《乘法交换律和乘法结合律》优秀教学设计

2024-10-02

《乘法交换律和乘法结合律》优秀教学设计

  教学目标:

  1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

  2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。

  3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。

  教学重点:

  理解乘法交换律和乘法结合律。

  教学难点:

  能运用乘法交换律和乘法结合律进行简便计算。

  教学准备:

  多媒体。

  教学方法:

  尝试法、观察比较法。

  教学过程:

  一、复习导入

  我们已经学过了哪些运算定律?请你用自己的话说一说,并说一说怎样用字母表示。

  二、探究新知。

  1、主题图引入

  (1)出示主题图,让学生仔细观察,说一说图中告诉我们哪些信息。

  (2)你能提出哪些问题?(指定多名学生说一说。)

  2、学习例1。

  (1)出示例1:负责挖坑、种树的一共有多少人?

  (2)启发学生思考:要解答负责挖坑、种树的一共有多少人?这个问题,需要知道主题图中哪些相关信息?指定学生回答,课件出示、:一共有25个小组,每组里4人负责挖坑、种树。

  (3)学生独立列式计算。教师根据学生回答,边板书:

  425=100(人) 254=100(人)

  (4)教师引导学生观察,比较两种解法有何异同。

  启发思考:这两个算式得数是否相等?都表示什么?两个算式之间可以用什么符号连接?(即:425=254)这个等式说明了什么?

  (5)你能再举出几个这样的例子吗?(学生举例)

  (6)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)

  (7)教师引导学生归纳小结:交换两个因数的位置,积不变。这叫做乘法交换律。(学生齐读。)

  (8)让学生用自己喜欢的方式表示乘法交换律: ab=ba。让学生说一说:这里的a、b可以是哪些数?

  (9)拓展:找一找,主题图中哪个问题可以用乘法交换律来解决。

  (10)我们学习哪些知识时用了乘法交换律?

  (11)反馈练习:完成教材第35页做一做的第1题。

  3、学习例2。

  (1)出示例2:一共要浇多少桶水?

  (2)启发学生思考:要解决这个问题又需要知道哪些信息?指定学生回答,教师边课件出示:一共有25个小组,每组要种5棵树,每棵树要浇2桶水。

  您现在正在阅读的《乘法交换律和乘法结合律》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《乘法交换律和乘法结合律》教学设计(3)学生独立列式计算,教师巡视指导。指定不同算法的学生发表意见,教师根据学生回答边板书:(255)2和25(52)。

  (4)教师引导学生比较两种算法的异同:计算顺序不同,但解决的是同一个问题,计算结果也相同,所以能用等号把这两个算式连起来。即:(255)2=25(52)

  (5)哪一种方法计算起来更简便?

  (6)你还能举出其他这样的例子吗?指定学生回答,教师边板书。

  (7)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)你们能给乘法的这种规律起个名字吗?

  (8)教师引导学生归纳小结:先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。

  (9)用字母怎样表示?(ab)c=a(bc)

  (10) 反馈练习:完成教材第37页的第2题。

  4、乘法交换律和乘法结合律的应用。

  (1)出示:怎样简便就怎样算?

  5372 1254825

  (2)思考:怎样计算简便?

  (3)学生独立完成,教师巡视指导,指定学生上台板演。

  (4)集体订正,指定学生说一说各题运用了什么运算定律。

  5、反馈练习:教材第35页做一做的第2题。

  6、比较加法交换律和乘法交换律、加法结合律和乘法结合律,你发现了什么?(组织学生讨论后集体交流。)交换律是两数相加、相乘的规律,即交换加(因)数的位置,和(积)不变;结合律是三数相加、相乘的规律,既可以从左往右依次计算,也可以先把后两个数先相加(乘),和(积)不变。

  三、小结

  学生小结本节课的学习内容。

  教师引导学生回忆整节课的学习要点。

  四、作业

  《练习册》第14页第1课时的所有习题。

  板书设计 乘法交换律和乘法结合律

  425=100(人) 254=100(人)

  425=254) ab=ba

  (255)2 25(52)

  =1252 =2510

  =250(桶) =250(桶)

  (255)2=25(52)

  (ab)c=a(bc)

  • 相关推荐

【《乘法交换律和乘法结合律》优秀教学设计】相关文章:

《乘法分配律》教学设计02-23

《乘法运算定律》的课堂教学设计02-16

有理数的乘法教学设计(通用11篇)09-29

《2、3乘法口诀》的教学反思02-26

数学《表内乘法二》教学反思02-02

不进位乘法教学反思(精选10篇)11-21

《用7的乘法口诀求商》的教学反思03-19

《5的乘法口诀》的教学反思(通用11篇)10-18

整式的乘法小结与复习教案03-20

《8的乘法口诀及求商》的教学反思(通用13篇)11-23