用正多边形拼地板教案

2024-07-17

用正多边形拼地板教案

  教学目的

  1.通过用相同的正多边形拼地板活动,巩固多边形的内角和与外角和公式。

  2.通过“拼地板”和有关计算,使学生从中发现能拼成一个不留空隙,又不重叠的平面图形的关键是几个多边形的内角相加要等于 360°。

  3.使学生进一步认识图形在日常生活中的应用。

  重点、难点

  1.重点:通过操作使学生发现能拼成一个平面图形的关键。

  2.难点:同上。

  教学过程

  一、复习提问

  1.多边形的内角和公式是什么?外角和?

  2.什么叫正多边形?

  二、新授[

  本章开头已提出关于瓷砖的铺设问题,今天我们来探究用什么样的正多边形能拼成一个既不留下一丝空白,又不相互重叠的平面图形。

  请同学们拿出预先准备好的若干张正三角形、正方形、正五边形、正六边形、正八边形。[

  先用正三角形拼图,你能拼出既不留空隙,又不重叠的平面图形?再依次用正方形、正五边形、正六边形,正八边形试一试,哪些可以,哪些不可以,你从中发现了什么?

  通过学生亲自动手拼图,使他们发现能拼成既不留空隙,又不重叠的平面图形的关键是围绕一点拼在一起的几个多边形的内角相加恰好等于360°。

  下面我们再通过用计算器计算,看看哪些正多边形能拼成符合以上条件的图形。

  让学生填教科书表9.3.1

  每个内角为多少度时能拼成符合以上条件的平面图呢?

  因为60°×6=360° 用6个正三角形瓷砖就可以铺满地面

  90°×4=360° 即用4个正方形瓷砖就可以铺满地面。

  为什么用正五边形瓷砖不能铺满地面呢?正八边形也不行?

  (因为360°÷108°,360°÷154°得数都不是整数)

  这就是说,当(360°÷ (n-2)?180°n )为正整数时[

  即2nn-2 为正整数时,用这样的正n边形就可以铺满地面。

  请同学们看教科书,看图9.3.1中(1)、(2)、(3)分别是用正三角形、正方形、正六边形拼成的。

  三、巩固练习

  你能用正三角形和正六边形两个结合在一起铺满地面吗?

  • 相关推荐

【用正多边形拼地板教案】相关文章:

《认识厘米和用厘米量》教案(通用10篇)10-18

《用竖式计算有余数的除法》教案(通用10篇)05-15

关于读用思想点燃课堂的感想10-13

《用7的乘法口诀求商》的教学反思03-19

《零花钱怎么用》教学设计03-14

《左传》教案10-24

存货教案02-28

爱莲说的经典教案03-20

《牧场上的家教案》经典教案设计03-20

茶花赋教案04-06