函数知识点总结

2024-09-19 知识点总结

  总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它能够使头脑更加清醒,目标更加明确,让我们抽出时间写写总结吧。我们该怎么去写总结呢?以下是小编收集整理的函数知识点总结,仅供参考,大家一起来看看吧。

函数知识点总结1

  一、知识导学

  1.二次函数的概念、图像和性质.(1)注意解题中灵活运用二次函数的一般式二次函数的顶点式二次函数的坐标式

  f(x)ax2bxcf(x)a(xm)2n(a0)和f(x)a(xx1)(xx2)(a0)

  (a0)

  (2)解二次函数的问题(如单调性、最值、值域、二次三项式的恒正恒负、二次方程根的范围等)要充分利用好两种方法:配方、图像,很多二次函数都用数形结合的思想去解.

  ①

  f(x)ax2bxc(a0),当b24ac0时图像与x轴有两个交点.

  M(x1,0)N(x2,0),|MN|=|x1-x2|=

  .|a|②二次函数在闭区间上必有最大值和最小值,它只能在区间的端点或二次函数的顶点处取得.2.指数函数

  ①amyax(a0,a1)和对数函数ylogax(a0,a1)的概念和性质.

  (1)有理指数幂的意义、幂的运算法则:

  anamn;②(am)namn;③(ab)nanbn(这时m,n是有理数)

  MlogaMlogaNNlogcb1MlogaM;logab

  nlogcaloga对数的概念及其运算性质、换底公式.

  loga(MN)logaMlogaN;logaMnnlogaM;logan(2)指数函数的图像、单调性与特殊点.对数函数的图像、单调性与特殊点.

  ①指数函数图像永远在x轴上方,当a>1时,图像越接近y轴,底数a越大;当0错解:∵18

  5,∴log185b

  log1845log185log189ba∴log3645log1836log184log189log184a5,∴log185b

  log1845log185log189∴log3645log1836log184log189bb错因:因对性质不熟而导致题目没解完.正解:∵18

  bababa

  182182alog18()a2log18()a992[例2]分析方程f(x)axbxc0(a0)的两个根都大于1的充要条件.

  2错解:由于方程f(x)axbxc0(a0)对应的二次函数为

  f(x)ax2bxc的图像与x轴交点的'横坐标都大于1即可.

  f(1)0f(1)0故需满足b,所以充要条件是b

  112a2a错因:上述解法中,只考虑到二次函数与x轴交点坐标要大于1,却忽视了最基本的的前题条件,应让二次函数图像与x轴有

  交点才行,即满足△≥0,故上述解法得到的不是充要条件,而是必要不充分条件.

  f(1)0b正解:充要条件是12a2b4ac0y36x126x5的单调区间.

  x2xx错解:令6t,则y361265=t12t5

  [例3]求函数

  ∴当t≥6,即x≥1时,y为关于t的增函数,当t≤6,即x≤1时,y为关于t的减函数∴函数

  y36x126x5的单调递减区间是(,6],单调递增区间为[6,)

  x错因:本题为复合函数,该解法未考虑中间变量的取值范围.正解:令6∴函数

  t,则t6x为增函数,y36x126x5=t212t5=(t6)241

  ∴当t≥6,即x≥1时,y为关于t的增函数,当t≤6,即x≤1时,y为关于t的减函数

  y36x126x5的单调递减区间是(,1],单调递增区间为[1,)

  [例4]已知yloga(2ax)在[0,1]上是x的减函数,则a的取值范围是错解:∵yloga(2ax)是由ylogau,u2ax复合而成,又a>0∴u2ax在[0,1]上是x的减函数,由复合函数关系知,ylogau应为增函数,∴a>1

  错因:错因:解题中虽然考虑了对数函数与一次函数复合关系,却忽视了数定义域的限制,单调区间应是定义域的某个子区间,即函数应在[0,1]上有意义.

  yloga(2ax)是由ylogau,u2ax复合而成,又a>0∴u2ax在[0,1]上是x的减函数,

  由复合函数关系知,ylogau应为增函数,∴a>1

  又由于x在[0,1]上时yloga(2ax)有意义,u2ax又是减函数,∴x=1时,u2ax取最小值是

  正解:∵

  umin2a>0即可,∴a<2,综上可知所求的取值范围是1<a<2[例5]已知函数f(x)loga(3ax).

  (1)当x[0,2]时f(x)恒有意义,求实数a的取值范围.

  (2)是否存在这样的实数a使得函数f(x)在区间[1,2]上为减函数,并且最大值为

  存在,请说明理由.分析:函数

  1,如果存在,试求出a的值;如果不

  f(x)为复合函数,且含参数,要结合对数函数的性质具体分析找到正确的解题思路,是否存在性问题,分析时一

  0,a1

  般先假设存在后再证明.

  解:(1)由假设,3ax>0,对一切x[0,2]恒成立,a显然,函数g(x)=3ax在[0,2]上为减函数,从而g(2)=32a>0得到a<(2)假设存在这样的实数a,由题设知∴a=

  32∴a的取值范围是(0,1)∪(1,

  32)

  f(1)1,即f(1)loga(3a)=1

  32此时

  f(x)loga(33x)当x2时,f(x)没有意义,故这样的实数不存在.2,

  12x4xa[例6]已知函数f(x)=lg,其中a为常数,若当x∈(-∞,1]时,f(x)有意义,求实数a的取值范围.

  a2a1xx3111xx解:124a>0,且a-a+1=(a-)+>0,∴1+2+4a>0,a>(11),当x∈(-∞,1]时,y=x与y=x都

  24424x2xa2a1333是减函数,∴y=(11)在(-∞,1]上是增函数,(11)max=-,∴a>-,故a的取值范围是(-,+∞).

  4444x2x422

  2

  xx[例7]若(a1)解:∵幂函数

  13(32a)1313,试求a的取值范围.

  yx有两个单调区间,

  ∴根据a1和32a的正、负情况,有以下关系a10a1032a0.①32a0.②a132aa132a解三个不等式组:①得

  a10.③32a023,

  23<a<

  32,②无解,③a<-1,∴a的取值范围是(-∞,-1)∪(

  32)

  [例8]已知a>0且a≠1,f(logax)=

  a1(x-

  xa21)

  (1)求f(x);(2)判断f(x)的奇偶性与单调性;

  2

  (3)对于f(x),当x∈(-1,1)时,有f(1-m)+f(1-m)<0,求m的集合M.

  分析:先用换元法求出f(x)的表达式;再利用有关函数的性质判断其奇偶性和单调性;然后利用以上结论解第三问.解:(1)令t=logax(t∈R),则xat,f(t)aatt(aa),f(x)(axax),(xR).22a1a1aa(axax)f(x),且xR,f(x)为奇函数.当a1时,20,a1a1u(x)axax为增函数,当0a1时,类似可判断f(x)为增函数.综上,无论a1或0a1,f(x)在R上都是增函数.

  (3)f(1m)f(1m2)0,f(x)是奇函数且在R上是增函数,f(1m)f(m21).又x(1,1)(2)f(x)211m11m2111m2.1mm21四、典型习题导练1.函数

  f(x)axb的图像如图,其中a、b为常数,则下列结论正确的是()A.a1,b0B.a1,b0C.0a1,b0D.0a1,b0

  x的值为()

  yC.1或4C.2

  2

  2、已知2lg(x-2y)=lgx+lgy,则A.13、方程loga(x1)xA.04、函数f(x)与g(x)=(

  2B.4B.1

  x

  D.4或8D.3

  ()

  2(0A.

  0,nB.,0C.

  0,2

  D.

  2,0

  5、图中曲线是幂函数y=x在第一象限的图像,已知n可取±2,±

  1四个值,则相应于曲线c1、c2、c3、c4的n依次为()211111111A.-2,-,,2B.2,,-,-2C.-,-2,2,D.2,,-2,-

  2222226.求函数y=log2

  2(x-5x+6)的定义域、值域、单调区间.7.若x满足2(log21x)14log4x30,求f(x)=logxx222log22最大值和最小值.

  8.已知定义在R上的函数f(x)2xa2x,a为常数(1)如果f(x)=f(x),求a的值;

  (2)当

  f(x)满足(1)时,用单调性定义讨论f(x)的单调性.

  基本初等函数综合训练B组

  一、选择题

  1.若函数

  f(x)logax(0a1)在区间[a,2a]上的最大值是最小值的3倍,则a的值为()

  A.214B.22C.4D.12

  2.若函数yloga(xb)(a0,a1)的图象过两点(1,0)

  和(0,1),则()

  A.a2,b2B.a2,b2

  C.a2,b1D.a2,b23.已知f(x6)log2x,那么f(8)等于()

  A.43B.8C.18D.12

  4.函数ylgx()

  A.是偶函数,在区间(,0)上单调递增B.是偶函数,在区间(,0)上单调递减C.是奇函数,在区间(0,)上单调递增D.是奇函数,在区间(0,)上单调递减

  5.已知函数f(x)lg1x1x.若f(a)b.则f(a)()A.bB.bC.11bD.b

  6.函数f(x)logax1在(0,1)上递减,那么f(x)在(1,)上()

  A.递增且无最大值B.递减且无最小值C.递增且有最大值D.递减且有最小值

  二、填空题1.若

  f(x)2x2xlga是奇函数,则实数a=_________。

  2.函数

  f(x)log1x22x5的值域是__________.

  23.已知log147a,log145b,则用a,b表示log3528。4.设

  A1,y,lgxy,B0,x,y,且AB,则x;y。5.计算:

  322log325。

  ex16.函数y的值域是__________.

  xe1三、解答题

  1.比较下列各组数值的大小:(1)1.7

  2.解方程:(1)9

  3.已知

  4.已知函数

  参考答案

  一、选择题

  x3.3和0.82.1;(2)3.30.7和3.40.8;(3)

  3,log827,log9252231x27(2)6x4x9x

  y4x32x3,当其值域为[1,7]时,求x的取值范围。

  f(x)loga(aax)(a1),求f(x)的定义域和值域;

  1112321.Alogaa3loga(2a),loga(2a),a32a,a8a,a,a3842.Aloga(b1)0,且logab1,ab2

  3.D令x4.B令令u68(x0),x82,f(8)f(x6)log2xlog2216f(x)lgx,f(x)lgxlgxf(x),即为偶函数

  x,x0时,u是x的减函数,即ylgx在区间(,0)上单调递减

  1x1xlgf(x).则f(a)f(a)b.5.Bf(x)lg1x1x6.A令ux1,(0,1)是u的递减区间,即a1,(1,)是u的递增区间,即f(x)递增且无最大值。

  二、填空题1.

  1xxxxf(x)f(x)22lga22lga10x(lga1)(2(另法):xR,由2.

  2x)0,lga10,a110110f(x)f(x)得f(0)0,即lga10,a,2x22x5(x1)244,

  而011,log1x22x5log1422222alog14283.log147log145log1435ab,log3528

  ablog1435141log14log14(214)1log14271(1log147)2a

  log1435log1435log1435log1435ab4.1,1∵0A,y又∵1B,y0,∴lg(xy)0,xy1

  51,∴x1,而x1,∴x1,且y1

  3215.

  5322log32log32532log321515ex11y6.(1,1)y,ex0,1y1ex11y三、解答题1.解:(1)∵1.71.701,0.82.10.801,∴1.73.30.82.1

  0.70.80.70.80.80.8(2)∵3.33.3,3.33.4,∴3.33.4(3)log827log23,log925log35,

  3.333332log22log222log23,log332log333log35,223∴log925log827.

  2x2xxxx2.解:(1)(3)63270,(33)(39)0,而330

  3x90,3x32,

  x22x4x22x2x(2)()()1,()()10

  39332251()x0,则()x,332

  xlog23512

  3.解:由已知得14x32x37,

  xxxx43237(21)(24)0,得x即

  xxx43231(21)(22)0xx即021,或224∴x0,或1x2。

  xx4.解:aa0,aa,x1,即定义域为(,1);

  ax0,0aaxa,loga(aax)1,即值域为(,1)。

  扩展阅读:高一数学上册 第二章基本初等函数之对数函数知识点总结及练习题(含答案)

  〖2.2〗对数函数

  【2.2.1】对数与对数运算

  (1)对数的定义

  ①若axN(a0,且a1),则x叫做以a为底N的对数,记作xlogaN,其中a叫做底数,

  N叫做真数.

  ②负数和零没有对数.③对数式与指数式的互化:xlogaNaxN(a0,a1,N0).

  (2)几个重要的对数恒等式:loga10,logaa1,logaabb.

  N;自然对数:lnN,即loge(3)常用对数与自然对数:常用对数:lgN,即log10…).e2.71828(4)对数的运算性质如果a0,a1,M①加法:logaN(其中

  0,N0,那么

  MlogaNloga(MN)

  M②减法:logaMlogaNlogaN③数乘:nlogaMlogaMn(nR)

  ④

  alogaNN

  nlogaM(b0,nR)bn⑤logabM⑥换底公式:logaNlogbN(b0,且b1)

  logba【2.2.2】对数函数及其性质

  (5)对数函数函数名称定义函数对数函数ylogax(a0且a1)叫做对数函数a1yx10a1yx1ylogaxylogax图象O(1,0)O(1,0)xx定义域值域过定点奇偶性(0,)R图象过定点(1,0),即当x1时,y0.非奇非偶单调性在(0,)上是增函数在(0,)上是减函数logax0(x1)函数值的变化情况logax0(x1)logax0(x1)logax0(0x1)logax0(x1)logax0(0x1)a变化对图象的影响在第一象限内,a越大图象越靠低,越靠近x轴在第一象限内,a越小图象越靠低,越靠近x轴在第四象限内,a越大图象越靠高,越靠近y轴在第四象限内,a越小图象越靠高,越靠近y轴(6)反函数的概念

  设函数果对于

  yf(x)的定义域为A,值域为C,从式子yf(x)中解出x,得式子x(y).如

  y在C中的任何一个值,通过式子x(y),x在A中都有唯一确定的值和它对应,那么式子

  x(y)表示x是y的函数,函数x(y)叫做函数yf(x)的反函数,记作xf1(y),习惯

  上改写成

  yf1(x).

  (7)反函数的求法

  ①确定反函数的定义域,即原函数的值域;②从原函数式③将xyf(x)中反解出xf1(y);

  f1(y)改写成yf1(x),并注明反函数的定义域.

  (8)反函数的性质

  ①原函数②函数

  yf(x)与反函数yf1(x)的图象关于直线yx对称.

  yf(x)的定义域、值域分别是其反函数yf1(x)的值域、定义域.

  yf(x)的图象上,则P"(b,a)在反函数yf1(x)的图象上.

  ③若P(a,b)在原函数④一般地,函数

  yf(x)要有反函数则它必须为单调函数.

  一、选择题:1.

  log89的值是log23A.

  ()

  23B.1C.

  32D.2

  2.已知x=2+1,则log4(x3-x-6)等于

  A.

  ()C.0

  D.

  32B.

  54123.已知lg2=a,lg3=b,则

  lg12等于lg15()

  A.

  2ab

  1abB.

  a2b

  1abC.

  2ab

  1abD.

  a2b

  1ab4.已知2lg(x-2y)=lgx+lgy,则x的值为

  yA.1

  B.4

  ()C.1或4C.(C.ln5

  D.4或-1()

  5.函数y=log1(2x1)的定义域为

  2A.(

  1,+∞)B.[1,+∞)2B.5e

  1,1]2D.(-∞,1)()D.log5e()

  y6.已知f(ex)=x,则f(5)等于

  A.e5

  7.若f(x)logax(a0且a1),且f1(2)1,则f(x)的图像是

  yyyABCD

  8.设集合A{x|x10},B{x|log2x0|},则AB等于

  A.{x|x1}C.{x|x1}

  B.{x|x0}D.{x|x1或x1}

  2OxOxOxOx()

  9.函数ylnx1,x(1,)的反函数为()x1ex1,x(0,)B.yxe1ex1,x(,0)D.yxe1ex1,x(0,)A.yxe1ex1,x(,0)C.yxe1二、填空题

函数知识点总结2

  一、函数对称性:

  1.2.3.4.5.6.7.8.

  f(a+x)=f(a-x)==>f(x)关于x=a对称

  f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称

  f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称

  例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。

  【解析】求两个不同函数的对称轴,用设点和对称原理作解。

  证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)]

  ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.

  例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。

  证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b]

  ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.

  二、函数的周期性

  令a,b均不为零,若:

  1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|

  2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|

  3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|

  4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|

  5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|

  这里只对第2~5点进行解析。

  第2点解析:

  令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba

  第3点解析:同理,f(x+a)=-f(x+2a)……

  ①f(x)=-f(x+a)……

  ②∴由①和②解得f(x)=f(x+2a)∴函数最小正周期T=|2a|

  第4点解析:

  f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)

  又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)

  ∴函数最小正周期T=|2a|

  第5点解析:

  ∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1

  ∴1f(x)=2/[f(x)+1]移项得f(x)=12/[f(x+a)+1]

  那么f(x-a)=12/[f(x)+1],等式右边通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,

  由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)

  ∴函数最小正周期T=|4a|

  扩展阅读:函数对称性、周期性和奇偶性的规律总结

  函数对称性、周期性和奇偶性规律总结

  (一)同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性)

  1、奇偶性:

  (1)奇函数关于(0,0)对称,奇函数有关系式f(x)f(x)0

  (2)偶函数关于y(即x=0)轴对称,偶函数有关系式f(x)f(x)

  2、奇偶性的拓展:同一函数的对称性

  (1)函数的.轴对称:

  函数yf(x)关于xa对称f(ax)f(ax)

  f(ax)f(ax)也可以写成f(x)f(2ax)或f(x)f(2ax)

  若写成:f(ax)f(bx),则函数yf(x)关于直线x称

  (ax)(bx)ab对22证明:设点(x1,y1)在yf(x)上,通过f(x)f(2ax)可知,y1f(x1)f(2ax1),

  即点(2ax1,y1)也在yf(x)上,而点(x1,y1)与点(2ax1,y1)关于x=a对称。得证。

  说明:关于xa对称要求横坐标之和为2a,纵坐标相等。

  ∵(ax1,y1)与(ax1,y1)关于xa对称,∴函数yf(x)关于xa对称

  f(ax)f(ax)

  ∵(x1,y1)与(2ax1,y1)关于xa对称,∴函数yf(x)关于xa对称

  f(x)f(2ax)

  ∵(x1,y1)与(2ax1,y1)关于xa对称,∴函数yf(x)关于xa对称

  f(x)f(2ax)

  (2)函数的点对称:

  函数yf(x)关于点(a,b)对称f(ax)f(ax)2b

  上述关系也可以写成f(2ax)f(x)2b或f(2ax)f(x)2b

  若写成:f(ax)f(bx)c,函数yf(x)关于点(abc,)对称2证明:设点(x1,y1)在yf(x)上,即y1f(x1),通过f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以点(2ax1,2by1)也在yf(x)上,而点(2ax1,2by1)与(x1,y1)关于(a,b)对称。得证。

  说明:关于点(a,b)对称要求横坐标之和为2a,纵坐标之和为2b,如(ax)与(ax)之和为2a。

  (3)函数yf(x)关于点yb对称:假设函数关于yb对称,即关于任一个x值,都有两个y值与其对应,显然这不符合函数的定义,故函数自身不可能关于yb对称。但在曲线c(x,y)=0,则有可能会出现关于yb对称,比如圆c(x,y)x2y240它会关于y=0对称。

  (4)复合函数的奇偶性的性质定理:

  性质1、复数函数y=f[g(x)]为偶函数,则f[g(-x)]=f[g(x)]。复合函数y=f[g(x)]为奇函数,则f[g(-x)]=-f[g(x)]。

  性质2、复合函数y=f(x+a)为偶函数,则f(x+a)=f(-x+a);复合函数y=f(x+a)为奇函数,则f(-x+a)=-f(a+x)。

  性质3、复合函数y=f(x+a)为偶函数,则y=f(x)关于直线x=a轴对称。复合函数y=f(x+a)为奇函数,则y=f(x)关于点(a,0)中心对称。

  总结:x的系数一个为1,一个为-1,相加除以2,可得对称轴方程

  总结:x的系数一个为1,一个为-1,f(x)整理成两边,其中一个的系数是为1,另一个为-1,存在对称中心。

  总结:x的系数同为为1,具有周期性。

  (二)两个函数的图象对称性

  1、yf(x)与yf(x)关于X轴对称。

  证明:设yf(x)上任一点为(x1,y1)则y1f(x1),所以yf(x)经过点(x1,y1)

  ∵(x1,y1)与(x1,y1)关于X轴对称,∴y1f(x1)与yf(x)关于X轴对称.注:换种说法:yf(x)与yg(x)f(x)若满足f(x)g(x),即它们关于y0对称。

函数知识点总结3

  ∴当x1时函数取得最大值,且ymax(1)2(1)13例4、已知函数f(x)x22(a1)x2

  4],求实数a的取值(1)若函数f(x)的递减区间是(,4]上是减函数,求实数a的取值范围(2)若函数f(x)在区间(,分析:二次函数的单调区间是由其开口方向及对称轴决定的,要分清函数在区间A上是单调函数及单调区间是A的区别与联系

  解:(1)f(x)的对称轴是x可得函数图像开口向上

  2(a1)21a,且二次项系数为1>0

  1a]∴f(x)的单调减区间为(,∴依题设条件可得1a4,解得a3

  4]上是减函数(2)∵f(x)在区间(,4]是递减区间(,1a]的子区间∴(,∴1a4,解得a3

  例5、函数f(x)x2bx2,满足:f(3x)f(3x)

  (1)求方程f(x)0的`两根x1,x2的和(2)比较f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函数图像的对称轴为x(3x)(3x)23

  b3可得b62f(x)x26x2(x3)211

  而f(x)的图像与x轴交点(x1,0)、(x2,0)关于对称轴x3对称

  x1x223,可得x1x26

  第三章第32页由二次项系数为1>0,可知抛物线开口向上又134,132,431

  ∴依二次函数的对称性及单调性可f(4)f(1)f(1)(III)课后作业练习六

  (Ⅳ)教学后记:

  第三章第33页

  扩展阅读:初中数学函数知识点归纳

  学大教育

  初中数学函数板块的知识点总结与归类学习方法

  初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,掌握了函数的基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就读于中考中数学成功了一大半,数学成绩自然上高峰,同时,函数的思想是学好其他理科类学科的基础。初中数学从性质上分,可以分为:一次函数、反比例函数、二次函数和锐角三角函数,下面介绍各类函数的定义、基本性质、函数图象及函数应用思维方式方法。

  一、一次函数

  1.定义:在定义中应注意的问题y=kx+b中,k、b为常数,且k≠0,x的指数一定为1。2.图象及其性质(1)形状、直线

函数知识点总结4

  当h>0时,y=a(_-h)^2的图象可由抛物线y=a_^2向右平行移动h个单位得到,

  当h<0时,则向左平行移动|h|个单位得到.

  当h>0,k>0时,将抛物线y=a_^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(_-h)^2+k的图象;

  当h>0,k<0时,将抛物线y=a_^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(_-h)^2+k的图象;

  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(_-h)^2+k的图象;

  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(_-h)^2+k的图象;

  因此,研究抛物线y=a_^2+b_+c(a≠0)的图象,通过配方,将一般式化为y=a(_-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

  2.抛物线y=a_^2+b_+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线_=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

  3.抛物线y=a_^2+b_+c(a≠0),若a>0,当_≤-b/2a时,y随_的增大而减小;当_≥-b/2a时,y随_的增大而增大.若a<0,当_≤-b/2a时,y随_的'增大而增大;当_≥-b/2a时,y随_的增大而减小.

  4.抛物线y=a_^2+b_+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2-4ac>0,图象与_轴交于两点A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0

  (a≠0)的两根.这两点间的距离AB=|_?-_?|

  当△=0.图象与_轴只有一个交点;

  当△<0.图象与_轴没有交点.当a>0时,图象落在_轴的上方,_为任何实数时,都有y>0;当a<0时,图象落在_轴的下方,_为任何实数时,都有y<0.

  5.抛物线y=a_^2+b_+c的最值:如果a>0(a<0),则当_=-b/2a时,y最小(大)值=(4ac-b^2)/4a.

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知_、y的三对对应值时,可设解析式为一般形式:

  y=a_^2+b_+c(a≠0).

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(_-h)^2+k(a≠0).

  (3)当题给条件为已知图象与_轴的两个交点坐标时,可设解析式为两根式:y=a(_-_?)(_-_?)(a≠0).

  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

函数知识点总结5

  教学目标:

  (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

  教学重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  教学难点:求出函数的`自变量的取值范围。

  教学过程:

  一、问题引新

  1.设矩形花圃的垂直于墙(墙长18)的一边AB的长为_m,先取_的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

  AB长_(m) 1 2 3 4 5 6 7 8 9

  BC长(m) 12

  面积y(m2) 48

  2._的值是否可以任意取?有限定范围吗?

  3.我们发现,当AB的长(_)确定后,矩形的面积(y)也随之确定,y是_的函数,试写出这个函数的关系式,教师可提出问题,(1)当AB=_m时,BC长等于多少m?(2)面积y等于多少? y=_(20-2_)

  二、提出问题,解决问题

  1、引导学生看书第二页问题一、二

  2、观察概括

  y=6_2 d= n /2 (n-3) y= 20 (1-_)2

  以上函数关系式有什么共同特点? (都是含有二次项)

  3、二次函数定义:形如y=a_2+b_+c(a、b、、c是常数,a≠0)的函数叫做_的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

  4、课堂练习

  (1) (口答)下列函数中,哪些是二次函数?

  (1)y=5_+1 (2)y=4_2-1

  (3)y=2_3-3_2 (4)y=5_4-3_+1

  (2).P3练习第1,2题。

  五、小结叙述二次函数的定义.

  第二课时:26.1二次函数(2)

  教学目标:

  1、使学生会用描点法画出y=a_2的图象,理解抛物线的有关概念。

  2、使学生经历、探索二次函数y=a_2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯。

  教学重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=a_2的图象

  教学难点:用描点法画出二次函数y=a_2的图象以及探索二次函数性质。

函数知识点总结6

  一、二次函数概念:

  a0)b,c是常数

  1.二次函数的概念:一般地,形如yax2bxc(a,的函数,叫做二次函数。这c可以为零.二次函数的定义域是全体实里需要强调:和一元二次方程类似,二次项系数a0,而b,数.

  2.二次函数yax2bxc的结构特征:

  ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.b,c是常数,a是二次项系数,b是一次项系数,c是常数项.

  ⑵a,二、二次函数的基本形式

  1.二次函数基本形式:yax2的性质:a的绝对值越大,抛物线的开口越小。

  a的符号a0开口方向顶点坐标对称轴向上00,00,性质x0时,y随x的增大而增大;x0时,y随y轴x的增大而减小;x0时,y有最小值0.x0时,y随x的增大而减小;x0时,y随a0向下y轴x的增大而增大;x0时,y有最大值0.

  2.yax2c的性质:上加下减。

  a的符号a0开口方向顶点坐标对称轴向上c0,c0,性质x0时,y随x的增大而增大;x0时,y随y轴x的增大而减小;x0时,y有最小值c.x0时,y随x的增大而减小;x0时,y随a0向下y轴x的增大而增大;x0时,y有最大值c.

  3.yaxh的性质:左加右减。

  2a的符号a0开口方向顶点坐标对称轴向上0h,0h,性质xh时,y随x的增大而增大;xh时,y随X=hx的增大而减小;xh时,y有最小值0.xh时,y随x的增大而减小;xh时,y随a02向下X=hx的增大而增大;xh时,y有最大值0.

  4.yaxhk的性质:

  a的符号开口方向顶点坐标对称轴性质a0向上h,kh,kX=hxh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值k.xh时,y随x的增大而减小;xh时,y随a0向下X=hx的增大而增大;xh时,y有最大值k.

  三、二次函数图象的平移

  1.平移步骤:

  方法一:

  ⑴将抛物线解析式转化成顶点式yaxhk,确定其顶点坐标h,k;

  ⑵保持抛物线yax2的形状不变,将其顶点平移到h,k处,具体平移方法如下:

  向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k

  画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.

  六、二次函数yax2bxc的性质

  b4acb2b1.当a0时,抛物线开口向上,对称轴为x,顶点坐标为,.

  2a4a2a当xbbb时,y随x的增大而减小;当x时,y随x的增大而增大;当x时,y有最小2a2a2a4acb2值.

  4ab4acb2bb2.当a0时,抛物线开口向下,对称轴为x,顶点坐标为,时,y随.当x2a4a2a2a4acb2bb.x的增大而增大;当x时,y随x的增大而减小;当x时,y有最大值

  2a2a4a

  七、二次函数解析式的表示方法

  1.一般式:yax2bxc(a,b,c为常数,a0);

  2.顶点式:ya(xh)2k(a,h,k为常数,a0);

  3.两根式:ya(xx1)(xx2)(a0,x1,x2是抛物线与x轴两交点的横坐标).

  注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即b24ac0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.

  八、二次函数的图象与各项系数之间的关系

  1.二次项系数a

  二次函数yax2bxc中,a作为二次项系数,显然a0.

  ⑴当a0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;

  ⑵当a0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大.

  总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小.

  2.一次项系数b

  在二次项系数a确定的前提下,b决定了抛物线的对称轴.

  ⑴在a0的前提下,当b0时,当b0时,当b0时,b0,即抛物线的对称轴在y轴左侧;2ab0,即抛物线的对称轴就是y轴;2ab0,即抛物线对称轴在y轴的右侧.2a⑵在a0的前提下,结论刚好与上述相反,即当b0时,当b0时,当b0时,b0,即抛物线的对称轴在y轴右侧;2ab0,即抛物线的对称轴就是y轴;2ab0,即抛物线对称轴在y轴的左侧.2a

  总结起来,在a确定的前提下,b决定了抛物线对称轴的位置.

  ab的符号的判定:对称轴xb在y轴左边则ab0,在y轴的右侧则ab0,概括的说就是“左同2a右异”总结:

  3.常数项c

  ⑴当c0时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;

  ⑵当c0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;

  ⑶当c0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.

  b,c都确定,那么这条抛物线就是唯一确定的.总之,只要a,二次函数解析式的确定:

  根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:

  1.已知抛物线上三点的坐标,一般选用一般式;

  2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;

  3.已知抛物线与x轴的两个交点的横坐标,一般选用两根式;

  4.已知抛物线上纵坐标相同的两点,常选用顶点式.

  九、二次函数图象的对称

  二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达

  1.关于x轴对称

  yax2bxc关于x轴对称后,得到的解析式是yax2bxc;

  yaxhk关于x轴对称后,得到的解析式是yaxhk;

  2.关于y轴对称

  yax2bxc关于y轴对称后,得到的解析式是yax2bxc;

  22yaxhk关于y轴对称后,得到的解析式是yaxhk;

  3.关于原点对称

  yax2bxc关于原点对称后,得到的解析式是yax2bxc;yaxhk关于原点对称后,得到的解析式是yaxhk;

  4.关于顶点对称(即:抛物线绕顶点旋转180°)

  2222b2yaxbxc关于顶点对称后,得到的解析式是yaxbxc;

  2a22yaxhk关于顶点对称后,得到的'解析式是yaxhk.n对称

  5.关于点m,n对称后,得到的解析式是yaxh2m2nkyaxhk关于点m,根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

  十、二次函数与一元二次方程:

  1.二次函数与一元二次方程的关系(二次函数与x轴交点情况):

  一元二次方程ax2bxc0是二次函数yax2bxc当函数值y0时的特殊情况.图象与x轴的交点个数:

  ①当b24ac0时,图象与x轴交于两点Ax1,0,Bx2,0(x1x2),其中的x1,x2是一元二次

  b24ac方程axbxc0a0的两根.这两点间的距离ABx2x1.

  a2

  ②当0时,图象与x轴只有一个交点;

  ③当0时,图象与x轴没有交点.

  1"当a0时,图象落在x轴的上方,无论x为任何实数,都有y0;

  2"当a0时,图象落在x轴的下方,无论x为任何实数,都有y0.

  2.抛物线yax2bxc的图象与y轴一定相交,交点坐标为(0,c);

  3.二次函数常用解题方法总结:

  ⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;

  ⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;

  ⑶根据图象的位置判断二次函数yax2bxc中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;

  ⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.

  ⑸与二次函数有关的还有二次三项式,二次三项式ax2bxc(a0)本身就是所含字母x的二次函数;下面以a0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:

  0抛物线与x轴有两个交点0二次三项式的值可正、可零、可负二次三项式的值为非负二次三项式的值恒为正一元二次方程有两个不相等实根一元二次方程有两个相等的实数根一元二次方程无实数根.0抛物线与x轴只有一个交点抛物线与x轴无交点y=2x2y=x2y=3(x+4)2二次函数图像参考:

  y=3x2y=3(x-2)2y=x22

  y=2x2y=2(x-4)2y=2(x-4)2-3y=2x2+2y=2x2y=2x2-4x2y=-2y=-x2y=-2x2十一、函数的应用

  刹车距离二次函数应用何时获得最大利润

  最大面积是多少y=-2(x+3)2y=-2x2y=-2(x-3)2

函数知识点总结7

  反比例函数的表达式

  X是自变量,Y是X的函数

  y=k/x=k·1/x

  xy=k

  y=k·x^(-1)(即:y等于x的负一次方,此处X必须为一次方)

  y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n

  函数式中自变量取值的范围

  ①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的.取值范围也是任意非零实数。  解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数

  y=k/x=k·1/x  xy=k  y=k·x^(-1)  y=kx(k为常数(k≠0),x不等于0)

  反比例函数图象

  反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

  反比例函数中k的几何意义是什么?有哪些应用

  过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值*y的绝对值=(x*y)的绝对值=|k|

  研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。

  所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

函数知识点总结8

  首先,把主要精力放在基础知识、基本技能、基本方法这三个方面上、因为每次考试占绝大部分的是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳,调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁情绪、特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能把我打垮的自豪感、

  在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前在保证正确率的前提下提高解题速度、对于一些容易的基础题,要有十二分的把握拿满分;对于一些难题,也要尽量拿分,考试中要尝试得分,使自己的水平正常甚至超常发挥、

  要想学好初中数学,多做题目是难免的,熟悉掌握各种题型的`解题思路、刚开始要以基础题目入手,以课上的题目为准,提高自己的分析解决能力,掌握一般的解题思路、对于一些易错题,可备有错题集,写出自己的解题思路、正确的解题过程,两者一起比较找出自己的错误所在,以便及时更正、在平时养成良好的解题习惯、让自己的精力高度集中,使大脑兴奋思维敏捷,能够进入最佳状态,在考试中能运用自如、实践证明:越到关键的时候,你所表现的解题习惯与平时解题无异、如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的、

  初中数学解题方法

  第一点:卓绝点:熟悉数学习题中常设计的内容,定义、公式、原理等等

  第二点:做题有步骤,先易后难

  初中数学做题技巧有一点,那就是先易后难、正所谓“一屋不扫何以扫天下?”,如果同学们连那些简单容易的数学题目都解答不出来又怎么能够解答那些疑难的数学题目呢?先易后难的做数学题目不仅能够增加同学们做数学题的信心,还能够让同学享受解答数学题的那个过程、

  第三点:认真做好归纳总结

函数知识点总结9

  1.函数的定义

  函数是高考数学中的重点内容,学习函数需要首先掌握函数的各个知识点,然后运用函数的各种性质来解决具体的问题。

  设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的.任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A-B为从集合A到集合B的一个函数,记作y=f(x),xA

  2.函数的定义域

  函数的定义域分为自然定义域和实际定义域两种,如果给定的函数的解析式(不注明定义域),其定义域应指的是使该解析式有意义的自变量的取值范围(称为自然定义域),如果函数是有实际问题确定的,这时应根据自变量的实际意义来确定,函数的值域是由全体函数值组成的集合。

  3.求解析式

  求函数的解析式一般有三种种情况:

  (1)根据实际问题建立函数关系式,这种情况需引入合适的变量,根据数学的有关知识找出函数关系式。

  (2)有时体中给出函数特征,求函数的解析式,可用待定系数法。

  (3)换元法求解析式,f[h(x)]=g(x)求f(x)的问题,往往可设h(x)=t,从中解出x,代入g(x)进行换元来解。掌握求函数解析式的前提是,需要对各种函数的性质了解且熟悉。

  目前我们已经学习了常数函数、指数与指数函数、对数与对数函数、幂函数、三角函数、反比例函数、二次函数以及由以上几种函数加减乘除,或者复合的一些相对较复杂的函数,但是这种函数也是初等函数。

函数知识点总结10

  1二次函数的定义

  一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函数.

  注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;

  (2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),自变量x的取值范围是全体实数;

  (3)当b=c=0时,二次函数y=ax2是最简单的二次函数;

  (4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数.

  2二次函数解析式的几种形式

  (1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0).

  (2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).

  (3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的.横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.

  说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点

  3二次函数y=ax2+c的图象与性质

  (1)抛物线y=ax2+c的形状由a决定,位置由c决定.

  (2)二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y轴.

  当a>0时,图象的开口向上,有最低点(即顶点),当x=0时,y最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大.

  当a<0时,图象的开口向下,有最高点(即顶点),当x=0时,y最大值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小.

  (3)抛物线y=ax2+c与y=ax2的关系.

  抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动.

函数知识点总结11

  一次函数的定义

  一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。当b=0时,一次函数y=kx,又叫做正比例函数。

  1、一次函数的解析式的形式是y=kx+b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式。

  2、当b=0,k≠0时,y=kx仍是一次函数。

  3、当k=0,b≠0时,它不是一次函数。

  4、正比例函数是一次函数的特例,一次函数包括正比例函数。

  一次函数的图像及性质

  1、在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

  2、一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)。

  3、正比例函数的图像总是过原点。

  4、k,b与函数图像所在象限的关系:

  当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

  当k>0,b>0时,直线通过一、二、三象限;

  当k>0,b<0时,直线通过一、三、四象限;

  当k<0,b>0时,直线通过一、二、四象限;

  当k<0,b<0时,直线通过二、三、四象限;

  当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

  一次函数的'图象与性质的口诀

  一次函数是直线,图象经过三象限;

  正比例函数更简单,经过原点一直线;

  两个系数k与b,作用之大莫小看,

  k是斜率定夹角,b与y轴来相见,

  k为正来右上斜,x增减y增减;

  k为负来左下展,变化规律正相反;

  k的绝对值越大,线离横轴就越远。

  拓展阅读:一次函数的解题方法

  理解一次函数和其它知识的联系

  一次函数和代数式以及方程有着密不可分的联系。如一次函数和正比例函数仍然是函数,同时,等号的两边又都是代数式。需要注意的是,与一般代数式有很大区别。首先,一次函数和正比例函数都只能存在两个变量,而代数式可以是多个变量;其次,一次函数中的变量指数只能是1,而代数式中变量指数还可以是1以外的数。另外,一次函数解析式也可以理解为二元一次方程。

  掌握一次函数的解析式的特征

  一次函数解析式的结构特征:kx+b是关于x的一次二项式,其中常数b可以是任意实数,一次项系数k必须是非零数,k≠0,因为当k = 0时,y = b(b是常数),由于没有一次项,这样的函数不是一次函数;而当b = 0,k≠0,y = kx既是正比例函数,也是一次函数。

  应用一次函数解决实际问题

  1、分清哪些是已知量,哪些是未知量,尤其要弄清哪两种量是相关联的量,且其中一种量因另一种量的变化而变化;

  2、找出具有相关联的两种量的等量关系之后,明确哪种量是另一种量的函数;

  3、在实际问题中,一般存在着三种量,如距离、时间、速度等等,在这三种量中,当且仅当其中一种量时间(或速度)不变时,距离与速度(或时间)才成正比例,也就是说,距离(s)是时间(t)或速度( )的正比例函数;

  4、求一次函数与正比例函数的关系式,一般采取待定系数法。

  数形结合

  方程,不等式,不等式组,方程组我们都可以用一次函数的观点来理解。一元一次不等式实际上就看两条直线上下方的关系,求出端点后可以很容易把握解集,至于一元一次方程可以把左右两边看为两条直线来认识,直线交点的横坐标就是方程的解,至于二元一次方程组就是对应2条直线,方程组的解就是直线的交点,结合图形可以认识两直线的位置关系也可以把握交点个数。

  如果一个交点时候两条直线的k不同,如果无穷个交点就是k,b都一样,如果平行无交点就是k相同,b不一样。至于函数平移的问题可以化归为对应点平移。k反正不变然后用待定系数法得到平移后的方程。这就是化一般为特殊的解题方法。

函数知识点总结12

  奇函数和偶函数的定义

  奇函数:如果函数f(x)的定义域中任意x有f(—x)=—f(x),则函数f(x)称为奇函数。

  偶数函数:如果函数f(x)的定义域中任意x有f(—x)=f(x),则函数f(x)称为偶数函数。

  性质

  奇函数性质:

  1、图象关于原点对称

  2、满足f(—x)= — f(x)

  3、关于原点对称的区间上单调性一致

  4、如果奇函数在x=0上有定义,那么有f(0)=0

  5、定义域关于原点对称(奇偶函数共有的`)

  偶函数性质:

  1、图象关于y轴对称

  2、满足f(—x)= f(x)

  3、关于原点对称的区间上单调性相反

  4、如果一个函数既是奇函数有是偶函数,那么有f(x)=0

  5、定义域关于原点对称(奇偶函数共有的)

  常用运算方法

  奇函数±奇函数=奇函数

  偶函数±偶函数=偶函数

  奇函数×奇函数=偶函数

  偶函数×偶函数=偶函数

  奇函数×偶函数=奇函数

  证明方法

  设f(x),g(x)为奇函数,t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=—f(x)+(—g(x))=—t(x),所以奇函数加奇函数还是奇函数;

  若f(x),g(x)为偶函数,t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=f(x)+g(x)=t(x),所以偶函数加偶函数还是偶函数。

函数知识点总结13

  特别地,二次函数(以下称函数)y=ax+bx+c。

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax+bx+c=0。

  此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

  1.二次函数y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的图象形状相同,只是位置不同。当h>0时,y=a(x-h)的图象可由抛物线y=ax向右平行移动h个单位得到。

  当h<0时,则向xxx移动|h|个单位得到。

  当h>0,k>0时,将抛物线y=ax向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)+k的图象。

  当h>0,k<0时,将抛物线y=ax向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象。

  当h<0,k>0时,将抛物线向xxx移动|h|个单位,再向上移动k个单位可得到y=a(x-h)+k的图象。

  当h<0,k<0时,将抛物线向xxx移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象。

  因此,研究抛物线y=ax+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便。

  2.抛物线y=ax+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b]/4a)。

  3.抛物线y=ax+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的'增大而减小。

  4.抛物线y=ax+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c)。

  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的两根.这两点间的距离AB=|x-x|。

  当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。

  5.抛物线y=ax+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b)/4a。

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax+bx+c(a≠0)。

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)+k(a≠0)。

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a≠0)。

函数知识点总结14

  本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。所以理解了前面的几个知识点,函数的.图象就迎刃而解了。

  一、函数的单调性

  1、函数单调性的定义

  2、函数单调性的判断和证明:

  (1)定义法

  (2)复合函数分析法

  (3)导数证明法

  (4)图象法

  二、函数的奇偶性和周期性

  1、函数的奇偶性和周期性的定义

  2、函数的奇偶性的判定和证明方法

  3、函数的周期性的判定方法

  三、函数的图象

  1、函数图象的作法

  (1)描点法

  (2)图象变换法

  2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

  常见考法

  本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。选择题、填空题和解答题都有,并且题目难度较大。在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。多考查函数的单调性、最值和图象等。

  误区提醒

  1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。

  2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。

  3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。

  4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。

  5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。

函数知识点总结15

  一次函数:一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。甚至有存在探究题目出现。

  主要考察内容:

  ①会画一次函数的图像,并掌握其性质。

  ②会根据已知条件,利用待定系数法确定一次函数的解析式。

  ③能用一次函数解决实际问题。

  ④考察一ic函数与二元一次方程组,一元一次不等式的关系。

  突破方法:

  ①正确理解掌握一次函数的概念,图像和性质。

  ②运用数学结合的思想解与一次函数图像有关的问题。

  ③掌握用待定系数法球一次函数解析式。

  ④做一些综合题的训练,提高分析问题的能力。

  函数性质:

  1.y的变化值与对应的x的变化值成正比例,比值为k.即:y=kx+b(k,b为常数,k≠0),∵当x增加m,k(x+m)+b=y+km,km/m=k。

  2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。

  3当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。

  4.在两个一次函数表达式中:

  当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数图像性质

  1、作法与图形:通过如下3个步骤:

  (1)列表.

  (2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的'y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。

  正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。(3)连线,可以作出一次函数的图象一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b).

  2、性质:

  (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

  (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。

  3、函数不是数,它是指某一变化过程中两个变量之间的关系。

  4、k,b与函数图像所在象限:

  y=kx时(即b等于0,y与x成正比例):

  当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k0,b>0,这时此函数的图象经过第一、二、三象限;当k>0,b

【函数知识点总结】相关文章:

函数知识点总结02-10

函数知识点总结06-23

[精华]函数知识点总结08-28

函数知识点总结(精)08-21

(精品)函数知识点总结08-22

(精)函数知识点总结08-25

(精)函数知识点总结08-25

函数知识点总结【热门】08-21

[精选]函数知识点03-01

函数知识点03-01