作为一名人民教师,时常需要用到教案,教案是教学活动的依据,有着重要的地位。怎样写教案才更能起到其作用呢?下面是小编整理的二次根式教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
二次根式教案1
一、案例背景:
本节是九年级上学期数学的起始课。二次根式的学习,是对代数式的进一步学习。本节主要经历二次根式的发生过程及对二次根式的理解。掌握求二次根式的值和二次根式根号内字母的取值范围。为以后的运用二次根式的运算解决实际问题打好基础。
二、案例描述:
1、学习任务分析:
通过对数和平方根、算术平方根的复习,鼓励学生经历观察、归纳、类比等方法理解二次根式的概念。在解决实际问题的时候,注意转化思想的渗透。体会分析问题、解决问题的方法,积累数学活动经验。比如求二次根式根号内的字母的取值范围,就是将问题转化为不等式来解决。注意学生数学书写格式的规范,为以后的学习打好基础。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用复习以前学过的知识导入新课。设计合作学习活动,引导学生操作、观察、探索、交流、发现、思维,解决实际问题的过程,真正把学生放到主体位置。
2、学生的认知起点分析:
学生已掌握数的平方根和算术平方根。这为经历二次根式概念的发生过程做好准备。另外,学生对数的.算术平方根的理解作为基础,经历跟此根式概念的发生过程,引导学生对二次根式概念的理解。
案例反思:
1、下列代数式若能作为二次根式的被开方数,则求出字母的取值范围?若不能,则说明理由。1-2a-2a2-1(2+a)2-(a-5)2
以往对这类问题的回答都是全班回答,有些学生反面信息不能体现出来。采取的措施是全班举手势回答,可以做二次根式的被开方数举“布”,若不能举“拳头”。使班级能够全面参与,避免集体回答所体现不出的问题。
2、合作活动:
第一位同学——出题者:请你按表中的要求写完后,按顺时针方向交给下一位同学;
第二位同学——解题者:请你按表中的要求解完后,按顺时针方向交给下一位同学;
第三位同学——批改者:请你用蓝笔批改,若有错误,请与解题者商议并请其订正,完成交给你信任的同学用红笔复;
第四位同学——复查者:请你一定要把好关哦!
出题者姓名:
解题者姓名:
第一个二次根式:
1、 要使式子的值为实数,求x的取值范围。
2、 写出x的一个值,使式子的值为有理数,并求出这个有理数。
3、 写出x的一个值,使式子的值为无理数,并求出这个无理数。
第二个二次根式:
1、 要使式子的值为实数,求x的取值范围。
2、 写出x的一个值,使式子的值为有理数,并求出这个有理数。
3、 写出x的一个值,使式子的值为无理数,并求出这个无理数。
批改者姓名:
复查者姓名:
《课程标准》突出了学生在学习中的地位 -- 学生是学习的主人,同时,教师的地位、角色发生了变化,从 “ 主导 ” 变成了 “学生学习活动的组织者、引导者和合作者 ”。合作活动的安排就是对这一课程标准的体现。
二次根式教案2
教学目标
1、根据了解二次根式的概念:
2、知道被开方数必须是非负数的理由;
3、能运用二次根式的性质解决实际问题
4新设计:我们知道,用字母表示数,可以将字母和数一起运算。前面已经学习了单项式、多项式和分式等概念和运算,可以发现,式的运算本质上就是对符号运用运算律所进行的形式运算。本节课主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。前面我们学习的平方根和算术平方根的概念和性质是学习二次根式的基础,我们先来回忆一下平方根和算术平方根的有关知识。
5、新设计:问题1平方根的概念,算术平方根的概念,平方根的性质。
6、学情分析:本班40名学生,成绩参差不齐,程度差距很大,鉴于此,对于学生要分层教学。
7、重点难点:1.重点:形如(a≥0)的式子叫做二次根式的概念;2.难点:运用二次根式的性质解决实际问题。
8、教学过程6.1第一学时教学活动
活动1【讲授】二次根式
教学过程设计
创设情境,提出问题
引言
我们知道,用字母表示数,可以将字母和数一起运算。前面已经学习了单项式、多项式和分式等概念和运算,可以发现,式的运算本质上就是对符号运用运算律所进行的形式运算。本节课主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。前面我们学习的平方根和算术平方根的概念和性质是学习二次根式的基础,我们先来回忆一下平方根和算术平方根的有关知识。
问题1平方根的概念,算术平方根的概念,平方根的性质。
师生活动:给学生充分思考和讨论时间,让他们回忆有关平方根和算术平方根的.有关知识,才能在此基础上再进一步研究二次根式概念。
设计意图:回顾已学的数和式的运算,丛数和式运算的完整性角度提出要研究的问题,让学生了解本章将要学习的主要内容,起到先行组织者的作用。
问题2请思考下列问题
面积为3的正方形的边长为,面积为S的正方形边长为。
一个长方形围栏,长是宽的2倍,面积为130㎡,则它的宽为m。
一个物体从高处自由落下,落在地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t2。如果用含有h的式子表示t,则t为。
师生活动:学生思考并完成上述问题,用算术平方根表示结果,教师进行适当引导和评价。关键是帮助学生实现从数的算术平方根到用含有字母的式子表示算术平方根的抽象。
设计意图:为概括二次根式的概念提供具体例子,同时发展符号意识。
抽象概括,形成概念
问题3上面得到的式子有什么共同特征?
师生活动:教师引导学生概括得出共同特征,并给出二次根式的定义。
追问1中a的取值有要求吗?为什么?
师生活动:教师引导学生讨论,分析共同特点,归纳得到二次根式的概念,并强调“被开方数非负”。
追问2二次根式有什么样的特点?
师生活动:给学生充分的思考和讨论时间,让学生总结二次根式的特点,教师归纳总结。
设计意图:采用从具体到抽象的方式,通过归纳的出二次根式的概念。
辨析概念,应用巩固
例1下列各式是二次根式吗?
师生活动:教师引导学生从二次根式的特征出发思考问题。
例2求下列二次根式中字母的取值范围:
师生活动:教师可以通过问题“观察各式被开方数是什么?你能根据二次根式的概念的带答案吗?”引导学生从概念出发思考问题。
追问:求二次根式中字母的取值范围的。基本依据:
师生活动:给学生充分的思考和讨论时间,让学生总结回答,教师归纳总结。
问题4 x取何值时,下列二次根式有意义?
师生活动:学生抢答加分,调动学大亨的积极性。
设计意图:让学生独立思考,再追问。
问题5计算
师生活动:通过简单计算让学生总结规律。
例3计算
师生活动:学生直接回答。
设计意图:通过加分制调动学生的积极性,提高学生的注意力,通过练习巩固知识点。
问题7计算
师生活动:通过简单计算让学生总结规律。
追问:
师生活动:学生讨论回答,教师归纳总结。
设计意图:通过简单计算学生自己归纳总结二次根式的性质,加深学生的印象。
综合应用,深化提高
练习1学生完成教科书第3页的练习。
练习2若1<x<4,则化简
设计意图:辨别二次根式的概念,确定二次根式有意的条件。利用二次根式的性质解题。
小结
教师与学生一起回顾本节课所学主要内容,并请学生回答下列问题:
什么叫二次根式?二次根式有意义的条件是什么?二次根式的值的范围是什么?
二次根式与算术平方根有什么联系与区别?
我们以前学过整式、分式都能像数一样进行运算,你认为对于二次根式应该进一步研究哪些问题?
设计意图:共同回顾本节课学习的概念,再次练习算术平方根理解二次根式的概念,提出二次根式应该研究的问题。
布置作业
教科书习题16.1第1、2题。
教学反思:
1、在实际授课中,通过以下步骤让学生认识、理解、并掌握本节知识:
(1)让学生回顾了算术平方根与平方根的概念,并且通过一个思考栏目的两道题,得出二次根式的定义后又复习了算术平方根具有双重非负性;
(2)通过练习掌握如何判断一个式子是否是二次根式的条件,并经过例1掌握二次根式在实数范围内有意义的条件;
(3)通过练习让学生得出二次根式的两个性质,体会从特殊到一般的思维过程,进而掌握公式的一般推导方法;……,本节课大部分时间都是引导学生边学边做,让学生经历了整个学习过程。
2、在学习过程中,突出了引导学生自己得出结论,特别是二次根式的两个性质,在做完思考题之后,学生自己就初步得出了结论,而且通过其他学生的补充越来越完善。
3、让学生自己找出性质1和性质2的区别与联系,虽然不够系统和完整,但通过这样的训练,培养了学生总结规律的能力。
4、在实际教学中,仍然存在着对课堂时间把握不精确的问题,出现了前松后紧的现象,以致有深度的练习没时间完成,结束的也比较仓促。在今后教学中,应注意时间的掌控。
5、在引导学生探索求知和互动学习方面还有欠缺。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,对学生探索求知进行了引导,并且鼓励大家自己得出结论,但在互动方面做的还不够,大部分学生都是独立思考,很少与同学合作交流,今后的教学中应多培养学生合作交流的意识,这样有助于他们今后的生活和学习。
二次根式教案3
一、素质教育目标
(一)知识教学点
1.使学生了解最简二次根式的概念和同类二次根式的概念.
2.能判断二次根式中的同类二次根式.
3.会用同类二次根式进行二次根式的加减.
(二)能力训练点
通过本节的学习,培养学生的思维能力并提高学生的运算能力.
(三)德育渗透点
从简单的同类二次根式的合并,层层深入,从解题的过程中,让学生体会转化的思维,渗透辩证唯物主义思想.
(四)美育渗透点
通过二次根式的加减,渗透二次根式化简合并后的形式简单美.
二、学法引导
1.教师教法引导法、比较法、剖析法,在比较和剖析中,不断纠正错误,从而树立牢固的计算方法.
2.学生学法通过不断的练习,从中体会、比较、二次根式加减法中,正确的方法使用,并注重小结出二次根式加减法的法则.
三、重点·难点·疑点及解决办法
1.教学重点二次根式的加减法运算.
2.教学难点二次根式的化简.
3.疑点及解决办法二次根式的加减法的关键在于二次根式的化简,在适当复习二次根的化简后进行一步引入几个整式加减法的,以引起学生的求知欲与兴趣,从而最后引入同类二次根式的加减法,可进行阶梯式教学,由浅到深、由简单到复杂的教学方法,以利于学生的理解、掌握和运用,通过具体例题的计算,可由教师引导,由学生总结出计算的步骤和注意的问题,还可以通过反例,让学生去伪存真,这种比较法的教学可使学生对概念的理解、法则的运用更加准确和熟练,并能提高学生的学习兴趣,以达到更好的学习效果.
四、课时安排
2课时
五、教具学具准备
投影片
六、师生互动活动设计
1.复习最简二根式整式及的`加减运算,引入二次根式的加减运算,尽量让学生回答问题.
2.教师通过例题的示范让学生了解什么是二次根式的加减法,并引入同类的二次根式的定义.
3.再通过较复杂的二次根式的加减法计算,引导学生小结归纳出二次根式的加减法的法则.
4.通过学生的反复训练,发现问题及时纠正,并引导学生从解题过程中体会理解二次根式加减法的实质及解决的方法.
七、教学步骤
(一)明确目标
学习二次根式化简的目的是为了能将一些最终能化为同类二次根式项相合并,从而达到化繁为简的目的,本节课就是研究二次根式的加减法.
(二)整体感知
同类二次根式的概念应分二层含义去理解(1)化简后(2)被开方数还相同.通过正确理解二次根式加减法的法则来准确地实施二次根式加减法的运算,应特别注意合并同类二次根式时仅将它们的系数相加减,根式一定要保持不变,并可对比整式的加减法则以增加对合并同类二次根式的理解,增强综合运算的能力.
【二次根式教案】相关文章:
二次根式的教案10-19
二次根式教案02-15
《二次根式的运算》的教案06-20
关于二次根式教案08-27
《二次根式的运算》的教案09-07
【精选】二次根式教案3篇08-13
数学二次根式教案02-15
【精选】二次根式教案4篇07-02
二次根式教案九篇02-06