总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它可以有效锻炼我们的语言组织能力,让我们好好写一份总结吧。那么我们该怎么去写总结呢?以下是小编精心整理的函数知识点总结,仅供参考,欢迎大家阅读。
函数知识点总结 1
(一)、映射、函数、反函数
1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。
2、对于函数的概念,应注意如下几点:
(1)掌握构成函数的三要素,会判断两个函数是否为同一函数。
(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。
(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数。
3、求函数y=f(x)的反函数的一般步骤:
(1)确定原函数的值域,也就是反函数的定义域;
(2)由y=f(x)的解析式求出x=f—1(y);
(3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域。
注意:
①对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起。
②熟悉的应用,求f—1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算。
(二)、函数的解析式与定义域
1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。求函数的定义域一般有三种类型:
(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;
(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可。如:
①分式的分母不得为零;
②偶次方根的被开方数不小于零;
③对数函数的真数必须大于零;
④指数函数和对数函数的底数必须大于零且不等于1;
⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等。
应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集)。
(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可。
已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域。
2、求函数的解析式一般有四种情况
(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式。
(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法。比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可。
(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域。
(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(—x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式。
(三)、函数的值域与最值
1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:
(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。
(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。
(3)反函数法:利用函数f(x)与其反函数f—1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。
(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。
(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。
(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。
(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。
2、求函数的最值与值域的区别和联系
求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异。
如函数的值域是(0,16],最大值是16,无最小值。再如函数的值域是(—∞,—2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2。可见定义域对函数的值域或最值的影响。
3、函数的最值在实际问题中的应用
函数的'最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值。
(四)、函数的奇偶性
1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数)。
正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=—f(x)或f(—x)=f(x)是定义域上的恒等式。(奇偶性是函数定义域上的整体性质)。
2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:
注意如下结论的运用:
(1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;
(2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;
(3)奇偶函数的复合函数的奇偶性通常是偶函数;
(4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。
3、有关奇偶性的几个性质及结论
(1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称。
(2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数。
(3)若奇函数f(x)在x=0处有意义,则f(0)=0成立。
(4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。
(5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(—x)是偶函数,G(x)=f(x)—f(—x)是奇函数。
(6)奇偶性的推广
函数y=f(x)对定义域内的任一x都有f(a+x)=f(a—x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数。函数y=f(x)对定义域内的任—x都有f(a+x)=—f(a—x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。
(五)、函数的单调性
1、单调函数
对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1>x2时,都有不等式f(x1)>(或<)f(x2)成立,称f(x)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数。
对于函数单调性的定义的理解,要注意以下三点:
(1)单调性是与“区间”紧密相关的概念。一个函数在不同的区间上可以有不同的单调性。
(2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替。
(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内。
(4)注意定义的两种等价形式:
设x1、x2∈[a,b],那么:
①在[a、b]上是增函数;
在[a、b]上是减函数。
②在[a、b]上是增函数。
在[a、b]上是减函数。
需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零。
(5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1>x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”。
5、复合函数y=f[g(x)]的单调性
若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减。简称“同增、异减”。
在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程。
6、证明函数的单调性的方法
(1)依定义进行证明。其步骤为:
①任取x1、x2∈M且x1(或<)f(x2);
②根据定义,得出结论。
(2)设函数y=f(x)在某区间内可导。
如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数。
(六)、函数的图象
函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识。
求作图象的函数表达式
与f(x)的关系
由f(x)的图象需经过的变换
y=f(x)±b(b>0)
沿y轴向平移b个单位
y=f(x±a)(a>0)
沿x轴向平移a个单位
y=—f(x)
作关于x轴的对称图形
y=f(|x|)
右不动、左右关于y轴对称
y=|f(x)|
上不动、下沿x轴翻折
y=f—1(x)
作关于直线y=x的对称图形
y=f(ax)(a>0)
横坐标缩短到原来的,纵坐标不变
y=af(x)
纵坐标伸长到原来的|a|倍,横坐标不变
y=f(—x)
作关于y轴对称的图形
【例】定义在实数集上的函数f(x),对任意x,y∈R,有f(x+y)+f(x—y)=2f(x)·f(y),且f(0)≠0。
①求证:f(0)=1;
②求证:y=f(x)是偶函数;
③若存在常数c,使求证对任意x∈R,有f(x+c)=—f(x)成立;试问函数f(x)是不是周期函数,如果是,找出它的一个周期;如果不是,请说明理由。
思路分析:我们把没有给出解析式的函数称之为抽象函数,解决这类问题一般采用赋值法。
解答:①令x=y=0,则有2f(0)=2f2(0),因为f(0)≠0,所以f(0)=1。
②令x=0,则有f(x)+f(—y)=2f(0)·f(y)=2f(y),所以f(—y)=f(y),这说明f(x)为偶函数。
③分别用(c>0)替换x、y,有f(x+c)+f(x)=
所以,所以f(x+c)=—f(x)。
两边应用中的结论,得f(x+2c)=—f(x+c)=—[—f(x)]=f(x),所以f(x)是周期函数,2c就是它的一个周期。
函数知识点总结 2
本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。所以理解了前面的几个知识点,函数的图象就迎刃而解了。
一、函数的单调性
1、函数单调性的定义
2、函数单调性的判断和证明:
(1)定义法
(2)复合函数分析法
(3)导数证明法
(4)图象法
二、函数的奇偶性和周期性
1、函数的奇偶性和周期性的定义
2、函数的奇偶性的判定和证明方法
3、函数的周期性的判定方法
三、函数的图象
1、函数图象的作法
(1)描点法
(2)图象变换法
2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。
常见考法
本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。选择题、填空题和解答题都有,并且题目难度较大。在解答题中,它可以和高中数学的`每一章联合考查,多属于拔高题。多考查函数的单调性、最值和图象等。
误区提醒
1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。
2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。
3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。
4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。
5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。
函数知识点总结 3
诱导公式的本质
所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。
常用的`诱导公式
公式一: 设为任意角,终边相同的角的同一三角函数的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 设为任意角,的三角函数值与的三角函数值之间的关系:
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
公式三: 任意角与 -的三角函数值之间的关系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到与的三角函数值之间的关系:
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
函数知识点总结 4
1二次函数的定义
一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函数.
注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;
(2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),自变量x的取值范围是全体实数;
(3)当b=c=0时,二次函数y=ax2是最简单的二次函数;
(4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数.
2二次函数解析式的几种形式
(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0).
(2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).
(3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的.横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.
说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点
3二次函数y=ax2+c的图象与性质
(1)抛物线y=ax2+c的形状由a决定,位置由c决定.
(2)二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y轴.
当a>0时,图象的开口向上,有最低点(即顶点),当x=0时,y最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大.
当a<0时,图象的开口向下,有最高点(即顶点),当x=0时,y最大值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小.
(3)抛物线y=ax2+c与y=ax2的关系.
抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动.
函数知识点总结 5
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
初中怎样学好数学
学好初中数学培养运算能力
初中数学涉及到大量的运算内容,比如有理数的运算、因式分解、根式的`运算和解方程,这些都是初中数学涉及到的知识内容,如果初中生数学运算能力不过关,那么成绩怎么能提高呢?所以运算是学好初中数学的基本功,这个基本功一定要扎实,不然以后的初中数学就可以不用学习了。
初中生在解答运算题的时候,不要急躁,静下心来。初中数学运算的过程是很重要的,这也是初中生对于数学逻辑和思维的培养过程,结果要准确;同时初中生还有要绝对的自信,不要求速度可以慢一点的,尽量一次做对。
学好初中数学做题的数量不能少
不可否认,想要学好初中数学,就要做一定量的数学题。不赞同大量的刷题,那样没有什么意义。初中生做数学题主要是以基础题的练习为主,将初中数学的基础题弄懂的同时,反复的做一些比较典型的题,这样才是初中生正确的学习数学方式。
在初中阶段,学生要锻炼自己数学的抽象思维能力,最好的结果是在不用书写的情况下,就能够得到正确的答案,这也就是我们常说的熟能生巧。同时也是初中生数学基础知识牢固的体现。相反的,有的初中生在做练习题的时候,比较盲目和急躁,这样的结果就是粗心大意,马虎出错。
课上重视听讲课下及时复习
初中生数学能力的培养一部分在于平时做题的过程中,另一部分就在课堂上。所以初中生想要学好数学,就要重视课内的学习效率,在课上的时候要跟紧老师的思路,大胆的推测老师下一步讲课的知识,尤其是基础知识的学习。在课后初中生还要对学习的数学知识点及时复习。对于每个阶段初中数学的学习要进行知识点归纳和整理。
初中数学多项式知识点
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数的项的次数,叫做这个多项式的次数。
函数知识点总结 6
特别地,二次函数(以下称函数)y=ax+bx+c。
当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax+bx+c=0。
此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的图象形状相同,只是位置不同。当h>0时,y=a(x-h)的图象可由抛物线y=ax向右平行移动h个单位得到。
当h<0时,则向xxx移动|h|个单位得到。
当h>0,k>0时,将抛物线y=ax向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)+k的图象。
当h>0,k<0时,将抛物线y=ax向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象。
当h<0,k>0时,将抛物线向xxx移动|h|个单位,再向上移动k个单位可得到y=a(x-h)+k的图象。
当h<0,k<0时,将抛物线向xxx移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)+k的.图象。
因此,研究抛物线y=ax+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便。
2.抛物线y=ax+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b]/4a)。
3.抛物线y=ax+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小。
4.抛物线y=ax+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c)。
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的两根.这两点间的距离AB=|x-x|。
当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。
5.抛物线y=ax+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b)/4a。
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax+bx+c(a≠0)。
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)+k(a≠0)。
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a≠0)。
函数知识点总结 7
1.常量和变量
在某变化过程中可以取不同数值的量,叫做变量.在某变化过程中保持同一数值的量或数,叫常量或常数.
2.函数
设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.
3.自变量的取值范围
(1)整式:自变量取一切实数.(2)分式:分母不为零.
(3)偶次方根:被开方数为非负数.
(4)零指数与负整数指数幂:底数不为零.
4.函数值
对于自变量在取值范围内的一个确定的值,如当x=a时,函数有唯一确定的对应值,这个对应值,叫做x=a时的函数值.
5.函数的表示法
(1)解析法;(2)列表法;(3)图象法.
6.函数的图象
把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个函数的图象.由函数解析式画函数图象的步骤:
(1)写出函数解析式及自变量的取值范围;
(2)列表:列表给出自变量与函数的一些对应值;
(3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;
(4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来.
7.一次函数
(1)一次函数
如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.
特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.
(2)一次函数的图象
一次函数y=kx+b的图象是一条经过(0,b)点和点的直线.特别地,正比例函数图象是一条经过原点的直线.需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象.
(3)一次函数的性质
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为.
(4)用函数观点看方程(组)与不等式
①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标.
②二元一次方程组对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.
③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.
8.反比例函数(1)反比例函数
(1)如果(k是常数,k≠0),那么y叫做x的反比例函数.
(2)反比例函数的图象反比例函数的图象是双曲线.
(3)反比例函数的性质
①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.
②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.
③反比例函数图象关于直线y=±x对称,关于原点对称.
(4)k的两种求法
①若点(x0,y0)在双曲线上,则k=x0y0.②k的几何意义:
若双曲线上任一点A(x,y),AB⊥x轴于B,则S△AOB
(5)正比例函数和反比例函数的交点问题
若正比例函数y=k1x(k1≠0),反比例函数,则当k1k2<0时,两函数图象无交点;
当k1k2>0时,两函数图象有两个交点,坐标分别为由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.
1.二次函数
如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x的二次函数.
几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0).
2.二次函数的图象
二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线.由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的`图象.
3.二次函数的性质
二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质:
(1)抛物线y=ax2+bx+c的顶点是,对称轴是直线,顶点必在对称轴上;
(2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的任意一点(x,y),当x<时,y随x的增大而减小;当x>时,y随x的增大而增大;当x=,y有最小值;若a<0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任意一点(x,y),当x<,y随x的增大而增大;当时,y随x的增大而减小;当x=时,y有最大值;
(3)抛物线y=ax2+bx+c与y轴的交点为(0,c);
(4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+bx+c与x轴交点的情况:
<0时,抛物线y=ax2+bx+c与x轴没有公共点.=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点;当=b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个不同的公共点,它们的坐标分别是和,这两点的距离为;当当4.抛物线的平移
抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)、向左(右)平移,可以得到抛物线y=a(x-h)2+k.平移的方向、距离要根据h、k的值来决定.
函数知识点总结 8
一、函数的概念与表示
1、映射
(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。
注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射
2、函数
构成函数概念的三要素
①定义域②对应法则③值域
两个函数是同一个函数的条件:三要素有两个相同
二、函数的解析式与定义域
1、求函数定义域的主要依据:
(1)分式的分母不为零;
(2)偶次方根的被开方数不小于零,零取零次方没有意义;
(3)对数函数的真数必须大于零;
(4)指数函数和对数函数的底数必须大于零且不等于1;
三、函数的值域
1求函数值域的方法
①直接法:从自变量x的范围出发,推出y=f(x)的`取值范围,适合于简单的复合函数;
②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;
③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;
④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);
⑤单调性法:利用函数的单调性求值域;
⑥图象法:二次函数必画草图求其值域;
⑦利用对号函数
⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数
四.函数的奇偶性
1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。
如果对于任意∈A,都有,则称y=f(x)为奇
函数。
2.性质:
①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,
②若函数f(x)的定义域关于原点对称,则f(0)=0
③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]
3.奇偶性的判断
①看定义域是否关于原点对称②看f(x)与f(-x)的关系
五、函数的单调性
1、函数单调性的定义:
2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。
函数知识点总结 9
一次函数的定义
一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。当b=0时,一次函数y=kx,又叫做正比例函数。
1、一次函数的解析式的形式是y=kx+b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式。
2、当b=0,k≠0时,y=kx仍是一次函数。
3、当k=0,b≠0时,它不是一次函数。
4、正比例函数是一次函数的特例,一次函数包括正比例函数。
一次函数的图像及性质
1、在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
2、一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)。
3、正比例函数的图像总是过原点。
4、k,b与函数图像所在象限的关系:
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
当k>0,b>0时,直线通过一、二、三象限;
当k>0,b<0时,直线通过一、三、四象限;
当k<0,b>0时,直线通过一、二、四象限;
当k<0,b<0时,直线通过二、三、四象限;
当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
一次函数的图象与性质的口诀
一次函数是直线,图象经过三象限;
正比例函数更简单,经过原点一直线;
两个系数k与b,作用之大莫小看,
k是斜率定夹角,b与y轴来相见,
k为正来右上斜,x增减y增减;
k为负来左下展,变化规律正相反;
k的绝对值越大,线离横轴就越远。
拓展阅读:一次函数的解题方法
理解一次函数和其它知识的联系
一次函数和代数式以及方程有着密不可分的联系。如一次函数和正比例函数仍然是函数,同时,等号的两边又都是代数式。需要注意的是,与一般代数式有很大区别。首先,一次函数和正比例函数都只能存在两个变量,而代数式可以是多个变量;其次,一次函数中的变量指数只能是1,而代数式中变量指数还可以是1以外的数。另外,一次函数解析式也可以理解为二元一次方程。
掌握一次函数的解析式的特征
一次函数解析式的结构特征:kx+b是关于x的一次二项式,其中常数b可以是任意实数,一次项系数k必须是非零数,k≠0,因为当k = 0时,y = b(b是常数),由于没有一次项,这样的函数不是一次函数;而当b = 0,k≠0,y = kx既是正比例函数,也是一次函数。
应用一次函数解决实际问题
1、分清哪些是已知量,哪些是未知量,尤其要弄清哪两种量是相关联的量,且其中一种量因另一种量的变化而变化;
2、找出具有相关联的两种量的等量关系之后,明确哪种量是另一种量的函数;
3、在实际问题中,一般存在着三种量,如距离、时间、速度等等,在这三种量中,当且仅当其中一种量时间(或速度)不变时,距离与速度(或时间)才成正比例,也就是说,距离(s)是时间(t)或速度( )的正比例函数;
4、求一次函数与正比例函数的'关系式,一般采取待定系数法。
数形结合
方程,不等式,不等式组,方程组我们都可以用一次函数的观点来理解。一元一次不等式实际上就看两条直线上下方的关系,求出端点后可以很容易把握解集,至于一元一次方程可以把左右两边看为两条直线来认识,直线交点的横坐标就是方程的解,至于二元一次方程组就是对应2条直线,方程组的解就是直线的交点,结合图形可以认识两直线的位置关系也可以把握交点个数。
如果一个交点时候两条直线的k不同,如果无穷个交点就是k,b都一样,如果平行无交点就是k相同,b不一样。至于函数平移的问题可以化归为对应点平移。k反正不变然后用待定系数法得到平移后的方程。这就是化一般为特殊的解题方法。
函数知识点总结 10
f(x2),那么那么y=f(x)在区间D上是减函数,D是函数y=f(x)的单调递减区间。
⑴函数区间单调性的判断思路
ⅰ在给出区间内任取x1、x2,则x1、x2∈D,且x1
ⅱ做差值f(x1)-f(x2),并进行变形和配方,变为易于判断正负的形式。
ⅲ判断变形后的表达式f(x1)-f(x2)的符号,指出单调性。
⑵复合函数的单调性
复合函数y=f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律为“同增异减”;多个函数的复合函数,根据原则“减偶则增,减奇则减”。
⑶注意事项
函数的单调区间只能是其定义域的子区间,不能把单调性相同的.区间和在一起写成并集,如果函数在区间A和B上都递增,则表示为f(x)的单调递增区间为A和B,不能表示为A∪B。
2、函数的整体性质——奇偶性
对于函数f(x)定义域内的任意一个x,都有f(x) =f(-x),则f(x)就为偶函数;
对于函数f(x)定义域内的任意一个x,都有f(x) =-f(x),则f(x)就为奇函数。
小编推荐:高中数学必考知识点归纳总结
⑴奇函数和偶函数的性质
ⅰ无论函数是奇函数还是偶函数,只要函数具有奇偶性,该函数的定义域一定关于原点对称。
ⅱ奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
⑵函数奇偶性判断思路
ⅰ先确定函数的定义域是否关于原点对称,若不关于原点对称,则为非奇非偶函数。
ⅱ确定f(x)和f(-x)的关系:
若f(x) -f(-x)=0,或f(x) /f(-x)=1,则函数为偶函数;
若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,则函数为奇函数。
3、函数的最值问题
⑴对于二次函数,利用配方法,将函数化为y=(x-a)2+b的形式,得出函数的最大值或最小值。
⑵对于易于画出函数图像的函数,画出图像,从图像中观察最值。
⑶关于二次函数在闭区间的最值问题
ⅰ判断二次函数的顶点是否在所求区间内,若在区间内,则接ⅱ,若不在区间内,则接ⅲ。
ⅱ若二次函数的顶点在所求区间内,则在二次函数y=ax2+bx+c中,a>0时,顶点为最小值,a0时的最大值或a
ⅲ若二次函数的顶点不在所求区间内,则判断函数在该区间的单调性
若函数在[a,b]上递增,则最小值为f(a),最大值为f(b);
若函数在[a,b]上递减,则最小值为f(b),最大值为f(a)。
3高一数学基本初等函数1、指数函数:函数y=ax (a>0且a≠1)叫做指数函数
a的取值a>1 0
注意:⑴由函数的单调性可以看出,在闭区间[a,b]上,指数函数的最值为:
a>1时,最小值f(a),最大值f(b);0
⑵对于任意指数函数y=ax (a>0且a≠1),都有f(1)=a。
2、对数函数:函数y=logax(a>0且a≠1)),叫做对数函数
a的取值a>1 0
3、幂函数:函数y=xa(a∈R),高中阶段,幂函数只研究第I象限的情况。
⑴所有幂函数都在(0,+∞)区间内有定义,而且过定点(1,1)。
⑵a>0时,幂函数图像过原点,且在(0,+∞)区间为增函数,a越大,图像坡度越大。
⑶a
当x从右侧无限接近原点时,图像无限接近y轴正半轴;
当y无限接近正无穷时,图像无限接近x轴正半轴。
幂函数总图见下页。
4、反函数:将原函数y=f(x)的x和y互换即得其反函数x=f-1(y)。
反函数图像与原函数图像关于直线y=x对称。
函数知识点总结 11
余割函数
对于任意一个实数x,都对应着唯一的`角(弧度制中等于这个实数),而这个角又对应着唯一确定的余割值cscx与它对应,按照这个对应法则建立的函数称为余割函数。
记作f(x)=cscx
f(x)=cscx=1/sinx
1、定义域:{x|x≠kπ,k∈Z}
2、值域:{y|y≤-1或y≥1}
3、奇偶性:奇函数
4、周期性:最小正周期为2π
5、图像:
图像渐近线为:x=kπ ,k∈Z
其实有一点需要注意,就是余割函数与正弦函数互为倒数。
【函数知识点总结】相关文章:
函数知识点总结02-10
函数知识点总结06-23
函数知识点总结(热门)09-19
函数知识点总结(实用)09-20
【优秀】函数知识点总结09-20
函数知识点总结【热门】08-21
函数知识点总结(精)08-21
(精品)函数知识点总结08-22
[集合]函数知识点总结09-19
(实用)函数知识点总结09-21