初中数学教案

2022-12-13 教案

  作为一位杰出的教职工,时常需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。怎样写教案才更能起到其作用呢?以下是小编精心整理的初中数学教案,仅供参考,希望能够帮助到大家。

初中数学教案1

  一、检查反馈

  本次检查大多数教师都比较重视,检查内容完整、全面。现将检查情况总结如下教案方面的特点与不足。

  特点:

  1、绝大多数教案设计完整,教学重点、难点突出,设置得当,紧紧围绕新课标,例如:刘兴华、孙菊、江文李雅芳等能突出对学科素养的高度关注。教师撰写的课后反思能体现教师对教材处理的新方法,能侧重对自己教法和学生学法的指导,并且还能对自己不得法的教学手段、方式、方法进行深刻地解剖,能很好地体现课堂教学的反思意识,反思深刻、务实、有针对性。

  2、注重选择恰当的教学方法,注重在灵活多样的教学方法中培养学生的合作意识和创新精神。

  3、教案能体现多媒体教学手段,注重培养学生的探究精神和创新能力。

  不足:

  1、教案后的教学反思不够认真、不够详细,没能对本堂课的得与失作出记录与小结,从中也可以看出我们对课后反思还不够重视。

  2、个别教师教案过于简单。

  作业方面的特点与不足

  特点:

  1、能按进度布置作业,作业设置量度适中,难易适中,上交率较高,且都能做到全批全改。

  2、作业批改公平、公正,有一定的等级评定。教师批改要求严格、细致,能够反映学生作业中的错误做法及纠正措施。

  3、学生在书写方面有很大进步。从检查可以发现教师对学生作业的书写格式有明确的要求。

  不足:

  1、对于学生书写的工整性,还需加强教育。

  2、教师在批阅作业时,要稍细心些,发现问题就让学生当时改正,学生也就会逐渐养成做事认真的习惯。

初中数学教案2

  教学目标:

  1、 在现实情境中理解线段、射线、直线等简单图形(知识目标)

  2、 会说出线段、射线、直线的特征;会用字母表示线段、射线、直线(能力目标)

  3、 通过操作活动,了解两点确定一条直线等事实,积累操作活动的经验,培养学生的兴趣、爱好,感受图形世界的丰富多彩。(情感态度目标)

  教学难点:了解“两点确定一条直线”等事实,并应用它解决一些实际问题

  教 具: 多媒体、棉线、三角板

  教学过程:

  情景创设:观察电脑展示图,使学生感受图形世界的丰富多彩,激发学习兴趣。

  如何来描述我们所看到的现象?

  教学过程:

  1、 一段拉直的棉线可近似地看作线段

  师生画线段

  演示投影片1:①将线段向一个方向无限延长,就形成了______

  学生画射线

  ②将线段向两个方向无限延长就形成了_______

  学生画直线

  2、 讨论小组交流:

  ① 生活中,还有哪些物体可以近似地看作线段、射线、直线?

  (强调近似两个字,注意引导学生线段、射线、直线是从生活上抽象出来的)

  ②线段、射线、直线,有哪些不同之处, 有哪些相同之处?

  (鼓励学生用自己的语言描述它们各自的特点)

  3、 问题1:图中有几条线段?哪几条?

  “要说清楚哪几条,必须先给线段起名字!”从而引出线段的记法。

  点的记法: 用一个大写英文字母

  线段的记法:①用两个端点的字母来表示

  ②用一个小写英文字母表示

  自己想办法表示射线,让学生充分讨论,并比较如何表示合理

  射线的记法:

  用端点及射线上一点来表示,注意端点的字母写在前面

  直线的记法:

  ① 用直线上两个点来表示

  ② 用一个小写字母来表示

  强调大写字母与小写字母来表示它们时的区别

  (我们知道他们是无限延长的,我们为了方便研究约定成俗的用上面的方法来表示它们。)

  练习1:读句画图(如图示)

  (1) 连BC、AD

  (2) 画射线AD

  (3) 画直线AB、CD相交于E

  (4) 延长线段BC,反向延长线段DA相交与F

  (5) 连结AC、BD相交于O

  练习2:右图中,有哪几条线段、射线、直线

  4、 问题2 请过一点A画直线,可以画几条?过两点A、B呢?

  学生通过画图,得出结论:过一点可以画无数条直线

  经过两点有且只有一条直线

  问题3 如果你想将一硬纸条固定在硬纸板上,至少需要几根图钉?

  为什么?(学生通过操作,回答)

  小组讨论交流:

  你还能举出一个能反映“经过两点有且只有一条直线”的实例吗?

  适当引导:栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线。建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳,沿这根绳就可以砌出直的墙来。

  5、 小结:

  ① 学生回忆今天这节课学过的内容

  进一步清晰线段、射线、直线的概念

  ② 强调线段、射线、直线表示方法的掌握

  6、 作业:①阅读“读一读” P121

  ②习题4的1、2、3。4作为思考题

初中数学教案3

  教学目标

  1.知识与技能

  能运用运算律探究去括号法则,并且利用去括号法则将整式化简.

  2.过程与方法

  经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.

  3.情感态度与价值观

  培养学生主动探究、合作交流的意识,严谨治学的学习态度.

  重、难点与关键

  1.重点:去括号法则,准确应用法则将整式化简.

  2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.

  3.关键:准确理解去括号法则.

  教具准备

  投影仪.

  教学过程

  一、新授

  利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

  现在我们来看本章引言中的问题(3):

  在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为

  100t+120(t-0.5)千米①

  冻土地段与非冻土地段相差

  100t-120(t-0.5)千米②

  上面的式子①、②都带有括号,它们应如何化简?

  思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:

  利用分配律,可以去括号,合并同类项,得:

  100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60

  100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60

  我们知道,化简带有括号的整式,首先应先去括号.

  上面两式去括号部分变形分别为:

  +120(t-0.5)=+120t-60③

  -120(t-0.5)=-120+60④

  比较③、④两式,你能发现去括号时符号变化的规律吗?

  思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:

  如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

  如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.

  特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).

  利用分配律,可以将式子中的括号去掉,得:

  +(x-3)=x-3(括号没了,括号内的每一项都没有变号)

  -(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)

  去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.

  二、范例学习

  例1.化简下列各式:

  (1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

  思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.

  解答过程按课本,可由学生口述,教师板书.

  例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.

  (1)2小时后两船相距多远?

  (2)2小时后甲船比乙船多航行多少千米?

  教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.

  思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.

  解答过程按课本.

  去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.

  三、巩固练习

  1.课本第68页练习1、2题.

  2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]

  思路点拨:一般地,先去小括号,再去中括号.

  四、课堂小结

  去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.

  五、作业布置

  1.课本第71页习题2.2第2、3、5、8题.

  2.选用课时作业设计.

初中数学教案4

  一、课题

  27.3 过三点的圆

  二、教学目标

  1.经历过一点、两点和不在同一直线上的三点作圆的过程.

  2.. 知道过不在同一条直线上的三个点画圆的方法

  3.了解三角形的外接圆和外心.

  三、教学重点和难点

  重点:经历过一点、两点和不在同一直线上的三点作圆的过程.

  难点:知道过不在同一条直线上的三个点画圆的方法.

  四、教学手段

  现代课堂教学手段

  五、教学方法

  学生自己探索

  六、教学过程设计

  (一)、新授

  1.过已知一个点A画圆,并考虑这样的圆有多少个?

  2.过已知两个点A、B画圆,并考虑这样的圆有多少个?

  3.过已知三个点A、B、C画圆,并考虑这样的圆有多少个?

  让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑.

  得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个.

  不在同一直线上的三个点确定一个圆.

  给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心.

  例:画已知三角形的外接圆.

  让学生探索课本第15页习题1.

  一起探究

  八年级(一)班的学生为老区的小朋友捐款500元,准备为他们购买甲、乙 两种图书共12套.已知甲种图书每套45元,乙种图书每套40元.这些钱最多能买甲种图书多少套?

  分析:带领学生完成课本第13页的表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题.另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解.

  (二)、小结

  七、练习设计

  P15习题2、3

  八、教学后记

  后备练习:

  1. 已知一个三角形的三边长分别是 ,则这个三角形的外接圆面积等于 .

  2. 如图,有A, ,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()

  A.在AC,BC两边高线的交点处

  B.在AC,BC两边中线的交点处

  C.在AC,BC两边垂直平分线的交点处

  D.在A,B两内角平分线的交点处

初中数学教案5

  一、素质教育目标

  (一)知识教学点

  使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.

  (二)能力训练点

  逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力.

  (三)德育渗透点

  培养学生独立思考、勇于创新的精神.

  二、教学重点、难点

  1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用.

  2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用.

  三、教学步骤

  (一)明确目标

  1.复习提问

  (1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.

  (2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).

  (3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”.

  2.导入新课

  根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题.

  (二)、整体感知

  关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明.引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明.

  (三)重点、难点的学习和目标完成过程

  1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃.

  2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神.

  3.教师板书:

  任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.

  sinA=cos(90°-A),cosA=sin(90°-A).

  4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固.

  已知∠A和∠B都是锐角,

  (1)把cos(90°-A)写成∠A的正弦.

  (2)把sin(90°-A)写成∠A的余弦.

  这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3.

  (2)已知sin35°=0.5736,求cos55°;

  (3)已知cos47°6′=0.6807,求sin42°54′.

  (1)问比较简单,对照定理,学生立即可以回答.(2)、(3)比(1)则更深一步,因为(1)明确指出∠B与∠A互余,(2)、(3)让学生自己发现35°与55°的角,47°6′分42°54′的角互余,从而根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好一些的同学讲清思维过程,便于全体学生掌握,在三个问题处理完之后,将题目变形:

  (2)已知sin35°=0.5736,则cos______=0.5736.

  (3)cos47°6′=0.6807,则sin______=0.6807,以培养学生思维能力.

  为了配合例3的教学,教材中配备了练习题2.

  (2)已知sin67°18′=0.9225,求cos22°42′;

  (3)已知cos4°24′=0.9971,求sin85°36′.

  学生独立完成练习2,就说明定理的教学较成功,学生基本会运用.

  教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备.

  (四)小结与扩展

  1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分.

  2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值.

  四、布置作业

初中数学教案6

  一、素质教育目标

  (一)知识教学点

  使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.

  (二)能力训练点

  逐步培养学生会观察、比较、分析、概括等逻辑思维能力.

  (三)德育渗透点

  引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.

  二、教学重点、难点

  1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.

  2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.

  三、教学步骤

  (一)明确目标

  1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?

  2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?

  3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?

  4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?

  前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.

  通过四个例子引出课题.

  (二)整体感知

  1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.

  学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.

  2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?

  这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.

  (三)重点、难点的学习与目标完成过程

  1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.

  2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:

  若一组直角三角形有一个锐角相等,可以把其

  顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴

  形中,∠A的对边、邻边与斜边的比值,是一个固定值.

  通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.

  而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.

  练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.

  (四)总结与扩展

  1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的

  教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.

  2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.

  四、布置作业

  本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.

初中数学教案7

  一、教学案例的特点

  1、案例与论文的区别

  从文体和表述方式上看,论文是以说理为目的,以议论为主;案例则以记录为目的,以记叙为主,兼有议论和说明。也就是说,案例是讲一个故事,是通过故事说明道理。

  从写作的思路和思维方式来看,论文写作一般是一种演绎思维,思维的方式是从抽象到具体;案例写作是一种归纳思维,思维的方式是从具体到抽象。

  2、案例与教案、教学设计的区别

  教案和教学设计都是事先设想的教学思路,是对准备实施的教学措施的简要说明;教学案例则是对已经发生的教学过程的反映。一个写在教之前,一个写在教之后;一个是预期达到什么目标,一个是结果达到什么水平。教学设计不宜于交流,教学案例适宜于交流。

  3、案例与教学实录的区别

  案例与教学实录的体例比较接近,它们都是对教学情景的描述,但教学实录是有闻必录,而案例则是有所选择的,教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断或理性思考)。

  4、教学案例的特点是

  ——真实性:案例必须是在课堂教学中真实发生的事件;

  ——典型性:必须是包括特殊情境和典型案例问题的故事;

  ——浓缩性:必须多角度地呈现问题,提供足够的信息;

  ——启发性:必须是经过研究,能够引起讨论,提供分析和反思。

  二、数学案例的结构要素

  从文章结构上看,数学案例一般包含以下几个基本的元素。

  (1)背景。案例需要向读者交代故事发生的有关情况:时间、地点、人物、事情的起因等。如介绍一堂课,就有必要说明这堂课是在什么背景情况下上的,是一所重点学校还是普通学校,是一个重点班级还是普通班级,是有经验的优秀教师还是年青的新教师执教,是经过准备的“公开课”还是平时的“家常课”,等等。背景介绍并不需要面面俱到,重要的是说明故事的发生是否有什么特别的原因或条件。

  (2)主题。案例要有一个主题:写案例首先要考虑我这个案例想反映什么问题,例如是想说明怎样转变学困生,还是强调怎样启发思维,或者是介绍如何组织小组讨论,或是观察学生的独立学习情况,等等。或者是一个什么样的数学任务解决过程和方法,在课程标准中数学任务认知水平的要求怎么样,在课堂教学中数学任务认知水平的发展怎么样等等。动笔前都要有一个比较明确的想法。比如学校开展研究性学习活动,不同的研究课题、研究小组、研究阶段,会面临不同的问题、情境、经历,都有自己的独特性。写作时应该从最有收获、最有启发的角度切入,选择并确立主题。

  (3)情节。有了主题,写作时就不会有闻必录,而要是对原始材料进行筛选。首先需要教师对课堂教学中师生双方(外显的和内隐的)活动的清晰感知,然后是有针对性地向读者交代特定的内容,把关键性的细节写清楚。比如介绍教师如何指导学生掌握学习数学的方法,就要把学生怎么从“不会”到“会”的转折过程,要把学习发生发展过程的细节写清楚,要把教师观察到的学生学习行为,学习行为反映的学生思想、情感、态度写清楚,或者把小组合作学习的突出情况写清楚,或者把个别学生独立学习的典型行为写清楚。不能把“任务”布置了一番,把“方法”介绍了一番,说到“任务”的完成过程,说到“掌握”的程度就一笔带过了。

  (4)结果。一般来说,教案和教学设计只有设想的措施而没有实施的结果,教学实录通常也只记录教学的过程而不介绍教学的效果;而案例则不仅要说明教学的思路、描述教学的过程,还要交代学生学习的结果,即这种教学措施的即时效果,包括学生的反映和教师的感受等。读者知道了结果,将有助于加深对整个过程的内涵的了解。

  (5)反思。对于案例所反映的主题和内容,包括教育教学指导思想、过程、结果,对其利弊得失,作者要有一定的看法和分析。反思是在记叙基础上的议论,可以进一步揭示事件的意义和价值。比如同样是一个学困生转化的事例,我们可以从社会学、教育学、心理学、学习理论等不同的理论角度切入,揭示成功的原因和科学的规律。反思不一定是理论阐述,也可以是就事论事、有感而发,引起人的共鸣,给人以启发。

  三、初中数学教学案例主题的选择

  新课程理念下的初中数学教学案例,可从以下六方面选择主题:

  (1)体现让学生动手实践、自主探究、合作交流的教学方式;

  (2)体现教师帮助学生在自主探究、合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验;

  (3)体现让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,采用“问题情境——建立模型——解释、应用与拓展”的模式教学的成功经验;

  (4)体现数学与信息技术整合的教学方法;

  (5)体现教师在教学过程中的组织者、引导者与合作者的作用;

  (6)体现教学中对学生情感、态度的关注和评价,以及怎样帮助不同的人在数学上获得不同的发展,等等。

初中数学教案8

  一、目的要求

  1、使学生初步理解一次函数与正比例函数的概念。

  2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

  二、内容分析

  1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

  2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

  3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

  三、教学过程

  复习提问:

  1、什么是函数?

  2、函数有哪几种表示方法?

  3、举出几个函数的例子。

  新课讲解:

  可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:

  (1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)

  (2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)

  (3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)

  (4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)

  由以上的层层设问,最后给出一次函数的定义。

  一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。

  对这个定义,要注意:

  (1)x是变量,k,b是常数;

  (2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)

  由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。

  在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  写成式子是(一定)

  需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。

  其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。

  课堂练习:

  教科书13、4节练习第1题.

初中数学教案9

  教学目标:

  1、引导同学们领略数学隐藏在生活中的迷人之处;

  2、培养同学们对数学的兴趣。

  教学内容:

  生活中的数学。

  教学方法:

  启发探索、小游戏

  教具安排:

  多媒体、剪纸、小剪刀三把

  教学过程:

  师:同学们,从小学到现在我们都在跟数学打交道,能说说大家对数学的感受吗?

  学生讨论。

  师:同学们,不管以前你们喜不喜欢数学,但老师要告诉大家,其实数学很有趣,它不仅出现在我们的课本,更隐藏在生活的每个角落,只要我们仔细探究,就会发现它在我们的周围闪着迷人的光,希望大家从今天开始,喜欢数学,与数学成为好朋友,好好领略好朋友带给我们的美的享受。事不宜迟,现在我们马上开始我们的数学探究之旅。首先,我们来玩个小游戏:

  请大家拿出笔和纸,根据下面的步骤来操作,你会有惊人的发现。(PPT演示)

  [1]首先,随意挑一个数字(0、1、2、3、4、5、6、7)

  [2]把这个数字乘上2

  [3]然后加上5

  [4]再乘以50

  [5]如果你今年的生日已经过了,把得到的数目加上1759;如果还没过,加1758

  [6]最后一个步骤,用这个数目减去你出生的那一年(公元的)

  师:发现了什么?第一个数字是不是你一开始选择的数字呢?那接下来的两个呢?如无意外,就是你的年龄了。是不是很有趣呢?至于为什么会这样课后大家仔细想想自然就明白啦,这就是数学的魅力所在了。接下来我们来尝试帮助格尼斯堡的居民解决下面的问题(PPT演示):格尼斯堡建造在普蕾尔河岸上。7座桥连接着两个岛和河岸,如图所示:

  网路图

  居民们的一项普遍爱好是尝试在一次行走中跨过所有的7座桥而不

  重复经过任何一座桥。同学们,你们能帮助他们实现这个想法吗?拿出纸和笔设计的路线。

  学生思考设计。

  师:同学们行吗?事实上,著名数学家欧拉已经证明不能解决这个问题了,可是这是为什么呢?别急,我们继续看下去。

  1944年的空袭,毁坏了大多数的旧桥,格尼斯堡在河上重新建了5座桥,如图:

  B

  现在请同学们再尝试一下,在一次行走中跨过所有的5座桥而不重复经过任何一座桥。

  学生思考。

  师:同学们,这次行得通了吧?那么为什么呢?有没有同学可以说一下他的想法?

  其实,我们的欧拉大师经过研究大量类似的网络,证明了这样的事实(PPT演示):要走完一条路线而其中每一段行程只许经过一次,只有当奇数结点的数目是0或2时才是有可能的,在其他情况下,如果不走回头路,就不能历遍整个网络。

  他还发现:如果有两个奇结点,那么经过整个路线的形成必须从一个

  奇结点开始,到另一个奇结点结束。

  师:我们来看一下是不是这样的?第一个图奇结点的个数为3,第二个图奇结点的个数减少到2个了,看来真的是这样的。

  现在请同学们自己在练习本上解决这个问题:(PPT演示)

  下面是一幅农场的大门的图。如果笔不离纸,又不重复经过任一条线,有没有可能画成它?

  学生思考讨论。

  师:我们看到它的奇结点个数为4,由欧拉的证明我们知道不能一笔画成。

  那如果农场主将门的形状做成这样呢?(PPT演示)

  学生尝试。

  师:是不是可以啦,为什么呢?

  生:奇结点个数为2.

  师:这种不用走回头路而历遍整条线路的情况,不仅仅具有趣味性,在现实生活中具有很重要的实用性,比如,我们的邮递员和煤气抄表员,不走回头路意味着可以节省很多宝贵的时间。看来,数学并不像

  某些时候想的那样没什么用处了吧?

  下面我们继续我们的奥秘之类吧。

  今天我们班有同学生日吗?如果你生日,爸爸妈妈给你买了一个正方形的蛋糕,你要把它切成不同形状的平均大小的7块,怎么切?能行吗?尝试一下。

  其实很简单,你只需要把正方形的周边(即周长)分成7个等长,定出蛋糕的中心,从周边划分等长的标记切向中电,(如图所示)即可。

  为什么呢?这里我们用到三角形等高等底面积相等的性质。

  吃完了蛋糕,我们来观赏一下百合花。(PPT演示):

  一个乡村的池塘里种了美丽的百合花,百合花生长得很快,使它们覆盖的面积每天增加一倍。30天后,长满了整个池塘,那么池塘只被百合花覆盖一半时是多少天呢?同学们,你知道吗?

  学生讨论。

  师:答案是29天,多么神奇,是吧?潜意识里我们很难接受答案就是29天,只与30天差一天。但用数学我们很容易很清楚地知道是29天,奥秘就在“它们覆盖的面积每天增加一倍”这句话里面。你看,数学是多么聪慧、多么神奇的家伙!

  其实,除了以上我们看到的一些有趣的数学影子外,我们的日常生

初中数学教案10

  问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

  这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。

  把x=3代人方程(2),左边=13+3=16,右边=(45+3)=48=16,

  因为左边=右边,所以x=3就是这个方程的解。

  这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

  问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?

  同学们动手试一试,大家发现了什么问题?

  同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

  这正是我们本章要解决的问题。

  三、巩固练习

  1、教科书第3页练习1、2。

  2、补充练习:检验下列各括号内的数是不是它前面方程的解。

  (1)x-3(x+2)=6+x(x=3,x=-4)

  (2)2y(y-1)=3(y=-1,y=2)

  (3)5(x-1)(x-2)=0(x=0,x=1,x=2)

  四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

  五、作业。教科书第3页,习题6。1第1、3题。

  解一元一次方程

  1、方程的简单变形

  教学目的

  通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。

  重点、难点

  1、重点:方程的两种变形。

  2、难点:由具体实例抽象出方程的两种变形。

  教学过程

  一、引入

  上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。

  二、新授

  让我们先做个实验,拿出预先准备好的天平和若干砝码。

  测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。

  如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。

  如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?

  让同学们观察图6.2.1的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。

初中数学教案11

  教学目标

  1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;

  2.初步培养学生观察、分析和抽象思维的能力.

  教学重点和难点

  重点:列代数式.

  难点:弄清楚语句中各数量的意义及相互关系.

  课堂教学过程设计

  一、从学生原有的认知结构提出问题

  1庇么数式表示乙数:(投影)

  (1)乙数比x大5;(x+5)

  (2)乙数比x的2倍小3;(2x-3)

  (3)乙数比x的倒数小7;(-7)

  (4)乙数比x大16%((1+16%)x)

  (应用引导的方法启发学生解答本题)

  2痹诖数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式北窘诳挝颐蔷屠匆黄鹧习这个问题

  二、讲授新课

  例1用代数式表示乙数:

  (1)乙数比甲数大5;(2)乙数比甲数的2倍小3;

  (3)乙数比甲数的倒数小7;(4)乙数比甲数大16%

  分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数

  解:设甲数为x,则乙数的代数式为

  (1)x+5(2)2x-3;(3)-7;(4)(1+16%)x

  (本题应由学生口答,教师板书完成)

  最后,教师需指出:第4小题的答案也可写成x+16%x

  例2用代数式表示:

  (1)甲乙两数和的2倍;

  (2)甲数的与乙数的的差;

  (3)甲乙两数的平方和;

  (4)甲乙两数的和与甲乙两数的差的积;

  (5)乙甲两数之和与乙甲两数的差的积

  分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式

  解:设甲数为a,乙数为b,则

  (1)2(a+b);(2)a-b;(3)a2+b2;

  (4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)

  (本题应由学生口答,教师板书完成)

  此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律钡玜与b的差指的是(a-b),而b与a的差指的是(b-a)绷秸呙飨圆煌,这就是说,用文字语言叙述的句子里应特别注意其运算顺序

  例3用代数式表示:

  (1)被3整除得n的数;

  (2)被5除商m余2的数

  分析本题时,可提出以下问题:

  (1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

  (2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

  解:(1)3n;(2)5m+2

  (这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)

  例4设字母a表示一个数,用代数式表示:

  (1)这个数与5的和的3倍;(2)这个数与1的差的;

  (3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和

  分析:启发学生,做分析练习比绲1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”

  解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a

  (通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)

  例5设教室里座位的行数是m,用代数式表示:

  (1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

  (2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?

  分析本题时,可提出如下问题:

  (1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

  (2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

  (3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

  解:(1)m(m+6)个;(2)(m)m个

  三、课堂练习

  1鄙杓资为x,乙数为y,用代数式表示:(投影)

  (1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;

  (3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商

  2庇么数式表示:

  (1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;

  (3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数

  3庇么数式表示:

  (1)与a-1的和是25的数;(2)与2b+1的积是9的数;

  (3)与2x2的差是x的数;(4)除以(y+3)的商是y的数

  〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)薄

  四、师生共同小结

  首先,请学生回答:

  1痹跹列代数式?2绷写数式的关键是什么?

  其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

  (1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

  (2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

  (3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备币求学生一定要牢固掌握

  五、作业

  1庇么数式表示:

  (1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

  (2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?

  2币阎一个长方形的周长是24厘米,一边是a厘米,

  求:(1)这个长方形另一边的长;(2)这个长方形的面积.

  学法探究

  已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?

  分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律.

  当圆环为三个的时候,如图:

  此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:

  解:=99a+b(cm)

  今天的内容就介绍到这里了。

初中数学教案12

  教学目标

  1、认识度、分、秒,会进行度、分、秒间单位互化及角的和、差、倍、分计算。

  2、通过度、分、秒间的互化及角度的简单运算,经历利用已有知识解决新问题的探索过程,培养学生的数感和对数学活动的兴趣。

  3、在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,尊重和理解他人的见解,从而在交流中获益。

  教学重点

  度、分、秒间单位互化及角的和、差、倍、分计算。

  知识难点

  度、分、秒间单位互化及角的和、差、倍、分计算。

  教学准备

  量角器、三角尺。

  教学过程

  (师生活动)设计理念

  复习

  任意画一个锐角和钝角,用字母分别表示这两个角,用量角器分别理出这两个角的度数。复习角的概念,角的表示及量角器的使用,为学习角度制作准备。

  探究新知在航行、测绘等工作以及生活中,我们经常会碰到上述类似问题,即如何描述一个物体的方位。

  让学生回忆学过的.描述方法,师生共同探讨解决问题的办法。

  不断移动可疑船的位置,让学生描述缉私艇的航线,探求解决问题的规律。

  方位的表示通常用北偏东多少度、北偏西多少度或者南偏东多少度、南偏西多少度来表示。北偏东45度、北偏西45度、南偏东45度、南偏西45度,分别称为东北方向、西北方向,东南方向、西南方向。

初中数学教案13

  教学目标

  1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;

  2. 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;

  3.通过加法运算练习,培养学生的运算能力。

  教学建议

  (一)重点、难点分析

  本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算.

  由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.

  (二)知识结构

  (三)教法建议

  1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.

  2.关于“去括号法则”,只要学生了解,并不要求追究所以然.

  3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如

  -3-4表示-3、-4两数的代数和,

  -4+3表示-4、+3两数的代数和,

  3+4表示3和+4的代数和

  等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

  4.先把正数与负数分别相加,可以使运算简便。

  5.在交换加数的位置时,要连同前面的符号一起交换。如

  12-5+7 应变成 12+7-5,而不能变成12-7+5。

  教学设计示例一

  有理数的加减混合运算(一)

  一、素质教育目标

  (一)知识教学点

  1.了解:代数和的概念.

  2.理解:有理数加减法可以互相转化.

  3.应用:会进行加减混合运算.

  (二)能力训练点

  培养学生的口头表达能力及计算的准确能力.

  (三)德育渗透点

  通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想.

  (四)美育渗透点

  学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美.

  二、学法引导

  1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练

  习,步步为营,分散难点,解决关键问题.

  2.学生写法:练习→寻找简单的一般性的方法→练习巩固.

  三、重点、难点、疑点及解决办法

  1.重点:把加减混合运算算式理解为加法算式.

  2.难点:把省略括号和的形式直接按有理数加法进行计算.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪或电脑、自制胶片.

  六、师生互动活动设计

  教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈.

  七、教学步骤

  (一)创设情境,复习引入

  师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目: -9+(+6);(-11)-7.

  师:(1)读出这两个算式.

  (2)“+、-”读作什么?是哪种符号?

  “+、-”又读作什么?是什么符号?

  学生活动:口答教师提出的问题.

  师继续提问:(1)这两个题目运算结果是多少?

  (2)(-11)-7这题你根据什么运算法则计算的?

  学生活动:口答以上两题(教师订正).

  师小结:减法往往通过转化成加法后来运算.

  【教法说明】为了进行有理数的加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作.

  师:把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算.(板书课题2.7有理数的加减混合运算(1))

  教学说明:由复习的题目巧妙地填“-”号,就变成了今天将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目组成.

  (二)探索新知,讲授新课

  1.讲评(-9)+(-6)-(-11)-7.

  (1)省略括号和的形式

  师:看到这个题你想怎样做?

  学生活动:自己在练习本上计算.

  教师针对学生所做的方法区别优劣.

  【教法说明】题目出示后,教师不急于自己讲评,而是让学生尝试,给了学生一个展示自己的机会,这时,有的学生可能是按从左到右的顺序运算,有的同学可能是先把减法都转化成了加法,然后按加法的计算法则再计算??这样在不同的方法中,学生自己就会寻找到简单的、一般性的方法.

  师:我们对此类题目经常采用先把减法转化为加法,这时就成了-9,+6,+11,-7的和,加号通常可以省略,括号也可以省略,即:

  原式=(-9)+(+6)+(+11)+(-7)

  =-9+6+11-7.

  提出问题:虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成??

  学生活动:先自己练习尝试用两种读法读,口答(教师纠正).

  【教法说明】教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力.

  巩固练习:(出示投影1)

  1.把下列算式写成省略括号和的形式,并把结果用两种读法读出来.

  (1)(+9)-(+10)+(-2)-(-8)+3;

  (2)+()-()-().

  2.判断

  式子-7+1-5-9的正确读法是().

  A.负7、正1、负5、负9;

  B.减7、加1、减5、减9;

  C.负7、加1、负5、减9;

  D.负7、加1、减5、减9;

  学生活动:1题两个学生板演,两个学生用两种读法读出结果,其他同学自行演练,然后同桌读出互相纠正,2题抢答.

  【教法说明】这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法.

  2.用加法运算律计算出结果

  师:既然算式能看成几个数的和,我们可以运用加法的运算律进行计算,通常同号两数放在一起分别相加.

  -9+6+11-7

  =-9-7+6+11.

  学生活动:按教师要求口答并读出结果.

  巩固练习:(出示投影2)

  填空:

  1.-4+7-4=-______________-_______________+_______________

  2.+6+9-15+3=_____________+_____________+_____________-_____________

  3.-9-3+2-4=____________9____________3____________4____________2

  4.____________________________________

  学生活动:讨论后回答.

  【教法说明】学生运用加法交换律时,很可能产生“-9+7+11-6”这样的错误,教师先让学生自己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点.

  师:-9-7+6+11怎样计算?

  学生活动:口答

  [板书]

  -9-7+6+11

  =-16+17

  =1

  巩固练习:(出示投影3)

  1.计算(1)-1+2-3-4+5;

  (2).

  2.做完前面两个题目计算:(1)(+9)-(+10)+(-2)-(-8)+3;

  (2).

  学生活动:四个同学板演,其他同学在练习本上做.

  【教法说明】针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中.

  师小结:有理数加减法混合运算的题目的步骤为:

  1.减法转化成加法;

  2.省略加号括号;

  3.运用加法交换律使同号两数分别相加;

  4.按有理数加法法则计算.

  (三)反馈练习

  (出示投影4)

  计算:(1)12-(-18)+(-7)-15;

  (2).

  学生活动:可采用同桌互相测验的方法,以达到纠正错误的目的.

  【教法说明】这两个题目是本节课的重点.采用测验的方式来达到及时反馈.

  (四)归纳小结

  师:1.怎样做加减混合运算题目?

  2.省略括号和的形式的两种读法?

  学生活动:口答.

  【教法说明】小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统.

  八、随堂练习

  1.把下列各式写成省略括号的和的形式

  (1)(-5)+(+7)-(-3)-(+1);

  (2)10+(-8)-(+18)-(-5)+(+6).

  2.说出式子-3+5-6+1的两种读法.

  3.计算

  (1)0-10-(-8)+(-2);

  (2)-4.5+1.8-6.5+3-4;

  (3).

  九、布置作业

  (一)必做题:1.计算:(1)-8+12-16-23;

  (2);

  (3)-40-28-(-19)+(-24)-(-32);

  (4)-2.7+(-3.2)-(1.8)-2.2;

  (二)选做题:(1)当时,,,哪个最大,哪个最小?

  (2)当时,,,哪个最大,哪个最小?

  十、板书设计

初中数学教案14

  图样,图样,还是图样。到处都是图样,有的用尖细的木片潦草地写在满是灰尘的大理石桌上,有的用一块木炭涂在墙上,有的用粉笔画在地上。阿基米德穿着一件白色的旧长袍,坐在桌子上思索起来。手指象发烧似的微微颤抖。豆大的汗珠裹着灰尘,从他极度疲倦的脸上落在手上,落到衣服上,落到随手扔在桌子上的一卷草片纸上。

  他没有跑,没有象一个无耻的胆小鬼那样从战场上逃跑。他竭尽全力,把全部的智慧和热情都献给了这座城市。多少个不眠之夜,多少个酷热难耐的白天,他就是整个叙拉古防御阵地的大脑和心脏。一提到他的名字,罗马人就惊恐地逃离城墙,他们唯恐躲避不及致命的投石炮,以及纷纷落下的炽热的涂满油脂的麻屑,标枪与长矛的骤雨。不就是他,不动咫尺就把接近城市海防工事的罗马舰队都烧毁了吗?不就是他,一个人用他发明的一组复杂的滑车把罗马的兵船吊在半空,再从高处把船抛向深海里去了吗?但这对于一个人的独创才能和精力来说,已经是极限了,他已经是一个衰弱的老人,他的手握不住战剑。他坚持留在阵地上,直至敌人出现在城墙外边。而这时戴着盔形帽的罗马人已经开始在被岁月磨出来的马路的石块上晃动。希腊人竭尽最后的力量进行抵抗,肉搏战当然没有阿基米德参加的份。。。。。。

  在中午被烈日晒的发烫的物体,现在让令人惬意的凉爽的空气温柔地笼罩着。战斗的喊声透过厚实的门帘隐隐约约地传进屋里。挂在两个窗户上的草帘子使得屋里稍微有点昏暗,但一点也不妨碍看清楚眼睛看惯的东西。 生命就要完结,这一生是漫长而又艰难的。在命运给予他的七十五年里,在不停的探索中,在持续的紧张中,在旅行中,在工作室,造船厂和采石场的不断的争论中,他从未能回顾过自己的人生,没有考虑一下是否活得合理。伊壁鸠鲁(前341—前270 古希腊唯物主义哲学家,在伦理观上,主张人生的目的在于避免苦痛,使心身安宁,怡然自得,这才是人生最高的幸福)这位激进的老人如此忘情地说过的那种快乐,哪怕是一部分,阿基米德也没有从生活中得到过。在他还是一个十七岁的青年人时,曾经站在这位伟大哲学家的坟墓上,思索着用自己的一生实现他富有人生乐趣的哲学。他实现了吗?

  还在青年时代,他就踏上了这条荆棘丛生的,曲折的,布满无数坎坷的学者道路。学者的生活。。。。。。当生活道路开始的时候,他曾经把生活想象的很不实际。他用充满甜蜜的幸福,普遍的崇敬和持久不变的,任凭什么也不能蒙蔽的荣誉来描绘自己青年时代雄心勃勃的梦想。但生活并非如此,他竟然是格外地严酷。他实际体验到,这生活是一天一时也不停地,终身为一个神灵,一个偶像,一个各种思想和愿望的主宰服务。科学就是一个催眠术家,只要一次受到科学真理魔术般的诱惑,立刻就会为了科学而忘掉一切,直至最后进入坟墓。

  荣誉是有的,但是这荣誉足以为不学无术者和嫉妒者们的大声嘲笑所败坏。是有许多狂热的崇拜者,但也有许多恶毒的非难者,他们不错过任何一个机会,通过假借的名义,公开和秘密地对他进行侮辱,诋毁和诽傍,以他为笑柄。。。。。。

  他本人的生活是这样,他父亲的生活也是这样。他父亲叫做菲迪亚斯。供人参阅的备忘录描述了他很早的童年时代的情形,小阿基米德似乎不得不让每一个新认识的人相信,他的父亲只是和奥利匹亚的<<宙斯>>像和雅典的女神像的著名的建造者,比阿基米德天文学家的父亲早生一百多年的雕刻家菲迪亚斯同姓。奇怪的是,菲迪亚斯竟然不是国王亥厄洛的亲戚,相反,完全出乎意料之外,阿基米德却是国王亥厄洛的一个亲戚,就是说,也是国王儿子格隆的一个亲戚。。。。。。

  这里是繁华的亚历山大城。阿基米德花了许多时间沿着城市的石头道散步,登上佛洛斯灯塔,从那里了望拥簇着似乎是从地球上所有有人居住的地方抵达到这里的希腊,罗马,腓尼基,波斯和其它国家的船只的港湾。但是,比这多得多的时间,他是在著名的亚历山大图书馆里度过的。世界上任何一个图书馆可能都要羡慕这家图书馆所收集的抄本和手稿。在图书馆里,集中了伟大的亚历山大城所有最优秀的青年人。在和那些崇拜本国著名的欧几里德的年轻人的热烈争论中,阿基米德对自己的科学立场的理解逐渐成熟,有些地方与亚历山大人接近,有些地方则与他们截然不同。但是,尽管在观点上有所不同,他刚一熟悉欧几里德的著作,对已故的伟大学者欧几里德的虔诚的敬意就完全征服了阿基米德。欧几里德的<<几何原本>>从此成为他整个漫长一生的必读之书。。。。。。

  战斗的呐喊声越来越大。厚实的窗帘已经挡不住获胜的罗马人狂喜的欢呼声,战剑打击叙拉古最后一批保卫者的盾牌的叮当声,还有那刺向他们被长时间的防御战折磨得精疲力尽的身体的沉闷声。获胜的敌人已经占领了这座苦难的城市,又醉心于卑鄙无耻的,令人痛恶的杀掠,连儿童,妇女和老人也不放过。

  非常奇怪的是,所以这一切————战剑的叮当声,垂死者的呻吟声,罗马人胜利的欢呼声,都是这样地遥远,似乎是在半个多世纪以前发出的。阿基米德突然以一种可怕的清醒回想起自己乘一艘小船从亚历山大到叙拉古所经历的漫长而又十分危险的旅程。在危机四伏的不平静的大海中,绿色的波涛的巅峰翻腾着白色的大理石般的泡沫,不停地撞击着毫无保护的不坚固的小船,船上可怜的人们觉得好像无论是人,还是超人的力量都已经不能把他们从海神的怀抱里解救出来。 而就在这时,舵手使出全身的力气掌稳沉重的船舵,高高地向上搬动舵尾,用力地冲向那轰隆作响的摇荡的浪山。船象一匹戴上嚼子的马,战栗着,一会儿呆立在高高的浪峰上,一会儿又摇晃着跌进随之而来的无底的深渊。。。。。。

  船驶离亚历山大之时,装饰着色彩缤纷的船帆,宛如一位服装时髦的美女,而抵达叙拉古时,却遍体鳞伤,千疮百孔,失去了桅杆和船帆,简直就是一个衣衫褴褛的女乞丐了。。。。。。

  一个罗马兵凶恶的面孔突然出现在眼前,在他身后是一群形形色色的叙拉古人,正在走去迎接无数条载着有半死不活的航海者的战船。这个外国的不速之客从哪里来?是怎么来的呢?这个人张牙舞爪,脖子上的青筋暴起,叫嚷者什么,阿基米德却听不见他的话。往事仍然把阿基米德死死地拖住不放,忘却现实的销魂的魔力还没有退却。。。。。。

  幻影没有消失。在它还没有最后填满整个房间,把整个古老的叙拉古阳光充足的港湾里毫无剩余地从房间里排挤出去之前,它在数学家视线模糊的眼睛里仍然在扩大,扩大。啊,原来这里还有个人。这时,一个强盗,杀人凶手找到了数学家阿基米德的住宅。这个残忍的罗马士兵————数学家以前几乎没有想过的死亡就这样悄悄地向她逼近了。

  "别动我的图案!"老人声音低微,但语气却强硬地命令道。这就是他说的最后一句话。一把宽大的双刃剑用力地砍在这位伟大的世界公民头发斑白,疲惫不堪的,但却威严自豪,充满灵感的头颅上。。。。。。

  据说,阿基米德就这样在位于被罗马人攻取并抢劫的叙拉古的一条街道上的房间里被杀害了。甚至罗马主将马尔采勒,这个长期徒劳地企图占领这座城市的不共戴天的,阴险的敌人,在得知这位最伟大的学者和最热情和无畏的爱国主义者的死讯之后,也感到极度的悲伤。

初中数学教案15

  一、素质教育目标

  (一)知识教学点

  1.掌握的三要素,能正确画出.

  2.能将已知数在上表示出来,能说出上已知点所表示的数.

  (二)能力训练点

  1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.

  2.对学生渗透数形结合的思想方法.

  (三)德育渗透点

  使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.

  (四)美育渗透点

  通过画,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.

  二、学法引导

  1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法.

  2.学生学法:动手画,动脑概括的三要素,动手、动脑做练习.

  三、重点、难点、疑点及解决办法

  1.重点:正确掌握画法和用上的点表示有理数.

  2.难点:有理数和上的点的对应关系。

  四、课时安排

  1课时

  五、教具学具准备

  电脑、投影仪、自制胶片.

  六、师生互动活动设计

  师生同步画,学生概括三要素,师出示投影,生动手动脑练习

  七、教学步骤

  (一)创设情境,引入新课

  师:大家知识温度计的用途是什么?

  生:温度计可以测量温度

  (出示投影1)

  三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.

  师:三个温度计所表示的温度是多少?

  生:2℃,-5℃,0℃.

  我们能否用类似温度计的图形表示有理数呢?

  这种表示数的图形就是今天我们要学的内容—(板书课题).

  【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—.再从温度计这个实物形象抽象出来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.

  (二)探索新知,讲授新课

  1.的画法

  与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:

  第一步:画直线定原点原点表示0(相当于温度计上的0℃).

  第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).

  第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度).

  【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.

  让学生观察画好的直线,思考以下问题:

  (出示投影1)

  (1)原点表示什么数?

  (2)原点右方表示什么数?原点左方表示什么数?

  (3)表示+2的点在什么位置?表示-1的点在什么位置?

  (4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?

  根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出的定义。

  学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充。

【初中数学教案】相关文章:

初中数学教案06-29

初中数学教案模板08-10

关于初中数学教案10-11

初中数学教案最新08-23

初中趣味数学教案07-01

初中数学教案模板08-05

初中数学教案(精选15篇)08-12

初中数学教案15篇11-26

初中数学教案(15篇)11-26

初中数学教案精选15篇11-29