数学二次根式教案

2023-02-15 数学教案

  作为一位杰出的老师,编写教案是必不可少的,教案是保证教学取得成功、提高教学质量的基本条件。那么问题来了,教案应该怎么写?以下是小编精心整理的数学二次根式教案,希望对大家有所帮助。

数学二次根式教案1

  【学习目标】

  1、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。

  2、过程与方法:进一步体会分类讨论的数学思想。

  3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。

  【学习重难点】

  1、重点:准确理解二次根式的概念,并能进行简单的计算。

  2、难点:准确理解二次根式的双重非负性。

  【学习内容】课本第2—3页

  【学习流程】

  一、课前准备(预习学案见附件1)

  学生在家中认真阅读理解课本中相关内容的知识,并根据自己的理解完成预习学案。

  二、课堂教学

  (一)合作学习阶段。

  教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的`形式,组内交流、总结,并记录合作学习中碰到的问题。组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。

  (二)集体讲授阶段。(15分钟左右)

  1、各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。

  2、教师对合作学习中存在的普遍的不能解决的问题进行集体讲解。

  3、各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。

  (三)当堂检测阶段

  为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。

  (注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)

  三、课后作业(课后作业见附件2)

  教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。

  四、板书设计

数学二次根式教案2

  教学目的:

  1、在二次根式的混合运算中,使学生掌握应用有理化分母的方法化简和计算二次根式;

  2、会求二次根式的代数的值;

  3、进一步提高学生的综合运算能力。

  教学重点:在二次根式的混合运算中,灵活选择有理化分母的方法化简二次根式

  教学难点:正确进行二次根式的混合运算和求含有二次根式的代数式的值

  教学过程:

  一、二次根式的混合运算

  例1 计算:

  分析:(1)题是二次根式的加减运算,可先把前三个二次根式化最简二次根式,把第四式的分母有理化,然后再进行二次根式的加减运算。

  (2)题是含乘方、加、减和除法的混合运算,应按运算的顺序进行计算,先算括号内的式子,最后进行除法运算。注意的计算。

  练习1:P206 / 8--① P207 / 1①②

  例2 计算

  问:计算思路是什么?

  答:先把第一人的括号内的式子通分,把第二个括号内的式子的分母有理化,再进行计算。

  二、求代数式的值。 注意两点:

  (1)如果已知条件为含二次根式的式子,先把它化简;

  (2)如果代数式是含二次根式的式子,应先把代数式化简,再求值。

  例3 已知,求的值。

  分析:多项式可转化为用与表示的式子,因此可根据已知条件中的及的值。求得与的值。在计算中,先把及的式了有理化分母。可使计算简便。

  例4 已知,求的值。

  观察代数式的特点,请说出求这个代数式的`值的思路。

  答:所求的代数式中,相减的两个式子的分母都含有二次根式,为化去它们的分母中的根号,可以分别先把各自的分母有理化或进行]通分,把这个代数式化简后,再求值。

  三、小结

  1、对于二次根式的混合混合运算。应根据二次根式的加、减、乘除和乘方运算的顺序进行,即先进行乘方运算,再进行乘、除运算,最后进行加、减运算。如果有括号,先进行括号内的式子的运算,运算结果要化为最简二次根式。

  2、在代数式求值问题中,如果已知条件所求式子中有含二次根式(或分式)的式子,应先把它们化简,然后再求值。

  3、在进行二次根式的混合运算时,要根据题目特点,灵活选择解题方法,目的在于使计算更简捷。

  四、作业

  P206 / 7 P206 / 8---②③

数学二次根式教案3

  1.请同学们回忆(≥0,b≥0)是如何得到的?

  2.学生观察下面的例子,并计算:

  由学生总结上面两个式的关系得:

  类似地,请每个同学再举一个例子,然后由这些特殊的例子,得出:

  (≥0,b0)

  使学生回忆起二次根式乘法的运算方法的推导过程.

  类似地,请每个同学再举一个例子,

  请学生们思考为什么b的`取值范围变小了?

  与学生一起写清解题过程,提醒他们被开方式一定要开尽.

  对比二次根式的乘法推导出除法的运算方法

  增强学生的自信心,并从一开始就使他们参与到推导过程中来.

  对学生进一步强化被开方数的取值范围,以及分母不能为零.

  强化学生的解题格式一定要标准.

  教学过程设计

  问题与情境师生行为设计意图

  活动二自我检测

  活动三挑战逆向思维

  把反过来,就得到

  (≥0,b0)

  利用它就可以进行二次根式的化简.

  例2化简:

  (1)

  (2)(b≥0).

  解:(1)(2)练习2化简:

  (1)(2)活动四谈谈你的收获

  1.商的算术平方根的性质(注意公式成立的条件).

  2.会利用商的算术平方根的性质进行简单的二次根式的化简.

  找四名学生上黑板板演,其余学生在练习本上计算,然后再找学生指出不足.

  二次根式的乘法公式可以逆用,那除法公式可以逆用吗?

  找学生口述解题过程,教师将过程写在黑板上.

  请学生仿照例题自己解决这两道小题,组长检查本组的学习情况.

  请学生自己谈收获,并总结本节课的主要内容.

  为了更快地发现学生的错误之处,以便纠正.

  此处进行简单处理是因为有二次根式的乘法公式的逆用作基础理解并不难.

  让学困生在自己做题时有一个参照.

  充分发挥组长的作用,尽可能在课堂上将问题解决.

数学二次根式教案4

  教学内容

  二次根式的加减

  教学目标

  知识与技能目标:理解和掌握二次根式加减的方法.

  过程与方法目标:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.

  情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.

  重难点关键

  1.重点:二次根式化简为最简根式.

  2.难点关键:会判定是否是最简二次根式.

  教法:

  1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;

  2、讲练结合法:在例题教学中,引导学生阅读,与同类项进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

  学法:

  1、类比的方法通过观察、类比,使学生感悟二次根式加减的模型,形成有效的学习策略。

  2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。

  3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的'交流与合作。

  4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

  知识点

  自主检测、同伴互查

  1、师生共同解决“学法”问题与13页“练习1”;

  2、学生演板13页“练习2、3”。

  四、知识梳理、师生共议

  1、谈收获:

  (1)二次根式的加减法则是什么?有哪些运算步骤?

  (2)怎样合并被开方数相同的二次根式呢?

  (3)二次根式进行加减运算时应注意什么问题?

  2、说不足:。

  五、作业训练、巩固提高

  1、必做题:课本15页的“习题2、3”;

  课时练习

  1.揭示学法、自主学习

  认真阅读课本14页内容,完成下列任务:

  1、完成14页“例3、4”,先做再对照:

  (1)平方差公式__________,完全平方公式__________.

  (2)每步的运算依据是什么?应注意什么问题?

  (时间7分钟若有困难,与同伴讨论)

  三、自主检测、同伴互查

  1、师生共同解决“学法”问题;

  2、学生演板14页“练习1、2”。

  四、知识梳理、师生共议

  1、谈收获:

  (1)二次根式进行混合运算时运用了哪些知识?

  (2)二次根式进行混合运算时应注意哪些问题?

数学二次根式教案5

  一、教学目标

  1.理解分母有理化与除法的关系.

  2.掌握二次根式的分母有理化.

  3.通过二次根式的分母有理化,培养学生的运算能力.

  4.通过学习分母有理化与除法的关系,向学生渗透转化的`数学思想

  二、教学设计

  小结、归纳、提高

  三、重点、难点解决办法

  1.教学重点:分母有理化.

  2.教学难点:分母有理化的技巧.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、胶片、多媒体

  六、师生互动活动设计

  复习小结,归纳整理,应用提高,以学生活动为主

  七、教学过程

  【复习提问】

  二次根式混合运算的步骤、运算顺序、互为有理化因式.

  例1 说出下列算式的运算步骤和顺序:

  (1) (先乘除,后加减).

  (2) (有括号,先去括号;不宜先进行括号内的运算).

  (3)辨别有理化因式:

  有理化因式: 与 , 与 , 与 …

  不是有理化因式: 与 , 与 …

  化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).

  例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?

  引入新课题.

  【引入新课】

  化简式子 ,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以 的有理化因式,而这个式子就是 ,从而可将式子化简.

  例2 把下列各式的分母有理化:

  (1) ; (2) ; (3)

  解:略.

  注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.

数学二次根式教案6

  教学目标

  1.使学生进一步理解二次根式的意义及基本性质,并能熟练 地化简含二次根式的式子;

  2.熟练地进行二次根式的加、减、乘、除混合运算.

  教学重点和难点

  重点:含二次根式的式子的混合运算.

  难点:综合运用二次根式的 性质及运算法则化简和计算含二次根式的式子.

  教学过程设计

  一、复习

  1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各 式成立的条件.

  指出:二次根式的这些基本性质都是在一定条件 下才成立的,主要应用于化简二次根式.

  2.二次根式 的乘法及除法的法则是什么?用式子表示出来.

  指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,

  计算结果要把分母有理化.

  3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:

  4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:

  二、例题

  例1 x取什么值时,下列各式在实数范围内有意义:

  分析:

  (1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;

  (3)题是两个二次根式的和, x的取值必须使两个二次根式都有意义;

  (4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.

  x-2且x0.

  解因为n2-90, 9-n20,且n-30,所以n2=9且n3,所以

  例3

  分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的.基本性质把式子化简,化简中应注意利用题中的隐含条件3 -a0和1-a>0.

  解 因为1-a>0,3-a0,所以

  a<1,|a-2|=2-a.

  (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

  这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.

  问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?

  分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.

  注意:

  所以在化简过程中,

  例6

  分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.

  a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

  三、课堂练习

  1.选择题:

  A.a2B.a2

  C.a2D.a<2

  A .x+2 B.-x-2

  C.-x+2D.x-2

  A.2x B.2a

  C.-2x D.-2a

  2.填空题:

  4.计算:

  四、小结

  1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.

  2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.

  3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.

  4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.

  五、作业

  1.x是什么值时,下列各式在实数范围内有意义?

  2.把下列各式化成最简二次根式:

数学二次根式教案7

  一、内容和内容解析

  1、内容

  二次根式的概念。

  2、内容解析

  本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。

  教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。

  本节课的教学重点是:了解二次根式的概念;

  二、目标和目标解析

  1、教学目标

  (1)体会研究二次根式是实际的需要。

  (2)了解二次根式的概念。

  2、教学目标解析

  (1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性。

  (2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围。

  三、教学问题诊断分析

  对于二次根式的定义,应侧重让学生理解“的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数。教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。

  本节课的教学难点为:理解二次根式的双重非负性。

  四、教学过程设计

  1、创设情境,提出问题

  问题1你能用带有根号的的式子填空吗?

  (1)面积为3的正方形的边长为_______,面积为S的正方形的边长为_______。

  (2)一个长方形围栏,长是宽的2倍,面积为130?,则它的宽为______。

  (3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:)满足关系h=5t?,如果用含有h的式子表示t,则t=_____。

  师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价。

  【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性。

  问题2上面得到的式子,,分别表示什么意义?它们有什么共同特征?

  师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根。

  【设计意图】为概括二次根式的概念作铺垫。

  2、抽象概括,形成概念

  问题3你能用一个式子表示一个非负数的算术平方根吗?

  师生活动:学生小组讨论,全班交流。教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号。

  【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力。

  追问:在二次根式的概念中,为什么要强调“a≥0”?

  师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由。

  【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解。

  3、辨析概念,应用巩固

  例1当时怎样的`实数时,在实数范围内有意义?

  师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解。

  例2当是怎样的实数时,在实数范围内有意义?呢?

  师生活动:先让学生独立思考,再追问。

  【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解。

  问题4你能比较与0的大小吗?

  师生活动:通过分和这两种情况的讨论,比较与0的大小,引导学生得出≥0的结论,强化学生对二次根式本身为非负数的理解,

  【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力。

  4、综合运用,巩固提高

  练习1完成教科书第3页的练习。

  练习2当x是什么实数时,下列各式有意义。

  (1);(2);(3);(4)。

  【设计意图】辨析二次根式的概念,确定二次根式有意义的条件。

  【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维。

  5、总结反思

  教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题。

  (1)本节课你学到了哪一类新的式子?

  (2)二次根式有意义的条件是什么?二次根式的值的范围是什么?

  (3)二次根式与算术平方根有什么关系?

  师生活动:教师引导,学生小结。

  【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法。

  6。布置作业:

  教科书习题16。1第1,3,5,7,10题。

  五、目标检测设计

  1、下列各式中,一定是二次根式的是()

  A。B。C。D。

  【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数。

  2、当时,二次根式无意义。

  【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题。

  3、当时,二次根式有最小值,其最小值是。

  【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用。

  4、对于,小红根据被开方数是非负数,得出的取值范围是≥。小慧认为还应考虑分母不为0的情况。你认为小慧的想法正确吗?试求出的取值范围。

  【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑。

数学二次根式教案8

  一、教学过程

  (一)复习提问

  1.什么叫二次根式?

  2.下列各式是二次根式,求式子中的字母所满足的条件:

  (3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值为任意实数.

  (二)二次根式的简单性质

  上节课我们已经学习了二次根式的定义,并了解了第一个简单性质

  我们知道,正数a有两个平方根,分别记作零的平方根是零。引导学生总结出,其中,就是一个非负数a的算术平方根。将符号看作开平方求算术平方根的运算,看作将一个数进行平方的运算,而开平方运算和平方运算是互为逆运算,因而有:

  这里需要注意的是公式成立的条件是a≥0,提问学生,a可以代表一个代数式吗?

  请分析:引导学生答如时才成立。

  时才成立,即a取任意实数时都成立。

  我们知道

  如果我们把,同学们想一想是否就可以把任何一个非负数写成一个数的平方形式了.

  例1计算:

  分析:这个例题中的四个小题,主要是运用公式。其中(2)、(3)、(4)题又运用了整式乘除中学习的积的幂的运算性质.结合第(2)小题中的,说明,这与带分数。因此,以后遇到,应写成,而不宜写成。

  例2把下列非负数写成一个数的平方的形式:

  (1)5;(2)11;(3)1。6;(4)0。35.

  例3把下列各式写成平方差的形式,再分解因式:

  (1)4x2—1;(2)a4—9;

  (3)3a2—10;(4)a4—6a2+9.

  解:(1)4x2—1

  =(2x)2—12

  =(2x+1)(2x—1).

  (2)a4—9

  =(a2)2—32

  =(a2+3)(a2—3)

  (3)3a2—10

  (4)a4—6a2+32

  =(a2)2—6a2+32

  =(a2—3)2

  (三)小结

  1.继续巩固二次根式的定义,及二次根式中被开方数的取值范围问题.

  2.关于公式的应用。

  (1)经常用于乘法的运算中.

  (2)可以把任何一个非负数写成一个数的平方的形式,解决在实数范围内因式分解等方面的问题.

  (四)练习和作业

  练习:

  1.填空

  注意第(4)题需有2m≥0,m≥0,又需有—3m≥0,即m≤0,故m=0.

  2.实数a、b在数轴上对应点的.位置如下图所示:

  分析:通过本题渗透数形结合的思想,进一步巩固二次根式的定义、性质,引导学生分析:由于a<0,b>0,且|a|>|b|.

  3.计算

  二、作业

  教材P.172习题11.1;A组2、3;B组2.

  补充作业:

  下列各式中的字母满足什么条件时,才能使该式成为二次根式?

  分析:要使这些式成为二次根式,只要被开方式是非负数即可,启发学生分析如下:

  (1)由—|a—2b|≥0,得a—2b≤0,

  但根据绝对值的性质,有|a—2b|≥0,

  ∴|a—2b|=0,即a—2b=0,得a=2b.

  (2)由(—m2—1)(m—n)≥0,—(m2+1)(m—n)≥0

  ∴(m2+1)(m—n)≤0,又m2+1>0,

  ∴ m—n≤0,即m≤n.

  说明:本题求解较难些,但基本方法仍是由二次根式中被开方数(式)大于或等于零列出不等式.通过本题培养学生对于较复杂的题的分析问题和解决问题的能力,并且进一步巩固二次根式的概念.

  三、板书设计

数学二次根式教案9

  一、教学目标

  1。使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式。

  2。使学生掌握化简一个二次根式成最简二次根式的方法。

  3。使学生了解把二次根式化简成最简二次根式在实际问题中的应用。

  二、教学重点和难点

  1。重点:能够把所给的二次根式,化成最简二次根式。

  2。难点:正确运用化一个二次根式成为最简二次根式的方法。

  三、教学方法

  通过实际运算的例子,引出最简二次根式的概念,再通过解题实践,总结归纳化简二次根式的方法。

  四、教学手段

  利用投影仪。

  五、教学过程

  (一)引入新课

  提出问题:如果一个正方形的面积是0。5m2,那么它的边长是多少?能不能求出它的近似值?

  了。这样会给解决实际问题带来方便。

  (二)新课

  由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创

  这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数。

  总结满足什么样的条件是最简二次根式。即:满足下列两个条件的二次根式,叫做最简二次根式:

  1。被开方数的因数是整数,因式是整式。

  2。被开方数中不含能开得尽方的因数或因式。

  例1 指出下列根式中的最简二次根式,并说明为什么。

  分析:

  说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式。前面二次根式的运算结果也都是最简二次根式。

  例2 把下列各式化成最简二次根式:

  说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简。

  例3 把下列各式化简成最简二次根式:

  说明:

  1。引导学生观察例题3中二次根式的特点,即被开方数是分数或分式,再启发学生总结这类题化简的方法,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简。

  2。要提问学生

  问题,通过这个小题使学生明确如何使用化简中的`条件。

  通过例2、例3总结把一个二次根式化成最简二次根式的两种情况,并引导学生小结应该注意的问题。

  注意:

  ①化简时,一般需要把被开方数分解因数或分解因式。

  ②当一个式子的分母中含有二次根式时,一般应该把它化简成分母中不含二次根式的式子,也就是把它的分母进行有理化。

  (三)小结

  1。满足什么条件的根式是最简二次根式。

  2。把一个二次根式化成最简二次根式的主要方法。

  (四)练习

  1。指出下列各式中的最简二次根式:

  2。把下列各式化成最简二次根式:

  六、作业

  教材P。187习题11。4;A组1;B组1。

  七、板书设计

数学二次根式教案10

  1、下列图像中可能是反比例函数y=的图像的共有()

  2、在同一直角坐标系下,直线y=x+1与双曲线y=的交点的个数为()

  A.0个B.1个C.2个D.不能确定

  3、反比例函数y=-的图像是_______,该函数图像在第_______象限。

  4、已知反比例函数y=的图像经过点(1,-2),则这个函数的表达式是_______.

  5、已知双曲线y=经过点(-1,2),那么k的值等于_______.

  6、在平面直角坐标系中,分别画出下列函数的图像:

  (1)y=(2)y=-

  7、反比例函数y=的图像经过点(-2,3),则k的值为()

  A.6B.-6C.D.-

  8、反比例函数y=的'图像大致是()

  9、如图,点P(-3,2)是反比例函数y=(k≠0)的图像上

  一点,则反比例函数的解析式为()

  A.y=-B.y=-

  C.y=-D.y=-

  10、函数y=-的图像上所有点的横坐标与纵坐标的乘积是_______.

  11、已知点P为函数y=图像上一点,且P到原点的距离为2,则符合条件的点P有__个

  12、分别在坐标系中画出下列函数的图像:

  (1)y=(2)y=-

  13、反比例函数y=的图像经过点(-2,4),求它的解析式,并画出函数图像,图像分布在哪几个象限?

  14、设某一直角三角形的面积为18cm2,两条直角边的长分别为x(cm),y(cm)。

  (1)写出y(cm)与x(cm)的函数关系式;

  (2)画出该函数的图像;

  (3)根据图像,求解:①当x=4cm时,y的值;②x等于多少时,该直角三角形是等腰直角三角形?

  参考答案

  1.B 2.C3.双曲线二、四 4.y=- 5.-3 6.略

  7.C 8.C 9.D 10.-511.4 12.略 13.y=- 图像略 分布在二、四象限 14.(1)y= (2)略(3)①y=9 ②x=6

数学二次根式教案11

  课题:二次根式

  教学目标 1、知识与技能

  理解a(a≥0)是一个非负数, (a≥0)

  2、过程与方法

  (1)数学思考:学会独立思考、体会数学的体验归纳、类比的思想

  方法

  (2) 问题解决:能够利用性质进行二次根式的化简计算,能够互助

  交流合作,分析问题,总结反思

  3、情感、态度与价值观

  体验成功的乐趣,锻炼克服困难的意志,培养严谨

  求实的科学态度

  教学重难点 教学重点:二次根式的概念

  教学难点:二次根式中根号下必须为非负数

  教学过程

  一、课前回顾

  (2分钟)

  学生与老师共同回顾上节课所学内容,温故而知新。 什么是二次根式?

  二次根式中字母的取值范围:

  ①被开方数大于等于零;

  ②分母中有字母时,要保证分母不为零。

  ③多个条件组合时,应用不等式组求解

  一、情境引入(3分钟)

  由生活中的实例引入投影的概念,引起学生的学习兴趣

  已知下列各正方形的面积,求其边长。

  二、探究1(10分钟)

  练习1:

  计算下列各式:

  三、探究2(10分钟)

  可以发现它们有如下规律:

  一般的',二次根式有下列性质:

  练习2:

  典型例题 例1:计算:

  例2:计算:

  达标测试(5分钟)

  课堂测试,检验学习结果

  1、判断题

  2、若 ,则x的取值范围为 ( A )

  (A) x≤1 (B) x≥1

  (C) 0≤x≤1 (D)一切有理数

  3、计算

  4、化简

  5、已知a,b,c为△ABC的三边长,化简:

  这一类问题注意把二次根式的运算搭载在三角形三边之间的关系这个知识点上,特别要应用好。

  应用提高(5分钟)

  能力提升,学有余力的同学可以仔细研究 如图,P是直角坐标系中一点。

  (1)用二次根式表示点P到原点O的距离;

  (2)如果 求点P到原点O的距离

  体验收获 今天我们学习了哪些知识

  二次根式的两条性质。

  布置作业 教材8页习题第3、4题。

数学二次根式教案12

  第十六章 二次根式

  代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,<,>”;②单个的数字或单个的字母也是代数式

  5.5(解析:这类题保证被开方数是最小的完全平方数即可得出结论.20=22×5,所以正整数的最小值为5.)

  6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:关键是逆用()2=a(a≥0)将3变成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

  7.解:(1) . (2)宽:3 ;长:5 .

  8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

  9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.

  10.解析:在利用=|a|=化简二次根式时,当根号内的因式移到根号外面时,一定要注意原来根号里面的符号,这也是化简时最容易出错的地方.

  解:乙的解答是错误的.因为当a=时,=5,a-<0,所以 ≠a-,而应是 =-a.

  本节课通过“观察——归纳——运用”的.模式,让学生对知识的形成与掌握变得简单起来,将一个一个知识点落实到位,适当增加了拓展性的练习,层层递进,使不同的学生得到了不同的发展和提高.

  在探究二次根式的性质时,通过“提问——追问——讨论”的形式展开,保证了活动有一定的针对性,但是学生发挥主体作用不够.

  在探究完成二次根式的性质1后,总结学习方法,再放手让学生自主探究二次根式的性质2.既可以提高学习效率,又可以培养学生自学能力.

  练习(教材第4页)

  1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

  2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

  习题16.1(教材第5页)

  1.解:(1)欲使有意义,则必有a+2≥0,∴a≥-2,∴当a≥-2时,有意义. (2)欲使有意义,则必有3-a≥0,∴a≤3,∴当a≤3时,有意义. (3)欲使有意义,则必有5a≥0,∴a≥0,∴当a≥0时,有意义. (4)欲使有意义,则必有2a+1≥0,∴a≥-,∴当a≥-时,有意义.

  2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

  3.解:(1)设圆的半径为R,由圆的面积公式得S=πR2,所以R2=,所以R=± .因为圆的半径不能是负数,所以R=-不符合题意,舍去,故R= ,即面积为S的圆的半径为 . (2)设较短的边长为2x,则它的邻边长为3x.由长方形的面积公式得2x3x=S,所以x=±,因为x=-不符合题意,舍去,所以x=,所以2x=2=,3x=3=,即这个长方形的相邻两边的长分别为和.

  4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

  5.解:由题意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合题意,舍去,∴r=,即r的值是.

  6.解:设AB=x,则AB边上的高为4x,由题意,得x4x=12,则x2=6,∴x=±.∵x=-不符合题意,舍去,∴x=.故AB的长为.

  7.解:(1)∵x2+1>0恒成立,∴无论x取任何实数,都有意义. (2)∵(x-1)2≥0恒成立,∴无论x取任何实数,都有意义. (3)∵即x>0,∴当x>0时, 在实数范围内有意义. (4)∵即x>-1,∴当x>-1时,在实数范围内有意义.

  8.解:设h=t2, 则由题意,得20=×22,解得=5,∴h=5t2,∴t= (负值已舍去).当h=10时,t= =,当h=25时,t= =.故当h=10和h=25时,小球落地所用的时间分别为 s和 s.

  9.解:(1)由题意知18-n≥0且为整数,则n≤18,n为自然数且为整数,∴符合条件的n的所有可能的值为2,9,14,17,18. (2)∵24n≥0且是整数,n为正整数,∴符合条件的n的最小值是6.

  10.解:V=πr2×10,r= (负值已舍去),当V=5π时, r= =,当V=10π时,r= =1,当V=20π时,r= =.

  如图所示,根据实数a,b在数轴上的位置,化简:+.

  〔解析〕 根据数轴可得出a+b与a-b的正负情况,从而可将二次根式化简.

  解:由数轴可得:a+b<0,a-b>0,

  ∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

  [解题策略] 结合数轴得出字母的取值范围,再化简二次根式,此题体现了数形结合的思想.

  已知a,b,c为三角形的三条边,则+= .

  〔解析〕 根据三角形三边的关系,先判断a+b-c与b-a-c的符号,再去根号、绝对值符号并化简.因为a,b,c为三角形的三条边,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.

  [解题策略] 此类化简问题要特别注意符号问题.

  化简:.

  〔解析〕 题中并没有明确字母x的取值范围,需要分x≥3和x<3两种情况考虑.

  解:当x≥3时,=|x-3|=x-3;

  当x<3时,=|x-3|=-(x-3)=3-x.

  [解题策略] 化简时,先将它化成|a|,再根据绝对值的意义分情况进行讨论.

  5

  O

  M

数学二次根式教案13

  教学设计思想

  新教材打破了旧教材从定义出发,由理论到理论,按部就班的旧格局,创造出从实践到理论再回到实践,由浅入深,符合认知结构的新模式。本节首先通过四个实际问题引出二次根式的概念,给出二次根式的意义。然后让学生通过二次根式的意义和算术平方根的意义找出二次根式的三个性质。本节通过学生所熟悉的'实际问题建立二次根式的概念,使学生在经历将现实问题符号化的过程中,进一步体会二次根式的重要作用,发展学生的应用意识。

  教学目标

  知识与技能

  1.知道什么是二次根式,并会用二次根式的意义解题;

  2.熟记二次根式的性质,并能灵活应用;

  过程与方法

  通过二次根式的概念和性质的学习,培养逻辑思维能力;

  情感态度价值观

  1.经历将现实问题符号化的过程,发展应用的意识;

  2.通过二次根式性质的介绍渗透对称性、规律性的数学美。

  教学重点和难点

  重点:(1)二次根式的意义;(2)二次根式中字母的取值范围;

  难点:确定二次根式中字母的取值范围。

  教学方法

  启发式、讲练结合

  教学媒体

  多媒体

  课时安排

  1课时

数学二次根式教案14

  一、教学目标

  1.了解二次根式的意义;

  2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

  3. 掌握二次根式的性质 和 ,并能灵活应用;

  4.通过二次根式的计算培养学生的逻辑思维能力;

  5. 通过二次根式性质 和 的介绍渗透对称性、规律性的数学美.

  二、教学重点和难点

  重点:(1)二次根的意义;(2)二次根式中字母的取值范围.

  难点:确定二次根式中字母的取值范围.

  三、教学方法

  启发式、讲练结合.

  四、教学过程

  (一)复习提问

  1.什么叫平方根、算术平方根?

  2.说出下列各式的意义,并计算:

  通过练习使学生进一步理解平方根、算术平方根的概念.

  观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中 ,

  表示的.是算术平方根.

  (二)引入新课

  我们已遇到的这样的式子是我们这节课研究的内容,引出:

  新课:二次根式

  定义: 式子 叫做二次根式.

  对于 请同学们讨论论应注意的问题,引导学生总结:

  (1)式子 只有在条件a0时才叫二次根式, 是二次根式吗? 呢?

  若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.

  (2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次

  根式指的是某种式子的外在形态.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.

  例1 当a为实数时,下列各式中哪些是二次根式?

  分析: , , , 、 、 、 四个是二次根式. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a-10时,a+10又如当0

  例2 x是怎样的实数时,式子 在实数范围有意义?

  解:略.

  说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义.

  例3 当字母取何值时,下列各式为二次根式:

  (1) (2) (3) (4)

  分析:由二次根式的定义 ,被开方数必须是非负数,把问题转化为解不等式.

  解:(1)∵a、b为任意实数时,都有a2+b20,当a、b为任意实数时, 是二次根式.

  (2)-3x0,x0,即x0时, 是二次根式.

  (3) ,且x0,x0,当x0时, 是二次根式.

  (4) ,即 ,故x-20且x-20, x2.当x2时, 是二次根式.

  例4 下列各式是二次根式,求式子中的字母所满足的条件:

  (1) ; (2) ; (3) ; (4)

  分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即: 只有在条件a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.

  解:(1)由2a+30,得 .

  (2)由 ,得3a-10,解得 .

  (3)由于x取任何实数时都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范围是全体实数.

  (4)由-b20得b20,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

  (三)小结(引导学生做出本节课学习内容小结)

  1.式子 叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式.

  2.式子中,被开方数(式)必须大于等于零.

  (四)练习和作业

  练习:

  1.判断下列各式是否是二次根式

  分析:(2) 中, , 是二次根式;(5)是二次根式. 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x0时,又如当x-1时=,因此(1)(3)(4)不是二次根式,(6)无意义.

  2.a是怎样的实数时,下列各式在实数范围内有意义?

  五、作业

  教材P.172习题11.1;A组1;B组1.

  六、板书设计

数学二次根式教案15

  活动1、提出问题

  一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。你能告诉运动场的负责人要准备多少面积的草皮吗?

  问题:10+20是什么运算?

  活动2、探究活动

  下列3个小题怎样计算?

  问题:1)-还能继续往下合并吗?

  2)看来二次根式有的能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的`二次根式能合并,什么样的不能合并吗?

  二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并。

  活动3

  练习1指出下列每组的二次根式中,哪些是可以合并的二次根式?(字母均为正数)

  创设问题情景,引起学生思考。

  学生回答:这个运动场要准备(10+20)平方米的草皮。

  教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算。

  我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果。

  教师引导验证:

  ①设=,类比合并同类项或面积法;

  ②学生思考,得出先化简,再合并的解题思路

  ③先化简,再合并

  学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并。

  教师巡视、指导,学生完成、交流,师生评价。

  提醒学生注意先化简成最简二次根式后再判断。

  • 相关推荐

【数学二次根式教案】相关文章:

二次根式的教案10-19

二次根式教案02-15

《二次根式的运算》的教案06-20

关于二次根式教案08-27

《二次根式的运算》的教案09-07

初中数学《二次根式》优秀教案设计03-16

【精选】二次根式教案3篇08-13

二次根式教案4篇07-21

【精选】二次根式教案4篇07-02

二次根式教案九篇02-06