作为一名人民教师,我们要有很强的课堂教学能力,教学的心得体会可以总结在教学反思中,来参考自己需要的教学反思吧!下面是小编为大家整理的《用坐标表示平移》的教学反思范文,欢迎大家分享。
《用坐标表示平移》的教学反思1
现在我们的数学已经越来越接近我们的日常生活,来源于我们的生活,这些生活中的学习素材是学生在生活中可以接触到的,也是对他们的生活有意思的。所以学习起来很能激发他们的兴趣与热情,这就是一直在提倡的将抽象的数学知识寓于现实的,有意义的学习活动中,是在数学与生活中架起一座桥梁。现对本节课反思如下:
1、精心设计问题
问题是思维的核心,只有提出了一种有一定深度的问题,才能引发学生的积极思维,才能培养学生的数学能力。学生在积极探索的过程中,不仅学带的基础知识得到了应用,解决问题的能力也得到了培养,更主要的是学会自主学习,积极探究、创新的精神也得到充分的培养,从而形成了一种能力。
一方面,在问题的关键处要让学生想到,另一方面,要能提出尖锐的问题让学生大胆地想象,特别是整节课看下来,教学设计过程明确,教态从容不迫,很亲切自然,让孩子能够很顺利的融入到良好的课堂的学习气氛之中。在引入阶段时引用了学生熟悉的平移,接着再引出本课要学习的《用坐标表示平移》,过渡的很自然,有层次。通过小组之间的讨论和交流,学生能够比较清楚的阐述了平面直角坐标中图形平移与坐标变化之间的特点,说出用坐标表示平移变化之间关系等知识点。同时也注重培养学生的观察能力和语言表达的能力,让他们能够通过自己的观察表达出数量的变化规律。
2、营造“对话”的环境
主动营造师生对话的环境。教师不仅要担当知识的传授者,还要在不同的场合担当辅导者、咨询者、合作者、朋友等复杂角色。教师应当创造机会接近学生、了解学生,与学生展开平等的对话和交流,学生才愿意在课堂上主动参与教学活动,把握学习的自主权,从而提高学习的能力和效率。教师切忌“一言堂”、“满堂灌”要善于营造宽松有趣,生动活泼的思考气氛,努力为学生创设活动的机会,最大限度地调动学生参与的积极性,发挥学生的主体作用。
我想在今后的实践中我要更多地改进方法,最终找到一种真正适合的最有效的方法,让学生学得更轻松,老师也教得很快乐!调动学生的积极性
《用坐标表示平移》的教学反思2
本节课我在学生已有的知识经验基础之上,创设了情境,能激发学生学习的积极性。学生通过在直角坐标系下坐标的平移与点的坐标变化规律的探索,亲身经历了知识的形成过程。不但改变了以往学生死记硬背的学习方式,而且在教学活动中培养了学生自主探究、合作交流等良好的学习习惯。
本节课我的教学目标是:知识与技能。
(1)掌握点的坐标变化与点的左右或上下平移间的关系;
(2)掌握图形各个点的坐标变化与图形平移的关系,解决与平移有关的问题。过程与方法:经历探索点的坐标变化与点平移的关系,图形各个点坐标变化与图形平移的过程,发展学生的'形象思维能力和数形结合意识。情感态度与价值观:通过“自主探究”与“合作交流,培养学生的自信心与合作精神。我的设计意图是:首先创设一个问题情境,如果某个小鸭在坐标系内的位置是(2,-3),它向右游了4单位,则它的坐标变成了多少?如果它向下游4个单位长度,它的坐标又是多少呢?让学生通过在坐标系内画图找出答案,同时总结出变化规律。
通过学生动手画图到寻找规律,由易到难,让学生自己动手体验,从而对这一知识点有较深的印象,同时活跃课堂气氛,调动学生学习兴趣,为学生学习例题提供必要的前奏。接着出示例题,让学生自己动手体验,当点变成三角形后,点的坐标变化与图形平移存在什么关系,让学生通过画出的图形解答此问题,从而突破学生学习的难点。本节课都采用学生自己动手操作总结规律解决问题,让学生利用多种感官全方位参与探究知识的过程,给学生创设充分表现自己的空间,引导学生去探索、发现、理解知识。充分体现了学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者的新理念。课堂上,使用课件教学,给学生以直观、运动的感受,给学生留下了深刻的影响。
各小组能针对本组问题,积极开展讨论;各小组能大胆展示本组的学习内容;学生在观察、探究的基础上归纳出在平面直角坐标中,点的平移与坐标变化的规律,这既给学生提供了一个充分从事数学活动的机会,又体现了学生是数学学习的主人的理念。通过学习,绝大多数学生掌握了平面内点的坐标平移的规律;通过学习,绝大多数学生掌握图形上各个点的坐标变化与图形平移的关系;通过学习,大部分学生掌握了图形平移的规律,能解决与平移有关的问题。
本节课的教学过程设计为:情境-问题-探究-反思(归纳)-提高,这充分体现了新课程理念下,数学课堂教学方式的根本转变。教学中我遇到了这样的问题:我预设让学生先总结点的平移规律,再由点的平移规律到图形的平移规律。但学生对点的平移规律很容易理解,而对图形的整体平移困难很大。比如:将一个图形先左右平移,再将这个图形上下平移。很多学生都是第一次平移正确,而第二次平移是将平移后的图形进行平移。指导多次都无法纠正过来。但遗憾的是:少数基础差的学生连简单问题都回答不上;教学过程中,我讲的较多,给学生探究的机会少,课堂上让学生展示的时间少,练的也较少。我觉得整个教学中显得前松后紧,学生没有足够的时间完成达标测试,导致达标测试未完成;课堂中学生由于基础差,配合不默契,导致课堂气氛不活跃教学效果一般。
《用坐标表示平移》的教学反思3
上星期我上了一节《用坐标表示平移》的公开课,本节课是在学生学习了平移的概念和性质的基础上,探究图形在坐标系内平移的变化规律的。主要是引导学生运用分类思想,依次经过点和图形的平移的观察、画图、猜想、归纳、比较、分析等活动,最终探究出点的坐标变化与点平移的关系,图形各个点的坐标变化与图形平移的关系。
我在学生的前置性学习部分让学生将点A(-2,-3)向右平移5个单位长度,它的坐标是什么?通过思考,学生可以验证观察后的推断。然后把点A分别向左平移2个单位、向上平移6个单位、点A向下平移4个单位。
通过以上环节,大多数学生都会发现点平移的规律,进而归纳出点平移与坐标的变化规律,对于学习有困难的学生,可通过小组讨论、其他同学的帮助得到点平移与坐标的变化规律。在这一分层递进教学环节中,四人学习小组大提高了学生的参与率(尤其是基础较差的学生)改变了以前有少部分参与而大部分学生做“观众”的课堂氛围,进而激发了学生学数学的爱好和进一步学习的愿望。四人学习小组中,学生能充分发挥互助精神,好生辅导差生,学生用他自己的语言教学生,可使部分学生比听老师讲更容易接受,可帮助基础差的学生及时解决问题。
学生通过观察、合作交流等实践活动,经历了从特殊到一般、从具体到抽象的探索过程,最终归纳总结点平移与坐标变化的规律就相对简单了。在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)。为了方便学生记忆,我还在结论的后面总结了一句口诀:左右平移,左减右加纵不变;上下平移,上加下减横不变。通过口诀的记忆,学生在运用的时候可以更快、更准确地解决问题。在这个知识点后,我设计了5个有梯度的练习题,大部分学生都能轻松地解决了这5个习题。
在这个知识点我还设计了一个思考题:在平面直角坐标系中,有一点(1,3),要使它平移到点(-2,-2),应怎样平移?说出平移的路线。这个问题的出现这个问题的出现就是为了使学生发现斜向平移可以分解为水平平移和垂直平移来完成。将点平移的知识提高了一个层次,也体现了知识由浅到深,由简到繁的过程,能拓宽学生的思路,同时也为图形的斜向平移埋下伏笔。但显然,部分学生不大理解我的设计意图,有的学生通过绕很多路线才平移到点(-2,-2)。故在这一问题上,我认为我处理得有点不当,引导得不够好。
学生已经掌握了点平移与坐标之间的变化关系,然后再学习图形平移与图形个点之间坐标变化的关系就相对简单多了。在这一知识点的处理上我让学生做了大量的练习,增强了学生对这一知识点的熟悉。
为了调动学生积极参与学习的全过程,各层次的学生都能通过听课、练习、等环节学习知识并在课堂上找到展示自己成果的机会,我在这节课的最后一个环节设计了分层的练习,保证每个学生每节课都有成功的体验。学生只有有成功感才能对学习有持续的兴趣。但在操作过程中本人还存在一定的困惑,因为在评讲各层次学生的练习时,基础差的学生根本听不懂,或无事可做,或在做练习,但因为老师在讲课,所以很多学生的注意力无法集中。这时候这些同学的时间就呈一个轮空状态,那究竟如何操作才能使得这些学生充分利用好这段时间呢?
在这节课中,我尝试实行了分层教学,实行分层教学需在数学教学中进一步加强理论学习和实践探索,让分层教学更趋科学化、合理化。
【《用坐标表示平移》的教学反思范文】相关文章: