境解决
问题1 :设上半年每月平均用电x度,则下半年每月平均用电________度;上半年共用电__________度,下半年共用电_________度。
问题2:教师引导学生寻找相等关系,列出方程。
根据全年用电15万度,列方程,得6x+6(x-2000)=150000.
问题3:怎样使这个方程向x=a的形式转化呢?
6x+6(x-2000)=150000
去括号
6x+6x-12000=150000
移项
6x+6x=150000+12000
合并同类项
12x=162000
系数化为1
x=13500
问题4:本题还有其他列方程的方法吗?
用其他方法列出的方程应怎样解?
设下半年每月平均用电x度,则6x+6(x+2000)=150000.(学生自己进行解题)
归纳结论:方程中有带括号的式子时,根据乘法分配律和去括号法则化简。(括号前面是+号,把+号和括号去掉,括号内各项都不改变符号;括号前面是-号,把-号和括号去掉,括号内各项都改变符号。)
去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是-号,记住去括号后括号内各项都变号。
2. 解一元一次方程去括号
例题:解方程3x-7(x-1)=3-2(x+3)
解:去括号,得3x-7x+7=3-2x-6
移项,得 3x-7x+2x=3-6-7
合并同类项,得 -2x=-10
系数化为1,得x=5
三、 课堂练习
1.课本97页练习
2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其它年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?
四、总结反思
1.本节课你学习了什么?
2.通过今天的学习,你想进一步探究的问题是什么?
( 由学生自主归纳,最后老师总结)
四、 作业布置
1. 课本102页习题3.3第1、4题
2. 配套资料相关练习
教学反思:本节课突出数学的应用意识。教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出答案。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习
解一元一次方程的教案 篇6
知识技能
会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考
1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题
能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度
经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点
建立方程解决实际问题,会通过移项解 “ax+b=cx+d”类型的一元一次方程。
教学难点
分析实际问题中的相等关系,列出方程。
教学过程
活动一 知识回顾
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?
教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)
教师追问:变形的依据是什么?
学生独立思考、回答交流。
本次活动中教师关注:
(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二 问题探究
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?
教师:出示问题(投影片)
提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?
(学生尝试提问)
学生:读题,审题,独立思考,讨论交流。
1.找出问题中的已知数和已知条件。(独立回答)
2.设未知数:设这个班有x名学生。
3.列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)
4.找相等关系:
这批书的总数是一个定值,表示它的两个等式相等.(学生回答,教师追问)
5.列方程:3x+20=4x-25(1)
总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?
教师提问1:这个方程与我们前面解过的方程有什么不同?
学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25).
教师提问2:怎样才能使它向x=a的'形式转化呢?
学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20.
3x-4x=-25-20(2)
教师提问3:以上变形依据是什么?
学生回答:等式的性质1。
归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。
师生共同完成解答过程。
设问4:以上解方程中“移项”起了什么作用?
学生讨论、回答,师生共同整理:
通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。
教师提问5:解这个方程,我们经历了那些步骤?列方程时找了怎样的相等关系?
学生思考回答。
教师关注:
(1)学生对列方程解决实际问题的一般步骤:设未知数,列代数式,列方程,是否清楚?
在参与观察、比较、尝试、交流等数学活动中,体验探究发现成功的快乐。
活动三 解法运用
例2解方程
3x+7=32-2x
教师:出示问题
提问:解这个方程时,第一步我们先干什么?
学生讲解,独立完成,板演。
提问:“移项”是注意什么?
学生:变号。
教师关注:学生“移项”时是否能够注意变号。
通过这个例题,掌握“ax+b=cx+d”类型的一元一次方程的解法。体验“移项”这种变形在解方程中的作用,规范解题步骤。
活动四 巩固提高
1.第91页练习(1)(2)
2.某货运公司要用若干辆汽车运送一批货物。如果每辆拉6吨,则剩余15吨;如果每辆拉8吨,则差5吨才能将汽车全部装满。问运送这批货物的汽车多少量?
3.小明步行由A地去B地,若每小时走6千米,则比规定时间迟到1小时;若每小时走8千米,则比规定时间早到0.5小时。求A、B两地之间的距离。
教师按顺序出示问题。
学生独立完成,用实物投影展示部分学而生练习。
教师关注:
1.学生在计算中可能出现的错误。
2.x系数为分数时,可用乘的办法,化系数为1。
3.用实物投影展示学困生的完成情况,进行评价、鼓励。
巩固“ax+b=cx+d”类型的一元一次方程的解法,反馈学生对解方程步骤的掌握情况和可能出现的计算错误。
2、3题的重点是在新情境中引导学生利用已有经验解决实际问题,达到巩固提高的目的。
活动五
提问1:今天我们学习了解方程的那种变形?它有什么作用、应注意什么?
提问2:本节课重点利用了什么相等关系,来列的方程?
教师组织学生就本节课所学知识进行小结。
学生进行总结归纳、回答交流,相互完善补充。
教师关注:学生能否提炼出本节课的重点内容,如果不能,教师则提出具体问题,引导学生思考、交流。
引导学生对本节所学知识进行归纳、总结和梳理,以便于学生掌握和运用。
布置作业:
第93页第3题
解一元一次方程的教案 篇7
一、目标:
知识目标:能熟练地求解数字系数的一元一次方程( 不含去括号、去分母)。
过程方法目标:经历和体会解一元一次方程中“转化”的思想方法。
情感态度目标:在数学活动中获得成功的喜悦,增强自信心和意志力,激发学习兴趣。
二、重难点:
重点:学会解一元一次方程
难点:移项
三、学情分析:
知识背景:学生已学过用等式的性质来解一元一次方程。
能力背景:能比较熟练地用等式的性质来解一元一次方程。
预测目标:能熟练地用移项的方法来解一元一次方 程。
四、教学过程:
(一)创设情景
一头半岁蓝鲸的体 重是22t,90天后的体重是30.1t,蓝鲸的体重平均每天增加多少?
(二)实践探索,揭示新知
1.例2.解方程: 看谁算得又快:
解:方程的两边同时加上 得 解: 6x ? 2=10
移项得 6x =10+2
即 合并同类项得
化系数为1得
大家看一下有什么规律可寻?可以讨论
2 .移项的.概念: 根据等式的基本性质方程中的某些项改变符号后,可以从方程的一边移到另一边 ,这样的 变形叫做移项。
看谁做得又快又准确!千万不要忘记移项要变号。
3.解方程:3x+3 =12,
4.例3解方程: 例4解方程 :
2x=5x-21 x- 3=4-
5.观察并思考:
①移项有什么特点?
②移项后的化简包括哪些
(三)尝试应用 ,反馈矫正
1.下列解方程对吗?
(1)3x+5=4 7=x-5
解: 3x+ 5 =4 解:7=x-5
移项得: 3x =4+5 移项得:-x= 5+7
合并同类项得 3x =9 合并同类项得 -x= 12
化系数为1得 x =3 化系数为1得 x = -12
2解方程
(1). 10x+1=9 (2) 2—3x =4-2x;
(四)归纳小结
1.今天学习了什么?有什么新的简便的写法?
2.要注意什么?
3. 解方程的 一般步骤是什么?
4.. (1) 移项实际上 是对方程两边进行 , 使用的是
(2)系数 化为 1 实际上是对方程两边进行 , 使用的是 。
(3)移项的作用是什么?
(五)作业
1.课堂作业:课本习题4.2第二题
2.家作:评价手册4.2第二课时
解一元一次方程的教案 篇8
教学目标
1.在具体情境中,进一步体会方程是刻画现实世界的重要数学模型。
2.知道什么是一元一次方程的标准形式,会通过移项、合并同类项把方程化为标准形式,然后利用等式的性质解方程。
教学重、难点
重点:把方程转化为标准形式。
难点:解方程的应用。
教学过程
一激情引趣,导入新课
1解方程:9x+3=8+8x
2(1)上面解方程的过程中,每一步的依据是什么?
(2)什么叫移项?移项要注意什么?
(3)2-4x+6+5x=8,变形为:-4x+5x+2+6=8,是不是移项?
二合作交流,探究新知
1动脑筋:
某实验中学举行田径运动会,初一年级甲班和丙班参加的人数的和是乙班参加的人数的3倍,甲班有40人参加,乙班参加的人数比丙班参加的人数少10人,你能算出乙班参加校运会的人数吗?
观察你解方程的过程,原方程做了哪些变形?
形如ax=b(a≠0)的方程叫一元一次方程的_____形式。
2训练
(1)解方程:①11x-2=8x-8,②
(2)下列方程求解正确的是()
A-2x=3,解得:x=,B解得:x=
C3x+4=4x-5解得:x=-9,D2x=3x+1,解得x=-1
三应用迁移,巩固提高
1方程的.转化
例1已知x=-2是方程的解,求m的值。
例2若方程2x+a=,与方程的解相同,求a的值。
2实践应用
例3甲仓库有某种粮食120吨,乙仓库有同样的粮食96吨,甲仓库每天卖出粮食15吨,乙仓库每天卖出粮食9吨,多少天后,两仓库剩下的粮食相等?
例4百年问题:我们明代数学家程大为曾提出过一个有趣的问题,有一个人赶着一群羊在前面走,另一个人牵着一头羊跟在后面,后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊人回答“我再得这么一群羊,再得这群羊的一半,再得这群羊的四分之一,把你牵的羊
也给我,我恰好有一百只羊”,请问这群羊有多少只?
四冲刺奥赛
例5当b=1时,关于x的方程a(3x-2)+b(2x-3)=8x-7,有无穷多个解,则a=()
A2B–2CD不存在
例6解方程:3x+=4
例7用一队卡车运一批货物,若每辆卡车装7吨货物,则尚余10吨货物装不完,若每辆卡车装8吨货物,则最后一辆卡车只装3吨货物就装完了这批货物,那么这批货物共有多少吨?
五课堂练习,巩固提高
P1121
六反思小结,拓展提高
1什么叫一元一次方程的标准形式?解一元一次方程一般要转化成什么形式?
解一元一次方程的教案 篇9
一、教材分析
1、教材地位和作用
本节课是义务教育课程标准实验教科书数学六年级上册第五章《一元一次方程》中第一节课的内容。是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用逆运算法解一些简单的方程。并在前一章刚学过整式的概念及其运算的基础上,本节课将带领学生继续学习方程、一元一次方程等内容。要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程作为刻画现实世界的模型的意义,建立方程归纳得出一元一次方程的概念并用尝试检验法来求解,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。
2、教学目标
综上分析及教学大纲要求,本课时教学目标制定如下:
⒈通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义.
⒉会根据简单数量关系列方程,通过观察、归纳一元一次方程的概念.
⒊体会解决问题的一种重要的思想方法----尝试检验法.
⒋回顾理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程.
3、教学重点和难点
重点:一元一次方程的概念和用尝试检验法求方程的解.
难点:利用等式的两个性质解一元一次方程.
二、教法与学法分析:
教法方法与手段:
本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。采用教师引导,学生自主探索、观察、归纳的教学方式。利用多媒体和天平演示等教学设备辅助教学,充分调动学生的积极性。
学法指导:
根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。
三、教学设计
根据以上综合分析,这节课的教学流程为:
联系实际,创设情境——观察归纳,建构新知——交流对话,自我探索——
理解性质,应用巩固——总结反思,布置作业
(一)联系实际,创设情境
当学生看到自己所学的知识与“现实世界”息息相关时,学生通常会更主动。所以,我设计如下问题:
xxxx年夏季奥运会上,我国获得32枚金牌。其中跳水队获得6枚金牌,比射击队获得金牌数的2倍少2枚。射击队获得多少枚金牌?
如果设射击队获得x枚金牌,那么跳水队获得(2x-2)枚金牌,所以得到等式:。
在小学里我们已经知道,像这样含有未知数的等式叫做方程。
[选一选]:下列各式中,哪些是方程?
⑴5x=0;⑵42÷6=7;
⑶y2=4+y;⑷3m+2=1-m;
⑸1+3x.
创设学生熟悉的感兴趣的问题情境,能激起学生学习的兴趣和热情,并进一步回顾掌握小学已学过的方程的概念和列方程。也为下面一元一次方程的概念建构做好准备。
[练一练]:请你运用已学的知识,根据下列问题中的条件,分别列出方程:
⑴奥运冠军朱启南在雅典奥运会男子10米气步枪决赛中最后两枪的平均成绩为10.4环,其中第10枪(即最后一枪)的成绩为10.1环,问第9枪的'成绩是多少环?
设第9枪的成绩为x环,可列出方程。
⑵国庆期间,“时代广场”搞促销活动,小颖的姐姐买了一件衣服,按8折销售的售价为72元,问这件衣服的原价是多少元?
设这件衣服的原价为x元,可列出方程。
⑶有一棵树,刚移栽时,树高为2m,假设以后平均每年长0.3m,几年后树高为5m?
设x年后树高为5m,可列出方程。
⑷xx的足球分赛场---秦皇岛市奥体中心体育场,其足球场的周长为344米,长和宽之差为36米,这个足球场的长与宽分别是多少米?
设这个足球场的宽为x米,则长为(x36)米,可列出方程。
【通过丰富的实际问题,让学生经历模型化的过程、加深对建立方程这个数学模型意义的理解和体会,激发学生的好奇心和主动学习的欲望。】
(二)观察归纳,建构新知:
[议一议]:观察你所列的方程,这些方程之间有什么共同的特点?
(先鼓励学生进行观察与思考,并用自己的语言进行描述,然后学生进行交流。教师在学生发言的基础上,给出一元一次方程的概念,并进行适当的讲解。)
在原有方程概念的基础上,鼓励学生观察、归纳自我建构新的概念——一元一次方程。有困难可提示:上述所列的方程中,方程的两边都是__式,只含有__个未知数,并且未知数的指数是__次,这样的方程叫做一元一次方程。(我国古代称未知数为元,只含有一个未知数的方程叫做一元方程。)
在学生对概念有了初步的印象后,紧接着给出几个式子让学生判断,为的是增强学生的判断能力和对概念的认识。练习有梯度、有层次。
最后总结提出:要成为一元一次方程需要几个条件?
[做一做]:⒈下列各式中,哪些是一元一次方程?
⑴5x=0; ⑵y2=4+y;
⑶3m+2=1-m;⑷x-=-;
⑸xy=1.
⒉你能写出一个一元一次方程吗?
(让学生回答,教师在黑板上板书,其他学生帮忙纠正)
在认识概念时学生可能出现的障碍:
例如:判断“5=x”和“x-(x-1)=1”两类型的式子
没有出现就算,有出现的话,教师不要马上给出判断,而是给学生足够的时间和空间去思考、讨论,经过一番对与错的碰撞,教师揭开“谜底”,并且渗透了认识事物要看其本质的教学思想。
(三)交流对话,自主探索
在小学里我们还知道,使方程左右两边的值相等的未知数的值叫做方程的解。
你们知道“练一练”第⑴题的方程=10.4的解吗?
你们是怎么得到的?
(让学生各抒己见,只要学生能说出该方程的解教师都应给予积极的鼓励。)
强调:我们知道x只能取10.5,10.6,10.7,10.8,10.9。把这些值分别代入方程左边的代数式,求出代数式的值,就可以知道x=10.7是()方程=10.4的解。这种尝试检验的方法是解决问题的一种重要的思想方法。
[做一做]:
⒈判断下列t的值是不是方程2t+1=7-t的解:
⑴t=-2; ⑵t=2.
追问:你能否写出一个一元一次方程,使它的解是t=-2?
这里的追问把练习提高一个层次,给学生一个创造的机会,使学生进一步全面理解一元一次方程及其解等概念。
⒉解方程:⑴x-2=8;⑵5y=8.
(让学生思考解法,只要合理均以鼓励。)
除了这些方法,还有没有更好的方法呢?如果方程比较复杂,怎么办呢?下面我们就来研究如何用等式的性质解一元一次方程。
从学生已有的知识和能力出发探索更好的解法
(四)理解性质,应用巩固
实验
如果天平两边砝码的质量同时扩大相同的倍数或同时缩小为原来的几分之一,那么天平还保持平衡吗?
归纳等式的两个性质
⒈等式的两边都加上或都减去同一个数或式,所得结果仍是等式。
⒉等式的两边都乘以或都除以同一个不为零的数或式,所得结果仍是等式。
说明:课本指出:“在小学我们还学过等式的两个性质”,但目前小学生尚未学过或未正式学过等式的两个性质。所以在此对等式的性质先作一番介绍。教师引导学生通过天平实验观察、思考、分析天平和等式之间的联系。使学生更好掌握等式性质。(具体、形象)这是根据学生的实际,适当对教材进行处理。
解方程例⒈利用等式的性质解下列方程:
⑴x-2=8;⑵5y=8.
(学生已经用其他方法求解过这两个方程,这里是用等式的性质来解方程.可先让学生自己尝试利用等式的性质进行求解,教师再加以引导。)
例⒉解下列方程:
⑴5x=504x;⑵8-2x=9-4x.
(教学时,首先应鼓励学生自己尝试求解这两个方程,并从中体会运用等式的性质解方程的方法,然后提问学生:你是怎样解方程的?每一步的根据是什么?还有其他解法吗?从中让学生体会解一元一次方程就是根据是等式的性质把方程变形成“x=a(a为已知数)”的形式。并引导学生回顾检验的方法,鼓励他们养成检验的习惯)
例题由浅到深,学生易掌握。对(2)有难度,可加提示:为了使含未知数的项都集中到等式的左边,应对方程做怎样的变形?依据是什么?为了使常数项集中到等式的右边,又应对方程作怎样的变形?依据是什么?渗透化归的思想。
[做一做]:
(五)总结反思,布置作业
[说一说]:通过上面的学习,你有什么收获?另外你有什么感触或疑惑?
总结理清知识脉络,强化重点,内化知识,培养能力。
作业的设计采用分层的形式面向全体学生。
解一元一次方程的教案 篇10
教学目标:
1、理解什么是一元一次方程。
2、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。
3、进一步体会找等量关系,会用方程表示简单实际问题。
4、体会数学与我们日常生活联系密切,培养学习数学的兴趣。
教学重点:
一元一次方程及方程的解。
教学难点:
寻找问题中的相等关系,列方程。
学习过程:
回顾旧知:方程的概念是什么?
问题1:鸡兔同笼
“今有雉兔同笼,上有四十九头,下有一百足,问雉兔各几何?”(分别用算术方法和方程方法解决)
问题2:一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的速度是70km/h,卡车的速度是60km/h,客车比卡车早1小时到达B地,A、B两地间的路程是多少?(客车与卡车之间的时间关系解题)
1、用等号“=”来表示相等关系的式子,叫等式。
2、像这样含有未知数的等式叫做方程
判断:下列各式是不是方程:
(1)-2+5=3 ;
(2)3x-1=0;
(3)y=3;
(4)x+y>2;
(5)2x-5y+1=0;
(6)xy-1=0;
(7)2m-n;
探究新知;
例1根据下列问题,设未知数并列出方程
(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?
(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少个月这台计算机的使用时间达到规定的检修时间2450小时?
(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
解:(1)设正方形的边长为x cm,然后发现相等关系:
4×边长=周长
可以利用这个相等关系,得到方程:4x=24
(2)设x个月后这台计算机的使用时间达到规定的检修时间2450小时,得到方程:1700+150x=2450
(3)设这个学校有x名学生,那么女生数就是0.52x,男生数是(1-0.52)x,可列方程:0.52x-(1-0.52)x=80观察上面三个方程有什么共同特点:
①只含有一个未知数;
②未知数的最高次数都是1。
只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。判断:下列各式是一元一次方程吗?
(1)2x+3y-1;(2) x2+2x+1=0;(3)x+2y=3;
(4)1-x=x+1;(5)x2+3=4;
(6)x+y=5;(7)1+7=15-8+1;
(8)2χ2-5χ+1=0做一做:
x=1000和x=2000中哪一个是方程0.52x-(1-0.52)x=80的解?
方程的解:使方程左右两边相等的.未知数的值。检验一个数值是不是方程的解的步骤:
1.将数值代入方程左边进行计算,
2.将数值代入方程右边进行计算,
3.比较左右两边的值,若左边=右边,则是方程的解,反之,则不是.
练一练:
请你判断下列给定的t的值中,哪个是方程2t+1=7-t的解?
(1)t=-2(2)t=2 (3)t=1
练习提高:
根据下列问题,设未知数,列出方程:
1、鸟巢里的环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?
2、甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支,问各买了多少支?
3、一个梯形下底比上底多2cm,高是5cm,面积是40平方厘米,求上底。 小结:
1、方程的概念
2、一元一次方程的概念
3、方程的解的概念
解一元一次方程的教案 篇11
教学目标:
1.使学生进一步掌握解一元一次方程的移项规律。
2.掌握带有括号的一元一次方程的解法;
3.培养学生观察、分析、转化的能力,同时提高他们的运算能力.
教学重点:
带有括号的一元一次方程的解法.
教学难点:
解一元一次方程的.移项规律.
教学手段:
引导——活动——讨论
教学方法:
启发式教学
教学过程
(一)、情境创设:
知识复习
(二)引导探究:带括号的方程的解法。
例1.2(x-2)-3(4x-1)=9(1-x).
解:(怎样才能将所给方程转化为例1所示方程的形式呢?请学生回答)
去括号,得:
移项,得:
合并同类项,得:
系数化1,得:
遇有带括号的一元一次方程的解法步骤:
(三)练习:(A)组
1.下列方程的解法对不对?若不对怎样改正?
解方程2(x+3)-5(1-x)=3(x-1)
解:2x+3-5-5x=3x-1,
2x-5x-3x=3+5-3,
-6x=-1,
2.解方程:
(1)10y+7=12-5-3y;(2)2.4x-9.8=1.4x-9.
3.解方程:
(1)3(y+4)12;(2)2-(1-z)=-2;
(B)组
(1)2(3y-4)+7(4-y)=4y;(2)4x-3(20-x)=6x-7(9-x);
(3)3(2y+1)=2(1+y)+3(y+3)(4)8x+4=2(4x+3)-2(-3+x)
(四)教学小结
本节课都教学哪些内容?
哪些思想方法?
应注意什么?
- 解一元一次方程教案设计 推荐度:
- 相关推荐
【解一元一次方程的教案】相关文章:
解一元一次方程教案设计(精选14篇)11-16
《进学解》教案(精选6篇)01-31
庖丁解牛《庄子》教案03-05
一元一次方程去分母教案(通用10篇)11-17
高中语文《庖丁解牛》教学设计02-24
列方程解应用题的常用公式总结12-07
关于社区矫正对象期满解教总结范文02-01
一元一次方程的解法教学反思(精选10篇)08-06