速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。这一周我们学习加、减法的巧算方法,这些方法主要根据加、减法的运算定律和运算性质,通过对算式适当变形从而使计算简便。下面是小编帮大家整理的小学四年级奥数速算与巧算练习题,欢迎大家借鉴与参考,希望对大家有所帮助。
小学四年级奥数速算与巧算练习题1
【例题1】 计算9+99+999+9999
【思路导航】这四个加数分别接近10、100、1000、10000。在计算这类题目时,常使用减整法,例如将99转化为100-1。这是小学数学计算中常用的.一种技巧。
9+99+999+9999
=(10-1)+(100-1)+(1000-1)+(10000-1)
=10+100+1000+10000-4
=11106
练习1:
1.计算99999+9999+999+99+9
2.计算9+98+996+9997
3.计算1999+2998+396+497
4.计算198+297+396+495
5.计算1998+2997+4995+5994
6.计算19998+39996+49995+69996.
【例题2】计算489+487+483+485+484+486+488
【思路导航】认真观察每个加数,发现它们都和整数490接近,所以选490为基准数。
489+487+483+485+484+486+488
=490×7-1-3-7-5-6-4-2
=3430-28
=3402
想一想:如果选480为基准数,可以怎样计算?.
练习2:
1.50+52+53+54+51
2.262+266+270+268+264
3.89+94+92+95+93+94+88+96+87
4.381+378+382+383+379
5.1032+1028+1033+1029+1031+1030
6.2451+2452+2446+2453.
【例题3】计算下面各题。
(1)632-156-232
(2)128+186+72-86
【思路导航】在一个没有括号的算式中,如果只有第一级运算,计算时可以根据运算定律和性质调换加数或减数的位置。
(2)128+186+72-86
=128+72+186-86
=(128+72)+(186-86)
=200+100=300
(1)632-156-232
=632-232-156
=400-156
=244
练习3:
计算下面各题1.1208-569-2082.283+69-1833.132-85+684,2318+625-1318+375
【例题4】计算下面各题。
1. 248+(152-127)
2. 324-(124-97)
3. 283+(358-183)
【思路导航】在计算有括号的加减混合运算时,有时为了使计算简便可以去括号,如果括号前面是“+”号,去括号时,括号内的符号不变;如果括号前面是“-”号,去括号时,括号内的加号就要变成减号,减号就要变成加号。
2.324-(124-97)
=324-124+97
=200+97
=297
3.283+(358-183)
=283+358-183
=283-183+358
=100+358=458
我们可以把上面的计算方法概括为:括号前面是加号,去掉括号不变号;括号前面是减号,去掉括号要变号。
1.248+(152-127)
=248+152-127
=400-127
=273
练习4:
计算下面各题
1.348+(252-166)
2.629+(320-129)
3. 462-(262-129)
4. 662-(315-238)
5.5623-(623-289)+452-(352-211)
6.736+678+2386-(336+278)-186
【例题5】计算下面各题。
(1)286+879-679
(2)812-593+193
【思路导航】在计算没有括号的加减法混合运算式题时,有时可以根据题目的特点,采用添括号的方法使计算简便,与前面去括号的方法类似,我们可以把这种方法概括为:括号前面是加号,添上括号不变号;括号前面是减号,添上括号要变号。
(2)812-593+193
=812-(593-193)
=812-400
=412
(1)286+879-679
=286+(879-679)
=286+200
=868
练习5:
计算下面各题。
1.368+1859-859 2.582+393-293
3.632-385+285 4.2756-2748+1748+244
5.612-375+275+(388+286) 6.756+1478+346-(256+278)-246
小学四年级奥数速算与巧算练习题2
1.计算899998+89998+8998+898+88
2.计算799999+79999+7999+799+79
3.计算(1988+1986+1984++6+4+2)-(1+3+5++1983+1985+1987)
4.计算12+34+56++19911992+1993
5.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推.从1点到12点这12个小时内时钟共敲了多少下?
6.求出从1~25的全体自然数之和.
7.计算 1000+999998997+996+995994993++108+107106105+104+103102101
8.计算92+94+89+93+95+88+94+96+87
9.计算(12599+125)16
10.计算 3999+3+998+8+29+2+9
11.计算99999978053
12.两个10位数1111111111和9999999999的乘积中,有几个数字是奇数?
习题解答
1.利用凑整法解.
899998+89998+8998+898+88
=(899998+2)+(89998+2)+(8998+2)+(898+2)(88+2)-10
=900000+90000+9000+900+90-10
=999980.
2.利用凑整法解.
799999+79999+7999+799+79
=800000+80000+8000+800+80-5
=888875.
3.(1988+1986+1984++6+4+2)-(1+3+5++1983+1985+1987)
=1988+1986+1984++6+4+2-1-3-5
-1983-1985-1987
=(1988-1987)+(1986-1985)++(6-5)+(4-3)+(2-1)
=994.
4.1-2+34+5-6++1991-1992+1993=1+(3-2)+(5-4)++(1991-1990)+(1993-1992)
= 1+1996
=997.
5.1+2+3+4+5+6+7+8+9+10+11+12
=136=78(下).
6.1+2+3++24+25
=(1+25)+(2+24)+(3+23)++(11+15)+(12
+14)+13
=2612+13=325.
7.解法1:1000+999998997+996+995994-993++108+107106105+104+103102101=(1000+999998997)+(996+995994-993)++(108+107106105)+(104+103102101)
解法 2:原式=(1000998)+(999997)+(104102)
+(103101)
=2450
=900.
解法 3:原式=1000+(999998997+996)+(995994
-993+992)++(107106105+104)
+(103102101+100)-100
=1000100
=900.
9.(12599+125)16
=125(99+1)16
= 12510082
=12581002
=200000.
10.3999+3+998+8+29+2+9
= 3(999+1)+8(99+1)+2(9+1)+9
=31000+8100+210+9
=3829.
11.99999978053
=(10000001)78053
=7805300000078053
=78052921947.
12.11111111119999999999
=1111111111(100000000001)
=111111111100000000001111111111
=11111111108888888889.
这个积有10个数字是奇数.
小学四年级奥数速算与巧算练习题3
这一周,我们来学习一些比较复杂的用凑整法和分解法等方 法进行的乘除的巧算。这些计算从表面上看似乎不能巧算,而如果把已知数适当分解或转化就可以使计算简便。
对于一些较复杂的计算题我们要善于从整体上把握特征,通过对已知数适当的分解和变形,找出数据及算式间的联系,灵活地运用相关的运算定律和性质,从而使复杂的计算过程简化。
例1:计算236×37×27
分析与解答:在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的数。例如,可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。
236×37×27
=236×(37×3×9)
=236×(111×9)
=236×999
=236×(1000-1)
=236000-236
=235764
练 习 一
计算下面各题:
132×37×27 315×77×13 6666×6666
例2:计算333×334+999×222
分析与解答:表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。
333×334+999×222
=333×334+333×(3×222)
=333×(334+666)
=333×1000
=333000
练 习 二
计算下面各题:
9999×2222+3333×3334 37×18+27×42 46×28+24×63
例3:计算20012001×2002-20022002×2001
分析与解答:这道题如果直接计算,显得比较麻烦。根据题中的数的特点,如果把20012001变形为2001×10001,把20022002变形为2002×10001,那么计算起来就非常方便。
20012001×2002-20022002×2001
=2001×10001×2002-2002×10001×2001
=0
小学四年级奥数速算与巧算练习题4
速算与巧算
(4942+4943+4938+4939+4941+4943)÷6
解答:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数。
(4942+4943+4938+4939+4941+4943)÷6
=(4940×6+2+3-2-1+1+3)÷6
=(4940×6+6)÷6(这里没有把4940×6先算出来,而是运用了除法中的巧算方法)
=4940×6÷6+6÷6
=4940+1
=4941.
计算:(1234+2341+3421+4123)÷(1+2+3+4)的值是多少?
解答:(第五届希望杯2试试题)在1234,2341,3412,4123中,数字1,2,3,4分别在各个数位上出现过一次,(1234+2341+3421+4123)÷(1+2+3+4)=1111这是属于位值原理的题目,从题目我们观察到数字1,2,3,4分别在各个数位上出现过一次,在接着类题目的时候我们可以把所有的数加起来然后除以各个数字之和。
【小学四年级奥数速算与巧算练习题】相关文章:
速算与巧算奥数试题03-26
奥数速算与巧算练习题和答案07-25
优秀奥数奥术试题《速算与巧算》03-30
小学速算与巧算训的奥数练试题11-12
速算与巧算四年级奥数试题03-28
四年级奥数试题:速算与巧算04-17
四年级奥数试题:速算与巧算04-17
小学四年级《速算与巧算》奥数试题及详解03-28
关于三年级的速算与巧算的奥数练习题及答案07-25