函数知识点总结

2024-09-19 知识点总结

  总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它可以提升我们发现问题的能力,让我们一起认真地写一份总结吧。总结一般是怎么写的呢?以下是小编整理的函数知识点总结,仅供参考,欢迎大家阅读。

函数知识点总结1

  一、二次函数概念:

  a0)b,c是常数

  1.二次函数的概念:一般地,形如yax2bxc(a,的函数,叫做二次函数。这c可以为零.二次函数的定义域是全体实里需要强调:和一元二次方程类似,二次项系数a0,而b,数.

  2.二次函数yax2bxc的结构特征:

  ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.b,c是常数,a是二次项系数,b是一次项系数,c是常数项.

  ⑵a,二、二次函数的基本形式

  1.二次函数基本形式:yax2的性质:a的绝对值越大,抛物线的开口越小。

  a的符号a0开口方向顶点坐标对称轴向上00,00,性质x0时,y随x的增大而增大;x0时,y随y轴x的增大而减小;x0时,y有最小值0.x0时,y随x的增大而减小;x0时,y随a0向下y轴x的增大而增大;x0时,y有最大值0.

  2.yax2c的性质:上加下减。

  a的符号a0开口方向顶点坐标对称轴向上c0,c0,性质x0时,y随x的增大而增大;x0时,y随y轴x的增大而减小;x0时,y有最小值c.x0时,y随x的增大而减小;x0时,y随a0向下y轴x的增大而增大;x0时,y有最大值c.

  3.yaxh的性质:左加右减。

  2a的符号a0开口方向顶点坐标对称轴向上0h,0h,性质xh时,y随x的增大而增大;xh时,y随X=hx的增大而减小;xh时,y有最小值0.xh时,y随x的增大而减小;xh时,y随a02向下X=hx的增大而增大;xh时,y有最大值0.

  4.yaxhk的性质:

  a的符号开口方向顶点坐标对称轴性质a0向上h,kh,kX=hxh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值k.xh时,y随x的增大而减小;xh时,y随a0向下X=hx的增大而增大;xh时,y有最大值k.

  三、二次函数图象的平移

  1.平移步骤:

  方法一:

  ⑴将抛物线解析式转化成顶点式yaxhk,确定其顶点坐标h,k;

  ⑵保持抛物线yax2的形状不变,将其顶点平移到h,k处,具体平移方法如下:

  向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k

  画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.

  六、二次函数yax2bxc的性质

  b4acb2b1.当a0时,抛物线开口向上,对称轴为x,顶点坐标为,.

  2a4a2a当xbbb时,y随x的增大而减小;当x时,y随x的增大而增大;当x时,y有最小2a2a2a4acb2值.

  4ab4acb2bb2.当a0时,抛物线开口向下,对称轴为x,顶点坐标为,时,y随.当x2a4a2a2a4acb2bb.x的增大而增大;当x时,y随x的增大而减小;当x时,y有最大值

  2a2a4a

  七、二次函数解析式的表示方法

  1.一般式:yax2bxc(a,b,c为常数,a0);

  2.顶点式:ya(xh)2k(a,h,k为常数,a0);

  3.两根式:ya(xx1)(xx2)(a0,x1,x2是抛物线与x轴两交点的横坐标).

  注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即b24ac0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.

  八、二次函数的图象与各项系数之间的关系

  1.二次项系数a

  二次函数yax2bxc中,a作为二次项系数,显然a0.

  ⑴当a0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;

  ⑵当a0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大.

  总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小.

  2.一次项系数b

  在二次项系数a确定的前提下,b决定了抛物线的对称轴.

  ⑴在a0的前提下,当b0时,当b0时,当b0时,b0,即抛物线的'对称轴在y轴左侧;2ab0,即抛物线的对称轴就是y轴;2ab0,即抛物线对称轴在y轴的右侧.2a⑵在a0的前提下,结论刚好与上述相反,即当b0时,当b0时,当b0时,b0,即抛物线的对称轴在y轴右侧;2ab0,即抛物线的对称轴就是y轴;2ab0,即抛物线对称轴在y轴的左侧.2a

  总结起来,在a确定的前提下,b决定了抛物线对称轴的位置.

  ab的符号的判定:对称轴xb在y轴左边则ab0,在y轴的右侧则ab0,概括的说就是“左同2a右异”总结:

  3.常数项c

  ⑴当c0时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;

  ⑵当c0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;

  ⑶当c0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.

  b,c都确定,那么这条抛物线就是唯一确定的.总之,只要a,二次函数解析式的确定:

  根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:

  1.已知抛物线上三点的坐标,一般选用一般式;

  2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;

  3.已知抛物线与x轴的两个交点的横坐标,一般选用两根式;

  4.已知抛物线上纵坐标相同的两点,常选用顶点式.

  九、二次函数图象的对称

  二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达

  1.关于x轴对称

  yax2bxc关于x轴对称后,得到的解析式是yax2bxc;

  yaxhk关于x轴对称后,得到的解析式是yaxhk;

  2.关于y轴对称

  yax2bxc关于y轴对称后,得到的解析式是yax2bxc;

  22yaxhk关于y轴对称后,得到的解析式是yaxhk;

  3.关于原点对称

  yax2bxc关于原点对称后,得到的解析式是yax2bxc;yaxhk关于原点对称后,得到的解析式是yaxhk;

  4.关于顶点对称(即:抛物线绕顶点旋转180°)

  2222b2yaxbxc关于顶点对称后,得到的解析式是yaxbxc;

  2a22yaxhk关于顶点对称后,得到的解析式是yaxhk.n对称

  5.关于点m,n对称后,得到的解析式是yaxh2m2nkyaxhk关于点m,根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

  十、二次函数与一元二次方程:

  1.二次函数与一元二次方程的关系(二次函数与x轴交点情况):

  一元二次方程ax2bxc0是二次函数yax2bxc当函数值y0时的特殊情况.图象与x轴的交点个数:

  ①当b24ac0时,图象与x轴交于两点Ax1,0,Bx2,0(x1x2),其中的x1,x2是一元二次

  b24ac方程axbxc0a0的两根.这两点间的距离ABx2x1.

  a2

  ②当0时,图象与x轴只有一个交点;

  ③当0时,图象与x轴没有交点.

  1"当a0时,图象落在x轴的上方,无论x为任何实数,都有y0;

  2"当a0时,图象落在x轴的下方,无论x为任何实数,都有y0.

  2.抛物线yax2bxc的图象与y轴一定相交,交点坐标为(0,c);

  3.二次函数常用解题方法总结:

  ⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;

  ⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;

  ⑶根据图象的位置判断二次函数yax2bxc中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;

  ⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.

  ⑸与二次函数有关的还有二次三项式,二次三项式ax2bxc(a0)本身就是所含字母x的二次函数;下面以a0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:

  0抛物线与x轴有两个交点0二次三项式的值可正、可零、可负二次三项式的值为非负二次三项式的值恒为正一元二次方程有两个不相等实根一元二次方程有两个相等的实数根一元二次方程无实数根.0抛物线与x轴只有一个交点抛物线与x轴无交点y=2x2y=x2y=3(x+4)2二次函数图像参考:

  y=3x2y=3(x-2)2y=x22

  y=2x2y=2(x-4)2y=2(x-4)2-3y=2x2+2y=2x2y=2x2-4x2y=-2y=-x2y=-2x2十一、函数的应用

  刹车距离二次函数应用何时获得最大利润

  最大面积是多少y=-2(x+3)2y=-2x2y=-2(x-3)2

函数知识点总结2

  基本概念

  1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。

  2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

  *判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。(x的取值范围)一次函数

  1..自变量x和因变量y有如下关系:

  y=kx+b(k为任意不为零实数,b为任意实数)则此时称y是x的一次函数。特别的,当b=0时,y是x的正比例函数。即:y=kx(k为任意不为零实数)

  定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际有意义。2.当x=0时,b为函数在y轴上的截距。一次函数性质:

  1在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

  2一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。3.函数不是数,它是指某一变量过程中两个变量之间的关系。

  特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。4、特殊位置关系

  当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等

  当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的.乘积为-1)

  应用

  一次函数y=kx+b的性质是:(1)当k>0时,y随x的增大而增大;(2)当ky2,则x1与x2的大小关系是()

  A.x1>x2B.x10,且y1>y2。根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。故选A。

  判断函数图象的位置例3.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限

  解:由kb>0,知k、b同号。因为y随x的增大而减小,所以k

  (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。5、函数的图像

  一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.

  6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。7、描点法画函数图形的一般步骤

  第一步:列表(表中给出一些自变量的值及其对应的函数值);

  第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。8、函数的表示方法

  列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

  解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

  图象法:形象直观,但只能近似地表达两个变量之间的函数关系。9、正比例函数及性质

  一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx(k不为零)①k不为零②x指数为1③b取零解析式:y=kx(k是常数,k≠0)必过点:(0,0)、(1,k)

  走向:k>0时,图像经过一、三象限;k0,y随x的增大而增大;k0时,向上平移;当b0,图象经过第一、三象限;k0,图象经过第一、二象限;b0,y随x的增大而增大;k0时,将直线y=kx的图象向上平移b个单位;当b

  .函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()

  将直线y=3x向下平移5个单位,得到直线;将直线y=-x-5向上平移5个单位,得到直线.若直线yxa和直线yxb的交点坐标为(m,8),则ab____________.

  已知函数y=3x+1,当自变量增加m时,相应的函数值增加()A.3m+1B.3mC.mD.3m-111、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),坐标或纵坐标为0的点.

  b>0经过第一、二、三象限b0图象从左到右上升,y随x的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k0时,向上平移;当b

  (1)设一次函数的表达式(也叫解析式)为y=kx+b。(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b①

  和y2=kx2+b②

  (3)解这个二元一次方程,得到k,b的值。(4)最后得到一次函数的表达式。15、一元一次方程与一次函数的关系

  任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.

函数知识点总结3

  1.二次函数的概念

  二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数。

  2.二次函数的结构特征:

  ⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2。

  ⑵是常数,是二次项系数,是一次项系数,是常数项。

  2.初三数学二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)。顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]。

  交点式:y=a(x-x)(x-x)[仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]。

  注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a。

  3.二次函数的性质

  1.性质:

  (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

  (2)一次函数与y轴交点的`坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

  2.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。当b>0时,直线必通过一、二象限;当b=0时,直线通过原点;当b<0时,直线必通过三、四象限。特别地,当b=o时,直线通过原点o(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

  4.初三数学二次函数图像

  对于一般式:①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称。

  ②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称。

  ③y=ax2+bx+c与y=-ax2-bx+c-b2/2a关于顶点对称。

  ④y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)

  对于顶点式:

  ①y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h,k)和(-h,k)关于y轴对称,横坐标相反、纵坐标相同。

  ②y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h,k)和(h,-k)关于x轴对称,横坐标相同、纵坐标相反。

  ③y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h,k)和(h,k)相同,开口方向相反。

  ④y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h,k)和(-h,-k)关于原点对称,横坐标、纵坐标都相反。(其实①③④就是对f(x)来说f(-x),-f(x),-f(-x)的情况)

函数知识点总结4

  一次函数的定义

  一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。当b=0时,一次函数y=kx,又叫做正比例函数。

  1、一次函数的解析式的形式是y=kx+b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式。

  2、当b=0,k≠0时,y=kx仍是一次函数。

  3、当k=0,b≠0时,它不是一次函数。

  4、正比例函数是一次函数的特例,一次函数包括正比例函数。

  一次函数的图像及性质

  1、在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

  2、一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)。

  3、正比例函数的图像总是过原点。

  4、k,b与函数图像所在象限的关系:

  当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

  当k>0,b>0时,直线通过一、二、三象限;

  当k>0,b<0时,直线通过一、三、四象限;

  当k<0,b>0时,直线通过一、二、四象限;

  当k<0,b<0时,直线通过二、三、四象限;

  当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

  一次函数的图象与性质的口诀

  一次函数是直线,图象经过三象限;

  正比例函数更简单,经过原点一直线;

  两个系数k与b,作用之大莫小看,

  k是斜率定夹角,b与y轴来相见,

  k为正来右上斜,x增减y增减;

  k为负来左下展,变化规律正相反;

  k的绝对值越大,线离横轴就越远。

  拓展阅读:一次函数的解题方法

  理解一次函数和其它知识的联系

  一次函数和代数式以及方程有着密不可分的联系。如一次函数和正比例函数仍然是函数,同时,等号的两边又都是代数式。需要注意的是,与一般代数式有很大区别。首先,一次函数和正比例函数都只能存在两个变量,而代数式可以是多个变量;其次,一次函数中的变量指数只能是1,而代数式中变量指数还可以是1以外的数。另外,一次函数解析式也可以理解为二元一次方程。

  掌握一次函数的解析式的特征

  一次函数解析式的结构特征:kx+b是关于x的一次二项式,其中常数b可以是任意实数,一次项系数k必须是非零数,k≠0,因为当k = 0时,y = b(b是常数),由于没有一次项,这样的`函数不是一次函数;而当b = 0,k≠0,y = kx既是正比例函数,也是一次函数。

  应用一次函数解决实际问题

  1、分清哪些是已知量,哪些是未知量,尤其要弄清哪两种量是相关联的量,且其中一种量因另一种量的变化而变化;

  2、找出具有相关联的两种量的等量关系之后,明确哪种量是另一种量的函数;

  3、在实际问题中,一般存在着三种量,如距离、时间、速度等等,在这三种量中,当且仅当其中一种量时间(或速度)不变时,距离与速度(或时间)才成正比例,也就是说,距离(s)是时间(t)或速度( )的正比例函数;

  4、求一次函数与正比例函数的关系式,一般采取待定系数法。

  数形结合

  方程,不等式,不等式组,方程组我们都可以用一次函数的观点来理解。一元一次不等式实际上就看两条直线上下方的关系,求出端点后可以很容易把握解集,至于一元一次方程可以把左右两边看为两条直线来认识,直线交点的横坐标就是方程的解,至于二元一次方程组就是对应2条直线,方程组的解就是直线的交点,结合图形可以认识两直线的位置关系也可以把握交点个数。

  如果一个交点时候两条直线的k不同,如果无穷个交点就是k,b都一样,如果平行无交点就是k相同,b不一样。至于函数平移的问题可以化归为对应点平移。k反正不变然后用待定系数法得到平移后的方程。这就是化一般为特殊的解题方法。

函数知识点总结5

  高一数学第三章函数的应用知识点总结

  一、方程的根与函数的零点

  1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。

  2、函数零点的意义:函数yf(x)的零点就是方程f(x)0实数根,亦即函数

  yf(x)的图象与x轴交点的横坐标。

  即:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.

  3、函数零点的求法:

  1(代数法)求方程f(x)0的实数根;○

  2(几何法)对于不能用求根公式的方程,可以将它与函数yf(x)的图象○

  联系起来,并利用函数的性质找出零点.

  零点存在性定理:如果函数y=f(x)在区间〔a,b〕上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。先判定函数单调性,然后证明是否有f(a)f(b)第三章函数的应用习题

  一、选择题

  1.下列函数有2个零点的是()

  222y3x10y4x5x10yx3x5y4x4x1A、B、C、D、22.用二分法计算3x3x80在x(1,2)内的根的过程中得:f(1)0,f(1.5)0,

  f(1.25)0,则方程的根落在区间()

  A、(1,1.5)B、(1.5,2)C、(1,1.25)D、(1.25,1.5)

  3.若方程axxa0有两个解,则实数a的取值范围是A、(1,)B、(0,1)C、(0,)D、

  4.函数f(x)=lnx-2x的'零点所在的大致区间是()A.(1,2)B.2,eC.e,3D.e,

  5.已知方程x3x10仅有一个正零点,则此零点所在的区间是()

  A.(3,4)B.(2,3)C.(1,2)D.(0,1)

  6.函数f(x)lnx2x6的零点落在区间()A.(2,2.25)B.(2.25,2.5)C.(2.5,2.75)D.(2.75,3)

  7.已知函数

  fx的图象是不间断的,并有如下的对应值表:x1234567fx8735548那么函数在区间(1,6)上的零点至少有()个A.5B.4C.3D.28.方程2x1x5的解所在的区间是A(0,1)B(1,2)C(2,3)D(3,4)

  9.方程4x35x60的根所在的区间为A、(3,2)B、(2,1)C、(1,0)D、(0,1)

  10.已知f(x)2x22x,则在下列区间中,f(x)0有实数解的是()

  )

  ()

  ()

  ((A)(-3,-2)(B)(-1,0)(C)(2,3)(D)(4,5)11.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为()

  xexx+2-10.37101212.72327.394320.095A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12、方程

  x12x根的个数为()

  A、0B、1C、2D、3二、填空题

  13.下列函数:1)y=lgx;2)y2;3)y=x2;4)y=|x|-1;其中有2个零点的函数的序号是。

  x214.若方程3x2的实根在区间m,n内,且m,nZ,nm1,

  x则mn.

  222f(x)(x1)(x2)(x2x3)的零点是15、函数(必须写全所有的零点)。

  扩展阅读:高中数学必修一第三章函数的应用知识点总结

  第三章函数的应用

  一、方程的根与函数的零点

  1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。

  2、函数零点的意义:函数yf(x)的零点就是方程f(x)0实数根,亦即函数

  yf(x)的图象与x轴交点的横坐标。

  即:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.

  3、函数零点的求法:

  1(代数法)求方程f(x)0的实数根;○

  2(几何法)对于不能用求根公式的方程,可以将它与函数yf(x)的图象联系起来,○

  并利用函数的性质找出零点.

  4、基本初等函数的零点:

  ①正比例函数ykx(k0)仅有一个零点。

  k(k0)没有零点。x③一次函数ykxb(k0)仅有一个零点。

  ②反比例函数y④二次函数yax2bxc(a0).

  (1)△>0,方程ax2bxc0(a0)有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.

  (2)△=0,方程ax2bxc0(a0)有两相等实根,二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.

  (3)△<0,方程ax2bxc0(a0)无实根,二次函数的图象与x轴无交点,二次函数无零点.

  ⑤指数函数ya(a0,且a1)没有零点。⑥对数函数ylogax(a0,且a1)仅有一个零点1.

  ⑦幂函数yx,当n0时,仅有一个零点0,当n0时,没有零点。

  5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把fx转化成,这另fx0,再把复杂的函数拆分成两个我们常见的函数y1,y2(基本初等函数)个函数图像的交点个数就是函数fx零点的个数。

  6、选择题判断区间a,b上是否含有零点,只需满足fafb0。Eg:试判断方程xx2x10在区间[0,2]内是否有实数解?并说明理由。

  1

  42x7、确定零点在某区间a,b个数是唯一的条件是:①fx在区间上连续,且fafb0②在区间a,b上单调。Eg:求函数f(x)2xlg(x1)2的零点个数。

  8、函数零点的性质:

  从“数”的角度看:即是使f(x)0的实数;

  从“形”的角度看:即是函数f(x)的图象与x轴交点的横坐标;

  若函数f(x)的图象在xx0处与x轴相切,则零点x0通常称为不变号零点;若函数f(x)的图象在xx0处与x轴相交,则零点x0通常称为变号零点.

  Eg:一元二次方程根的分布讨论

  一元二次方程根的分布的基本类型

  2axbxc0(a0)的两实根为x1,x2,且x1x2.设一元二次方程

  k为常数,则一元二次方程根的k分布(即x1,x2相对于k的位置)或根在区间上的

  分布主要有以下基本类型:

  表一:(两根与0的大小比较)

  分布情况两个负根即两根都小于0两个正根即两根都大于0一正根一负根即一个根小于0,一个大于0x10,x20x10,x20x10x2a0)大致图象(得出的结论0b02af000b02af00f00

  大致图象(a0)得出的结论0b02af000b02aaf000b02af000b02aaf00f00(不综讨合论结a论)

  af00表二:(两根与k的大小比较)

  分布情况两根都小于k即两根都大于k即一个根小于k,一个大于k即x1k,x2kx1k,x2kx1kx2a0)大致图象(kkk得出的结论0bk2afk00bk2afk0fk0大致图象(a0)得出的结论0bk2afk00bk2aafk00bk2afk00bk2aafk0fk0(不综讨合论结a论)a0)afk0分布情况大致图象(得出的结论表三:(根在区间上的分布)

  两根都在m,n内两根有且仅有一根在m,n一根在m,n内,另一根在p,q内(有两种情况,只画了一种)内,mnpq0fm0fn0bmn2afmfn0fm0fn0fmfn0fp0fq0fpfq0或

  大致图象(a0)得出的结论0fm0fn0bmn2a综合结论fmfn0fm0fn0fmfn0fp0fq0fpfq0或fmfn0fpfq0(a不)讨论

  fmfn0Eg:(1)关于x的方程x22(m3)x2m140有两个实根,且一个大于1,一个小于1,求m的取值范围?

  (2)关于x的方程x2(m3)x2m140有两实根在[0,4]内,求m的取值范围?

  2(3)关于x的方程mx2(m3)x2m140有两个实根,且一个大于4,一个小于4,求m的取值范围?

  9、二分法的定义

  对于在区间[a,b]上连续不断,且满足f(a)f(b)0的函数

  yf(x),通过不断地把函数f(x)的零点所在的区间一分为二,

  使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.

  10、给定精确度ε,用二分法求函数f(x)零点近似值的步骤:(1)确定区间[a,b],验证f(a)f(b)0,给定精度;(2)求区间(a,b)的中点x1;(3)计算f(x1):

  ①若f(x1)=0,则x1就是函数的零点;

  ②若f(a)f(x1)14、根据散点图设想比较接近的可能的函数模型:一次函数模型:f(x)kxb(k0);二次函数模型:g(x)ax2bxc(a0);幂函数模型:h(x)axb(a0);

  指数函数模型:l(x)abxc(a0,b>0,b1)

  利用待定系数法求出各解析式,并对各模型进行分析评价,选出合适的函数模型

函数知识点总结6

  总体上必须清楚的:

  1)程序结构是三种:顺序结构、选择结构(分支结构)、循环结构。

  2)读程序都要从main()入口,然后从最上面顺序往下读(碰到循环做循环,碰到选择做选择),有且只有一个main函数。

  3)计算机的数据在电脑中保存是以二进制的形式.数据存放的位置就是他的地址.

  4)bit是位是指为0或者1。 byte是指字节,一个字节=八个位.

  概念常考到的:

  1、编译预处理不是C语言的一部分,不占运行时间,不要加分号。C语言编译的程序称为源程序,它以ASCII数值存放在文本文件中。

  2、define PI 3.1415926;这个写法是错误的,一定不能出现分号。 -

  3、每个C语言程序中main函数是有且只有一个。

  4、在函数中不可以再定义函数。

  5、算法:可以没有输入,但是一定要有输出。

  6、break可用于循环结构和switch语句。

  7、逗号运算符的级别最低,赋值的级别倒数第二。

  第一章C语言的基础知识

  第一节、对C语言的基础认识

  1、C语言编写的程序称为源程序,又称为编译单位。

  2、C语言书写格式是自由的,每行可以写多个语句,可以写多行。

  3、一个C语言程序有且只有一个main函数,是程序运行的起点。

  第二节、熟悉vc++

  1、VC是软件,用来运行写的C语言程序。

  2、每个C语言程序写完后,都是先编译,后链接,最后运行。(.c—.obj—.exe)这个过程中注意.c和.obj文件时无法运行的,只有.exe文件才可以运行。(常考!)

  第三节、标识符

  1、标识符(必考内容):

  合法的要求是由字母,数字,下划线组成。有其它元素就错了。

  并且第一个必须为字母或则是下划线。第一个为数字就错了

  2、标识符分为关键字、预定义标识符、用户标识符。

  关键字:不可以作为用户标识符号。main define scanf printf都不是关键字。迷惑你的地方If是可以做为用户标识符。因为If中的'第一个字母大写了,所以不是关键字。

  预定义标识符:背诵define scanf printf include。记住预定义标识符可以做为用户标识符。

  用户标识符:基本上每年都考,详细请见书上习题。

  第四节:进制的转换

  十进制转换成二进制、八进制、十六进制。

  二进制、八进制、十六进制转换成十进制。

  第五节:整数与实数

  1)C语言只有八、十、十六进制,没有二进制。但是运行时候,所有的进制都要转换成二进制来进行处理。(考过两次)

  a、C语言中的八进制规定要以0开头。018的数值是非法的,八进制是没有8的,逢8进1。

  b、C语言中的十六进制规定要以0x开头。

  2)小数的合法写法:C语言小数点两边有一个是零的话,可以不用写。

  1.0在C语言中可写成1.

  0.1在C语言中可以写成.1。

  3)实型数据的合法形式:

  a、2.333e-1就是合法的,且数据是2.333×10-1。

  b、考试口诀:e前e后必有数,e后必为整数。请结合书上的例子。

  4)整型一般是4个字节,字符型是1个字节,双精度一般是8个字节:

  long int x;表示x是长整型。

  unsigned int x;表示x是无符号整型。

  第六、七节:算术表达式和赋值表达式

  核心:表达式一定有数值!

  1、算术表达式:+,-,*,/,%

  考试一定要注意:“/”两边都是整型的话,结果就是一个整型。 3/2的结果就是1.

  “/”如果有一边是小数,那么结果就是小数。 3/2.0的结果就是0.5

  “%”符号请一定要注意是余数,考试最容易算成了除号。)%符号两边要求是整数。不是整数就错了。[注意!!!]

  2、赋值表达式:表达式数值是最左边的数值,a=b=5;该表达式为5,常量不可以赋值。

  1、int x=y=10:错啦,定义时,不可以连续赋值。

  2、int x,y;

  x=y=10;对滴,定义完成后,可以连续赋值。

  3、赋值的左边只能是一个变量。

  4、int x=7.7;对滴,x就是7

  5、float y=7;对滴,x就是7.0

  3、复合的赋值表达式:

  int a=2;

  a*=2+3;运行完成后,a的值是12。

  一定要注意,首先要在2+3的上面打上括号。变成(2+3)再运算。

  4、自加表达式:

  自加、自减表达式:假设a=5,++a(是为6),a++(为5);

  运行的机理:++a是先把变量的数值加上1,然后把得到的数值放到变量a中,然后再用这个++a表达式的数值为6,而a++是先用该表达式的数值为5,然后再把a的数值加上1为6,

  再放到变量a中。进行了++a和a++后在下面的程序中再用到a的话都是变量a中的6了。

  考试口诀:++在前先加后用,++在后先用后加。

  5、逗号表达式:

  优先级别最低。表达式的数值逗号最右边的那个表达式的数值。

  (2,3,4)的表达式的数值就是4。

  z=(2,3,4)(整个是赋值表达式)这个时候z的值为4。(有点难度哦!)

  z= 2,3,4(整个是逗号表达式)这个时候z的值为2。

  补充:

  1、空语句不可以随意执行,会导致逻辑错误。

  2、注释是最近几年考试的重点,注释不是C语言,不占运行时间,没有分号。不可以嵌套!

  3、强制类型转换:

  一定是(int)a不是int(a),注意类型上一定有括号的。

  注意(int)(a+b)和(int)a+b的区别。前是把a+b转型,后是把a转型再加b。

  4、三种取整丢小数的情况:

  1、int a =1.6;

  2、(int)a;

  3、1/2;3/2;

  第八节、字符

  1)字符数据的合法形式::

  ‘1’是字符占一个字节,”1”是字符串占两个字节(含有一个结束符号)。

  ‘0’的ASCII数值表示为48,’a’的ASCII数值是97,’A’的ASCII数值是65。

  一般考试表示单个字符错误的形式:’65’ “1”

  字符是可以进行算术运算的,记住:‘0’-0=48

  大写字母和小写字母转换的方法:‘A’+32=’a’相互之间一般是相差32。

  2)转义字符:

  转义字符分为一般转义字符、八进制转义字符、十六进制转义字符。

  一般转义字符:背诵/0、、 ’、 ”、 。

  八进制转义字符:‘141’是合法的,前导的0是不能写的。

  十六进制转义字符:’x6d’才是合法的,前导的0不能写,并且x是小写。

  3、字符型和整数是近亲:两个具有很大的相似之处

  char a = 65 ;

  printf(“%c”, a);得到的输出结果:a

  printf(“%d”, a);得到的输出结果:65

  第九节、位运算

  1)位运算的考查:会有一到二题考试题目。

  总的处理方法:几乎所有的位运算的题目都要按这个流程来处理(先把十进制变成二进制再变成十进制)。

  例1:char a = 6, b;

  b = a<<2;这种题目的计算是先要把a的十进制6化成二进制,再做位运算。

  例2:一定要记住,异或的位运算符号” ^ ”。0异或1得到1。

  0异或0得到0。两个女的生不出来。

  考试记忆方法:一男(1)一女(0)才可以生个小孩(1)。

  例3:在没有舍去数据的时候,<<左移一位表示乘以2;>>右移一位表示除以2。

函数知识点总结7

  诱导公式的本质

  所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。

  常用的诱导公式

  公式一: 设为任意角,终边相同的角的同一三角函数的`值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 设为任意角,的三角函数值与的三角函数值之间的关系:

  sin()=-sin

  cos()=-cos

  tan()=tan

  cot()=cot

  公式三: 任意角与 -的三角函数值之间的关系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到与的三角函数值之间的关系:

  sin()=sin

  cos()=-cos

  tan()=-tan

  cot()=-cot

函数知识点总结8

  一、函数的概念与表示

  1、映射

  (1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。

  注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射

  2、函数

  构成函数概念的三要素

  ①定义域②对应法则③值域

  两个函数是同一个函数的条件:三要素有两个相同

  二、函数的解析式与定义域

  1、求函数定义域的主要依据:

  (1)分式的分母不为零;

  (2)偶次方根的被开方数不小于零,零取零次方没有意义;

  (3)对数函数的真数必须大于零;

  (4)指数函数和对数函数的底数必须大于零且不等于1;

  三、函数的值域

  1求函数值域的方法

  ①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;

  ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;

  ③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的.分式;

  ④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);

  ⑤单调性法:利用函数的单调性求值域;

  ⑥图象法:二次函数必画草图求其值域;

  ⑦利用对号函数

  ⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数

  四.函数的奇偶性

  1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。

  如果对于任意∈A,都有,则称y=f(x)为奇

  函数。

  2.性质:

  ①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,

  ②若函数f(x)的定义域关于原点对称,则f(0)=0

  ③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]

  3.奇偶性的判断

  ①看定义域是否关于原点对称②看f(x)与f(-x)的关系

  五、函数的单调性

  1、函数单调性的定义:

  2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。

函数知识点总结9

  一次函数

  一、定义与定义式:

  自变量x和因变量y有如下关系:

  y=kx+b

  则此时称y是x的一次函数。

  特别地,当b=0时,y是x的正比例函数。

  即:y=kx (k为常数,k0)

  二、一次函数的性质:

  1、y的变化值与对应的x的变化值成正比例,比值为k

  即:y=kx+b (k为任意不为零的实数b取任何实数)

  2、当x=0时,b为函数在y轴上的截距。

  三、一次函数的图像及性质:

  1、作法与图形:通过如下3个步骤

  (1)列表;

  (2)描点;

  (3)连线,可以作出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

  2、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)正比例函数的图像总是过原点。

  3、k,b与函数图像所在象限:

  当k0时,直线必通过一、三象限,y随x的增大而增大;

  当k0时,直线必通过二、四象限,y随x的增大而减小。

  当b0时,直线必通过一、二象限;

  当b=0时,直线通过原点

  当b0时,直线必通过三、四象限。

  特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。

  四、确定一次函数的表达式:

  已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

  (1)设一次函数的表达式(也叫解析式)为y=kx+b。

  (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b ①和y2=kx2+b ②

  (3)解这个二元一次方程,得到k,b的值。

  (4)最后得到一次函数的表达式。

  五、一次函数在生活中的应用:

  1、当时间t一定,距离s是速度v的一次函数。s=vt。

  2、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S—ft。

  六、常用公式:(不全,希望有人补充)

  1、求函数图像的k值:(y1—y2)/(x1—x2)

  2、求与x轴平行线段的中点:|x1—x2|/2

  3、求与y轴平行线段的中点:|y1—y2|/2

  4、求任意线段的长:(x1—x2)^2+(y1—y2)^2 (注:根号下(x1—x2)与(y1—y2)的平方和)

  二次函数

  I、定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:

  y=ax^2+bx+c

  (a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大、)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II、二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a0)

  顶点式:y=a(x—h)^2+k [抛物线的顶点P(h,k)]

  交点式:y=a(x—x)(x—x ) [仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a

  III、二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,

  可以看出,二次函数的图像是一条抛物线。

  IV、抛物线的性质

  1、抛物线是轴对称图形。对称轴为直线

  x= —b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2、抛物线有一个顶点P,坐标为

  P( —b/2a,(4ac—b^2)/4a )

  当—b/2a=0时,P在y轴上;当= b^2—4ac=0时,P在x轴上。

  3、二次项系数a决定抛物线的开口方向和大小。

  当a0时,抛物线向上开口;当a0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4、一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab0),对称轴在y轴左;

  当a与b异号时(即ab0),对称轴在y轴右。

  5、常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6、抛物线与x轴交点个数

  = b^2—4ac0时,抛物线与x轴有2个交点。

  = b^2—4ac=0时,抛物线与x轴有1个交点。

  = b^2—4ac0时,抛物线与x轴没有交点。X的取值是虚数(x= —bb^2—4ac的值的相反数,乘上虚数i,整个式子除以2a)

  V、二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax^2+bx+c,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),

  即ax^2+bx+c=0

  此时,函数图像与x轴有无交点即方程有无实数根。

  函数与x轴交点的横坐标即为方程的根。

  1、二次函数y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

  解析式顶点坐标对称轴

  y=ax^2(0,0) x=0

  y=a(x—h)^2(h,0) x=h

  y=a(x—h)^2+k(h,k) x=h

  y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a

  当h0时,y=a(x—h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

  当h0时,则向左平行移动|h|个单位得到、

  当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x—h)^2+k的图象;

  当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x—h)^2+k的图象;

  当h0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x—h)^2+k的图象;

  当h0,k0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x—h)^2+k的图象;

  因此,研究抛物线y=ax^2+bx+c(a0)的图象,通过配方,将一般式化为y=a(x—h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了、这给画图象提供了方便、

  2、抛物线y=ax^2+bx+c(a0)的图象:当a0时,开口向上,当a0时开口向下,对称轴是直线x=—b/2a,顶点坐标是(—b/2a,[4ac—b^2]/4a)、

  3、抛物线y=ax^2+bx+c(a0),若a0,当x —b/2a时,y随x的增大而减小;当x —b/2a时,y随x的.增大而增大、若a0,当x —b/2a时,y随x的增大而增大;当x —b/2a时,y随x的增大而减小、

  4、抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2—4ac0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=

  (a0)的两根、这两点间的距离AB=|x—x|

  当△=0、图象与x轴只有一个交点;

  当△0、图象与x轴没有交点、当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0、

  5、抛物线y=ax^2+bx+c的最值:如果a0(a0),则当x= —b/2a时,y最小(大)值=(4ac—b^2)/4a、

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值、

  6、用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

  y=ax^2+bx+c(a0)、

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x—h)^2+k(a0)、

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x—x)(x—x)(a0)、

  7、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现、

  反比例函数

  形如y=k/x(k为常数且k0)的函数,叫做反比例函数。

  自变量x的取值范围是不等于0的一切实数。

  反比例函数图像性质:

  反比例函数的图像为双曲线。

  由于反比例函数属于奇函数,有f(—x)=—f(x),图像关于原点对称。

  另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

  如图,上面给出了k分别为正和负(2和—2)时的函数图像。

  当K0时,反比例函数图像经过一,三象限,是减函数

  当K0时,反比例函数图像经过二,四象限,是增函数

  反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

  知识点:

  1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。

  2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(xm)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

函数知识点总结10

  当h>0时,y=a(_-h)^2的图象可由抛物线y=a_^2向右平行移动h个单位得到,

  当h<0时,则向左平行移动|h|个单位得到.

  当h>0,k>0时,将抛物线y=a_^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(_-h)^2+k的图象;

  当h>0,k<0时,将抛物线y=a_^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(_-h)^2+k的图象;

  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(_-h)^2+k的图象;

  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(_-h)^2+k的图象;

  因此,研究抛物线y=a_^2+b_+c(a≠0)的图象,通过配方,将一般式化为y=a(_-h)^2+k的`形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

  2.抛物线y=a_^2+b_+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线_=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

  3.抛物线y=a_^2+b_+c(a≠0),若a>0,当_≤-b/2a时,y随_的增大而减小;当_≥-b/2a时,y随_的增大而增大.若a<0,当_≤-b/2a时,y随_的增大而增大;当_≥-b/2a时,y随_的增大而减小.

  4.抛物线y=a_^2+b_+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2-4ac>0,图象与_轴交于两点A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0

  (a≠0)的两根.这两点间的距离AB=|_?-_?|

  当△=0.图象与_轴只有一个交点;

  当△<0.图象与_轴没有交点.当a>0时,图象落在_轴的上方,_为任何实数时,都有y>0;当a<0时,图象落在_轴的下方,_为任何实数时,都有y<0.

  5.抛物线y=a_^2+b_+c的最值:如果a>0(a<0),则当_=-b/2a时,y最小(大)值=(4ac-b^2)/4a.

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知_、y的三对对应值时,可设解析式为一般形式:

  y=a_^2+b_+c(a≠0).

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(_-h)^2+k(a≠0).

  (3)当题给条件为已知图象与_轴的两个交点坐标时,可设解析式为两根式:y=a(_-_?)(_-_?)(a≠0).

  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

函数知识点总结11

  f(x2),那么那么y=f(x)在区间D上是减函数,D是函数y=f(x)的单调递减区间。

  ⑴函数区间单调性的判断思路

  ⅰ在给出区间内任取x1、x2,则x1、x2∈D,且x1

  ⅱ做差值f(x1)-f(x2),并进行变形和配方,变为易于判断正负的形式。

  ⅲ判断变形后的表达式f(x1)-f(x2)的符号,指出单调性。

  ⑵复合函数的单调性

  复合函数y=f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律为“同增异减”;多个函数的复合函数,根据原则“减偶则增,减奇则减”。

  ⑶注意事项

  函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成并集,如果函数在区间A和B上都递增,则表示为f(x)的单调递增区间为A和B,不能表示为A∪B。

  2、函数的整体性质——奇偶性

  对于函数f(x)定义域内的任意一个x,都有f(x) =f(-x),则f(x)就为偶函数;

  对于函数f(x)定义域内的任意一个x,都有f(x) =-f(x),则f(x)就为奇函数。

  小编推荐:高中数学必考知识点归纳总结

  ⑴奇函数和偶函数的性质

  ⅰ无论函数是奇函数还是偶函数,只要函数具有奇偶性,该函数的定义域一定关于原点对称。

  ⅱ奇函数的图像关于原点对称,偶函数的.图像关于y轴对称。

  ⑵函数奇偶性判断思路

  ⅰ先确定函数的定义域是否关于原点对称,若不关于原点对称,则为非奇非偶函数。

  ⅱ确定f(x)和f(-x)的关系:

  若f(x) -f(-x)=0,或f(x) /f(-x)=1,则函数为偶函数;

  若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,则函数为奇函数。

  3、函数的最值问题

  ⑴对于二次函数,利用配方法,将函数化为y=(x-a)2+b的形式,得出函数的最大值或最小值。

  ⑵对于易于画出函数图像的函数,画出图像,从图像中观察最值。

  ⑶关于二次函数在闭区间的最值问题

  ⅰ判断二次函数的顶点是否在所求区间内,若在区间内,则接ⅱ,若不在区间内,则接ⅲ。

  ⅱ若二次函数的顶点在所求区间内,则在二次函数y=ax2+bx+c中,a>0时,顶点为最小值,a0时的最大值或a

  ⅲ若二次函数的顶点不在所求区间内,则判断函数在该区间的单调性

  若函数在[a,b]上递增,则最小值为f(a),最大值为f(b);

  若函数在[a,b]上递减,则最小值为f(b),最大值为f(a)。

  3高一数学基本初等函数1、指数函数:函数y=ax (a>0且a≠1)叫做指数函数

  a的取值a>1 0

  注意:⑴由函数的单调性可以看出,在闭区间[a,b]上,指数函数的最值为:

  a>1时,最小值f(a),最大值f(b);0

  ⑵对于任意指数函数y=ax (a>0且a≠1),都有f(1)=a。

  2、对数函数:函数y=logax(a>0且a≠1)),叫做对数函数

  a的取值a>1 0

  3、幂函数:函数y=xa(a∈R),高中阶段,幂函数只研究第I象限的情况。

  ⑴所有幂函数都在(0,+∞)区间内有定义,而且过定点(1,1)。

  ⑵a>0时,幂函数图像过原点,且在(0,+∞)区间为增函数,a越大,图像坡度越大。

  ⑶a

  当x从右侧无限接近原点时,图像无限接近y轴正半轴;

  当y无限接近正无穷时,图像无限接近x轴正半轴。

  幂函数总图见下页。

  4、反函数:将原函数y=f(x)的x和y互换即得其反函数x=f-1(y)。

  反函数图像与原函数图像关于直线y=x对称。

函数知识点总结12

  一、函数的定义域的常用求法:

  1、分式的分母不等于零;

  2、偶次方根的被开方数大于等于零;

  3、对数的真数大于零;

  4、指数函数和对数函数的底数大于零且不等于1;

  5、三角函数正切函数y=tanx中x≠kπ+π/2;

  6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

  二、函数的解析式的常用求法:

  1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法

  三、函数的值域的常用求法:

  1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法

  四、函数的最值的常用求法:

  1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法

  五、函数单调性的常用结论:

  1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数

  2、若f(x)为增(减)函数,则-f(x)为减(增)函数

  3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x)]是减函数。

  4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

  5、常用函数的`单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。

  六、函数奇偶性的常用结论:

  1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)

  2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。

  3、一个奇函数与一个偶函数的积(商)为奇函数。

  4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。

  5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。

函数知识点总结13

  k0时,y随x的增大而减小,直线一定过二、四象限(3)若直线l1:yk1xb1l2:yk2xb2

  当k1k2时,l1//l2;当b1b2b时,l1与l2交于(0,b)点。

  (4)当b>0时直线与y轴交于原点上方;当b学大教育

  (1)是中心对称图形,对中称心是原点(2)对称性:是轴直线yx和yx(2)是轴对称图形,对称k0时两支曲线分别位于一、三象限且每一象限内y随x的增大而减小(3)

  k0时两支曲线分别位于二、四象限且每一象限内y随x的增大而增大(4)过图象上任一点作x轴与y轴的垂线与坐标轴构成的矩形面积为|k|。

  P(1)应用在u3.应用(2)应用在(3)其它F上SS上t其要点是会进行“数结形合”来解决问题二、二次函数

  1.定义:应注意的问题

  (1)在表达式y=ax2+bx+c中(a、b、c为常数且a≠0)(2)二次项指数一定为22.图象:抛物线

  3.图象的性质:分五种情况可用表格来说明表达式(1)y=ax2顶点坐标对称轴(0,0)最大(小)值y最小=0y最大=0(2)y=ax2+c(0,0)y最小=0y最大=0(3)y=a(x-(h,0)h)2直线x=hy最小=0y最大=0y随x的变化情况随x增大而增大随x增大而减小随x的增大而增大随x的增大而减小随x的增大而增大随x的增大而减小直线x=0(y轴)①若a>0,则x=0时,若a>0,则x>0时,y②若a0,则x=0时,①若a>0,则x>0时,y②若a0,则x=h时,①若a>0,则x>h时,y②若a学大教育

  表达式h)2+k顶点坐标对称轴直线x=h最大(小)值y最小=ky最大=k(5)y=ax2+b(x+cb2ay随x的变化情况随x的增大而增大随x的增大而减小b2a时,①若a>0,则x>b2a(4)y=a(x-(h,k)①若a>0,则x=h时,①若a>0,则x>h时,y②若a0,则x=4acb24ay最小=4acb24ab时,y随x的增大而增大时,②若a2a2a时,y随x的增大而减小b②若a学大教育

  一次函数图象和性质

  【知识梳理】

  1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0).2.一次函数ykxb的图象是经过(3.一次函数ykxb的图象与性质

  图像的大致位置经过象限第象限第象限第象限第象限y随x的增大y随x的增大而y随x的增大y随x的增大性质而而而而

  【思想方法】数形结合

  k、b的'符号k>0,b>0k>0,b<0k<0,b>0k<0,b<0b,0)和(0,b)两点的一条直线.k反比例函数图象和性质

  【知识梳理】

  1.反比例函数:一般地,如果两个变量x、y之间的关系可以表示成y=或(k为常数,k≠0)的形式,那么称y是x的反比例函数.2.反比例函数的图象和性质

  k的符号k>0yoxk<0yox

  图像的大致位置经过象限性质

  第象限在每一象限内,y随x的增大而第象限在每一象限内,y随x的增大而3.k的几何含义:反比例函数y=的几何意义,即过双曲线y=

  k(k≠0)中比例系数kxk(k≠0)上任意一点P作x4

  x轴、y轴垂线,设垂足分别为A、B,则所得矩形OAPB

  函数学习方法学大教育

  的面积为.

  【思想方法】数形结合

  二次函数图象和性质

  【知识梳理】

  1.二次函数ya(xh)2k的图像和性质

  图象开口对称轴顶点坐标最值增减性

  在对称轴左侧在对称轴右侧当x=时,y有最值y随x的增大而y随x的增大而a>0yOa<0x当x=时,y有最值y随x的增大而y随x的增大而锐角三角函数

  【思想方法】

  1.常用解题方法设k法2.常用基本图形双直角

  【例题精讲】例题1.在△ABC中,∠C=90°.(1)若cosA=

  14,则tanB=______;(2)若cosA=,则tanB=______.255

  函数学习方法学大教育

  例题2.(1)已知:cosα=

  23,则锐角α的取值范围是()A.0°

函数知识点总结14

  ∴当x1时函数取得最大值,且ymax(1)2(1)13例4、已知函数f(x)x22(a1)x2

  4],求实数a的取值(1)若函数f(x)的递减区间是(,4]上是减函数,求实数a的取值范围(2)若函数f(x)在区间(,分析:二次函数的单调区间是由其开口方向及对称轴决定的,要分清函数在区间A上是单调函数及单调区间是A的区别与联系

  解:(1)f(x)的对称轴是x可得函数图像开口向上

  2(a1)21a,且二次项系数为1>0

  1a]∴f(x)的单调减区间为(,∴依题设条件可得1a4,解得a3

  4]上是减函数(2)∵f(x)在区间(,4]是递减区间(,1a]的子区间∴(,∴1a4,解得a3

  例5、函数f(x)x2bx2,满足:f(3x)f(3x)

  (1)求方程f(x)0的两根x1,x2的和(2)比较f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函数图像的对称轴为x(3x)(3x)23

  b3可得b62f(x)x26x2(x3)211

  而f(x)的图像与x轴交点(x1,0)、(x2,0)关于对称轴x3对称

  x1x223,可得x1x26

  第三章第32页由二次项系数为1>0,可知抛物线开口向上又134,132,431

  ∴依二次函数的对称性及单调性可f(4)f(1)f(1)(III)课后作业练习六

  (Ⅳ)教学后记:

  第三章第33页

  扩展阅读:初中数学函数知识点归纳

  学大教育

  初中数学函数板块的知识点总结与归类学习方法

  初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,掌握了函数的`基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就读于中考中数学成功了一大半,数学成绩自然上高峰,同时,函数的思想是学好其他理科类学科的基础。初中数学从性质上分,可以分为:一次函数、反比例函数、二次函数和锐角三角函数,下面介绍各类函数的定义、基本性质、函数图象及函数应用思维方式方法。

  一、一次函数

  1.定义:在定义中应注意的问题y=kx+b中,k、b为常数,且k≠0,x的指数一定为1。2.图象及其性质(1)形状、直线

函数知识点总结15

  特别地,二次函数(以下称函数)y=ax+bx+c。

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax+bx+c=0。

  此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

  1.二次函数y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的图象形状相同,只是位置不同。当h>0时,y=a(x-h)的图象可由抛物线y=ax向右平行移动h个单位得到。

  当h<0时,则向xxx移动|h|个单位得到。

  当h>0,k>0时,将抛物线y=ax向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)+k的图象。

  当h>0,k<0时,将抛物线y=ax向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象。

  当h<0,k>0时,将抛物线向xxx移动|h|个单位,再向上移动k个单位可得到y=a(x-h)+k的图象。

  当h<0,k<0时,将抛物线向xxx移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象。

  因此,研究抛物线y=ax+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便。

  2.抛物线y=ax+bx+c(a≠0)的`图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b]/4a)。

  3.抛物线y=ax+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小。

  4.抛物线y=ax+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c)。

  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的两根.这两点间的距离AB=|x-x|。

  当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。

  5.抛物线y=ax+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b)/4a。

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax+bx+c(a≠0)。

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)+k(a≠0)。

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a≠0)。

【函数知识点总结】相关文章:

函数知识点总结02-10

函数知识点总结06-23

[精华]函数知识点总结08-28

函数知识点总结(精)08-21

(精品)函数知识点总结08-22

(精)函数知识点总结08-25

(精)函数知识点总结08-25

函数知识点总结【热门】08-21

函数知识点总结(热门)09-19

[精选]函数知识点03-01