作为一位无私奉献的人民教师,时常需要用到教案,编写教案助于积累教学经验,不断提高教学质量。我们应该怎么写教案呢?以下是小编为大家整理的六年级下册《反比例》教案,希望对大家有所帮助。
六年级下册《反比例》教案 1
[教学目标]
1.能利用反比例函数的相关知识分析和解决一些简单的实际问题.
2.在解决实际向题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型.
[教学过程]
1.情境创设
k在一个实际问题中,两个变量x、y满足关系式y?(k为常数,k≠0),则xy就是x的反比例函数.由已知关系式和所给的x值(或y值)可以求出对应的y值(或x值).
教学时,教师也可以从学生更加熟悉的生活事例引入课题:
生活中常用的刀具,使用一段时间后就会变钝,用起来很费劲,如果把刀刃磨细,刀具就会锋利起来,你知道为什么吗?
充满气体的气球能够用脚踩爆,超载的汽车容易爆胎?这是为什么?
2.例题教学
课本提供了两类问题:一类是速度、时间问题,另一类是几何体积问题.生活中有许多反比例函数模型的实际问题,例如:压强与受力面积(压力一定)、长方形的长与宽(面积一定)、速度与时间(路程一定)等,教师可以根据实际情况创设情境.
数学活动:反比例函数实例调查
[数学活动指导]
学生在“用字母表示数”这一章里已经知道不同的实际问题可以用同一个代数式表示,而同一个代数式可以表示不同的实际意义;在“一元一次方程”这一章中,再一次地感受了不同的实际问题中数量的相等关系可以用同一个方程表示,而同一个一元一次方程可以表示不同实际问题中数量的相等关系;在“一次函数”、“分式”等章节中也有类似的内容.在课本中反复出现这样的内容,是为了引导学生充分感受数学的两个重要特征:高度的抽象性和广泛的`应用性.
本节活动包含两个方面的内容:
1.“关系式y?表示什么?”主要是要求学生结合生活经验和对反比例x函数的理解与认识,列举符合条件的实际事例.
2.“调查生活中的反比例函数的实际例子,并运用反比例函数的有关知识解决问题”.要求学生深入生活,进行实地调查.调查可以分组,也可以单独进行,但都应该因地制宜地选择调查部门和对象.
六年级下册《反比例》教案 2
教学目标:
经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的 概念。
教学程序:
一、导入:
1、从现实情况和已有知识经验出发,讨论两个变量之间的相依关系,加强对函数概念的理解,导入反比例函数。
2 、U=IR,当U=220V时,(1)你能用含 R的代数式 表示I吗?
(2)利用写出的关系式完成下表:
R(Ω) 20 40 60 80 100
I(A)
当R越来越大时,I怎样 变化?
当R越来越小呢?
( 3)变量I是R的函数吗?为什么?
答:① I = UR
② 当R越来越大时,I越来越小,当R越来越小时,I越来越大。
③变量I是R的函数 。当给定一 个R的值时,相应地就确定了一个I值,因此I是R的函数。
二、新授:
1、反比例函数的概念
一般地,如果两个变量x, y之间的关系可以表示成 y=kx (k为常数,k≠0)的形式,那么称y是x的'反比例函 数。
反比例函数的自变量x 不能为零。
2、做一做
一个矩形的 面积为20cm2,相邻两条边长分别为xcm和 ycm,那么变量y是变量x的 函数吗?是反比例函数吗?
解:y=20x ,是反比例函数。
三、课堂练习 :
P133,12
四、作业:
P133,习题5.1 1、2题
六年级下册《反比例》教案 3
教学目的:
使学生理解反比例的意义,会正确判断两种相关联的量是否成反比例,培养学生判断能力。
教学重点:
反比例的意义
教具准备:
投影片。
教学过程
一、 复习
1、 口答正比例的意义。
2、 写出下面各题的数量关系,并判断在什么条件下,其中哪两种量成正比例?
(1) 已知每小时加工零件数和加工时间,求加工零件总数。
(2) 已知每本书的价钱和购买的本数,求应付的钱。
(3) 已知每公亩产量和公亩数,求总产量。
二、导入
在上面的数量部系式中,如果加工零件总数一定,每小时加工零件和加工时间是什么关系?如果应付的总钱数一定,每本书的价钱和本数是什么关系?如果总产量一定,每公亩产量和公亩数是什么关系?这就是今天我们学习的内容:反比例的意义。
三、 新授
一)教学例4。
(1)出示例4。
引导学生观察上表内数据,然后回答下面的问题:
A、表中有哪两种量?这两种量相关联吗?为什么?
B、加工的时间是否随着每小时加工的个数的变化而变化?怎样变化?
C、表中两个相的数的比值是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律?
D、这个积表示什么?写出表示它们之间的数量关系式。
学生口答,师板书
二)教学例5
用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系?请你先填写下表。
每本的页数 15 20 25 30 40 60 …
装订的本数 40 …
(1) 先填表,然后观察上表,回答下列问题:
装订的本数是怎样随着每本的页数变化而变化的?
表中相对应的每两个数的乘积各是多少?
你从中发现什么规律?写出它们的数量关系式?
学生回答,教师板书如下:
每本页数×装订的本数=纸的总页数(一定)
(2) 小结:
从上表可以看出:每本的页数和装订的本数也是两种相关联的量,装订的本数是随着本页数的变化的。每本的页数扩大,装订的本数反而缩小;每本的页数缩小,装订的本数反而扩大。它们扩大、缩小的规律是:每本的页数和装订的本数的积总是一定的。
(3) 归纳反比例的意义及关系式。
(1)请你比较一下上面的例4、例5,它们有什么共同特点?(教师引导学生归纳概括出反比例的意义)
(2)判断成反比例量的方法:根据反比例的意义判断两种量是否面反比例的量要具备的条件:
a两种相关联的.量。
b一种量变化,另一种也随着变化。
C两种量中相对应的两个数的积一定。
(3)例4中,加工的时间随着每小时加工数量的变化,每小时加工的数量和加工的时间的积(零件总数)是一定的,我们就说每小时加工的数量和加工的时间是成反比例的量。想一想:在例5中,有哪两种相关联的量?它们是不是成反比例的量?为什么?(指名几个学生口述,教师帮助纠正)
(4) 概括关系式。
如果用字母X和Y表示两种相关联的量,用R表示它们的积(一定),反比例关系可以用下面的式子表示:
X×Y=R(一定)
三)教学例6。
播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?
师:大家能不能根据反比例的意义判断一下?
指名口述,师讲评。
(每天播种的公顷数和要用的天数是两6种相关联的量,每天播种的公顷数×天数=播种的总公顷数,已知播种的总公顷数一定,也就是每天播种的公顷数和天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。)
四、小结
判断两种相关联的量是否成反比例,关键是看两种相关联的量中相对应的两个数的积是否一定,积一定这两种量成反比例。
讨论:想一想:播种总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例?为什么?
五、巩固练习
课本第16页的“做一做”练后讲评。
六、课内外作业
完成练习三的第4――7题。
六年级下册《反比例》教案 4
教学目标:
(一)教学知识点
1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程。
2、体会数学与现实。
生活的紧密联系,增强应用意识。提高运用代数方法解决问题的能力
(二)能力训练要求
通过对反比例函数的应用,培养学生解决问题的能力。
(三)情感与价值观要求
经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题。理解问题,并能综合运用所学的知识和技能解决问题。发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用。
教学重点:
用反比例函数的知识解决实际问题。
教学难点:
如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题。
教学方法:
教师引导学生探索法。
教学过程:
Ⅰ、创设问题情境,引入新课
[师]有关反比例函数的表达式,图象的特征我们都研究过了,那么,我们学习它们的目的是什么呢?
[生]是为了应用。
[师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。
Ⅱ、新课讲解
投影片:(5.3A)
某校科技小组进行野外考察,途中遇到片十几米宽的烂泥湿地。为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务。你能解释他们这样做的`道理吗?当人和木板对湿地的压力一定时随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600N,那么:
(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?
(2)当木板画积为0.2m2时。压强是多少?
(3)如果要求压强不超过6000Pa,木板面积至少要多大?
(4)在直角坐标系中,作出相应的函数图象。
六年级下册《反比例》教案 5
课前准备
教师准备多媒体课件
教学过程
谈话导入
师:谁能用比的知识说一说我们班男女同学的人数情况?
(指名汇报)
师:今天我们就一起来整理和复习比和比例的有关知识。
回顾与整理
(1)举例说一说什么是比,什么是比例,什么是比例尺以及它们的应用。
预设
生1:两个数相除又叫作两个数的比,如5÷2,可以写成5∶2。
生2:表示两个比相等的式子叫作比例,如8∶4=24∶12。
生3:图上距离和实际距离的比,叫作这幅图的比例尺,如一幅地图的比例尺是。比例尺可分为数值比例尺和线段比例尺。
生4:配制农药会应用到比的知识;地图上一般都有比例尺。
(2)说一说比与比例有什么区别。
比
比例
各部分名称
0.9 ∶ 0.6=1.5
前项后项比值
基本性质
比的前项和后项同时乘或除以相同的数(0除外),比值不变。
在比例里,两个内项的积等于两个外项的积。
(3)出示教材83页“回顾与交流”2题。
学生独立完成,思考比、分数、除法之间的关系,并全班交流。
预设
生1:除法算式中的被除数相当于分数的'分子,相当于比的前项;除法算式中的除数相当于分数的分母,相当于比的后项;除号相当于分数的分数线,相当于比的比号。
生2:除法算式的商相当于分数的分数值,相当于比的比值。
强调:因为0不能作除数,所以所有分数的分母及比的后项都不能为0。
六年级下册《反比例》教案 6
教学目标
知识与技能目标:使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。
能力目标:经历反比例意义的构建过程,培养发现的能力和归纳概括的能力。
情感与态度目标:体会反比例与生活之间的联系,感悟到事物之间相互联系和相互转化的辨证唯物主义的观点。
教学重难点
重点:理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。
难点:掌握反比例的特征,能够正确判断反比例关系。
教学过程
(一)复习猜想导入,引出问题。
1、成正比例的量有什么特征?什么叫正比例关系?
2、在生活中两个相关联的量有的成正比例关系,还可能成什么关系?学生很自然想到反比例,激发学生的学习欲望,问学生想学反比例的哪些知识,学生大胆猜测,对反比例的意义展开合理的猜想。由此导入新课。
达成目标:猜想导课,激发探究愿望
(二)共同探索,总结方法。
1、明确这节课的学习目标:
(1)理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
(2)经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
2、情境导入,学习探究。
(1)我们先来看一个实验。
高度(厘米) 30 20 15 10 5
底面积(平方厘米) 10 15 20 30 60
体积(立方厘米)
提问:根据列表,你从中你发现了什么?
(2)学生讨论交流。
(3)引导学生回答:表中的两个量是高度和底面积。
高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。
每两个相对应的`数的乘积都是300.
(4)计算后你又发现了什么?
每两个相对应的数的乘积都是300,乘积一定。
教师小结:我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。
教师提问:高底面积和体积,怎样用式子表示他们的关系?板书:高×底面积=水的体积(一定)
(5)如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?板书:x×y=k(一定)
小结:通过上面的学习,你认为判断两种相关联的量是否成反比例,关键是什么?
(6)归纳总结反比例的意义。
(7)比较归纳正反比例的异同点。
达成目标:比较思想是在小学数学教学中应用十分普遍的数学思想方法,《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的学习内容和学习方法有相似之处,学生从知识的差别中找到同一,也可以从同一中找出差别,学生学习新知识,进行深化拓展,归纳总结。
(三)运用方法,解决问题。
1、生活中,哪些相关联的量成反比例关系,举例说一说。
2、课后做一做每天运的吨数和运货的天数成反比例关系吗?为什么?
3、出示反比例图像,与正比例图像进行比较学习。
达成目标:学生利用对反比例概念的理解,判断相关联的量是否成反比例,学会分析并进行判断。
(四)反馈巩固,分层练习。
判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
达成目标:使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。
(五)课堂总结,提升认识
总结:今天我们学习了什么?(揭示课题—反比例)你有什么收获?学习中,你要提示大家注意什么?你对今天的学习还有什么疑问吗?
六年级下册《反比例》教案 7
一、教学目标:
1、 理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。
2、 能根据比例的意义和基本性质,正确判断两个比能否组成比例。
3、 在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。
4、 通过自主学习,让学生经经历探究的过程,体验成功的快乐。
二、教学重、难点:
1、重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。
2、难点:自主探究比例的基本性质。
三、教学准备:
CAI课件
四、教学过程:
1、复习、导入
(1) 谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)
还记得怎样求比值吗?
(2) 课件显示:算出下面每组中两个比的比值
师:3:5 18:30
师:0.4:0.2 1.8:0.9
师:5/8:1/4 7.5:3
师:2:8 9:27
师评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。
2、认识比例的意义
(1)认识意义
师:指名口答上题每组中两个比的比值,课件依次显示答案。
师:口算完了,你们有什么发现吗?(3组比值相等,1组不等)
(2)是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。(课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)
师:最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)
师:数学中规定,像这样的一些式子就叫做比例。(板书:比例)
师评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的课堂教学,就需要像这样做好已有经验与新知识的衔接。
师:今天这节课我们就一起来研究比例,你想研究哪些内容呢?
生答:想研究比例的意义,学比例有什么用?比例有什么特点……
师:那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?(根据学生的回答,教师抓住关键点板书:两个比 比值相等)
师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。(课件显示:表示两个比相等的式子叫做比例。)
师:学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
师评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。
3、练习
(1) 出示例1 根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。学生独立完成。集体交流,明确:根据比例的意义可以判断两个比能否组成比例。
(2)完成练习纸第一题。一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。
师:分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?
师:分别写出上、下午行驶的路程的`比和时间的比,这两个比能组成比例吗?为什么?
师评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。
师:刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?(引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)
4、教学比例各部分的名称
(1) 课件出示: 3 : 5
(2) 课件出示:3 : 5 = 18 : 30
(3) 如果把比例写成分数的形式,你能指出它的内、外项吗?
课件出示:3/5=18/30
师评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。
5、小结、过渡:
刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?
6、探究比例的基本性质
(1)课件先出示一组数:3、5、10、6
再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)
(2) 独立思考,并在作业本上写一写。
学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……
根据学生回答板书: 3×10=5×6 3:5=6:10、 3:6=5:10、 5:3=10:6、 6:3=10:5
(3)引导发现规律
师:还有不同的乘法算式吗?(没有,交换因数的位置还是一样) 乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)
师:那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?
师:学生先独立思考,再小组交流,探究规律。 (板书:两个外项的积等于两个内项的积。)
师评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。
(4)验证:是不是任意一个比例都有这样的规律?
师:课件显示复习题(4组),学生验证。
师:学生任意写一个比例并验证。
师:完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
师评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。
(5)思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。
(6)小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)
7、全课总结。
六年级下册《反比例》教案 8
教学目标:
1.结合具体目标,体会生活中存在着大量互相依存的变量,让学生知道其中一种量变化,另一种量也随着变化。
2.在具体情境中,尝试用自己的语言描述两个变量之间的关系。教学重点:两种变化的量。
教学难点:
根据图表说明两种量的变化情况
教具准备:
直尺,三角板、课件等。
教学方法:
自主探究
教学过程:
一、揭示课题。
教师:在现实生活中,存在着很多相关联的量。其中一种量变化,另一种量也随着变化。今天我们就来研究这些量的变化情况。
二、探索新知
活动一:观察并回答。
1.下表是小明的体重变化情况。
观察表中所反映的内容,搞清楚表中所涉及的量是哪两个量?观察后请回答。
2.上表中哪些量在发生变化?
3.说一说小明10周岁前的体重是如何随年龄增长而变化的?
小结:小明的体重随年龄的增长而变化。2—6岁和6---10岁是体重的增长高峰。说明这两个阶段是孩子成长的重要阶段。
4.体重一直会随年龄的增长而变化吗?这说明了什么?
说明:体重和年龄是一组相关联的.量。但体重的增长是随着人的生长规律而确定的。
5.教育学生要合理饮食,适当控制自己的体重。
活动二:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。
观察书上统计图:
1.图中所反映的两个变化的量是哪两个?
2.横轴表示什么?纵轴表示什么?
同桌两人观察并思考,得出结论后,记录在书上,然后再在全班汇报说明。
3.一天中,骆驼的体温最高是多少?最低是多少?
4.一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?
5.第二天8时骆驼的体温与前一天8时的体温有什么关系?
6.骆驼的体温有什么变化变化的规律吗?
活动三:某地的一位学生发现蟋蟀叫的次数与气温之间有如下的近似关系。
1.蟋蟀1分叫的次数除以7再加3,所得的结果与当时的气温值差不多。
2.如果用t表示蟋蟀每分钟叫的次数,你能用公式表示这个近似关系吗?请你写出这个关系式,全班展示,交流。t
3.你还发现生活中有哪两个量之间具有变化的关系?它们之间是怎样变化的?
四人小组交流你收集到的信息,选派代表请举例说明
4.你还发现我们学过的数学知识中有哪些量之间具有变化的关系?
全课小结:今天我们研究的两个量都是相关联的。它们之间在变化的时候都具有一定的关系。下一节课我们将深入研究具有相关联的
两个量,在变化时有相同的变化特征,这样的知识在数学上的应用。
三、深化练习。
找一找,生活中两种相关联的量,记录它们的变化情况。
六年级下册《反比例》教案 9
教学目标:
1.结合丰富的事例,认识正比例,理解正比例的意义。
2.能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学重点:
理解正比例的意义。
教学难点:
能根据正比例的意义,判断两个相关联的量是不是成正比例。
教具:
课件
教法:
自主探究
教学过程:
一、提示课题。
1.由学生说一说生活中两种相关联的量的变化情况。如年龄与体重.时间与温度.价钱与数量等。
2.教师:两种相关联的量,一种量变化,另一种量也随着变化,这样的两种量有什么关系呢?这就是我们今天要学习的内容。
板书:正比例
二、探索新知
活动一:在情境中感受两种相关联的量之间的变化规律。
(一)情境一:
1.观察,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。
2.填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从数据中发现了什么?
3.小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是
4.正方形的面积一边长的比是边长,是一个不确定的值。
(二)情境二:
1.一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:
2.从表中你发现了什么规律?说说你发现的规律:路程与时间的比值(速度)相同。
(三)情境三:
1.一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2.从表中发现了什么规律?应付的钱数与质量的比值(也就是单价)相同。
3.说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
5.正比例关系:
(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。
(2)购买苹果应付的钱数与质量有什么关系?
6.观察思考成正比例的量有什么特征?
一个量随另一个量的.变化而变化,在变化过程中这两个量的比值相同。
(四)想一想:
1.正方形的周长与边长成正比例吗?面积与边长呢?为什么?
(1)正方形的周长随边长的变化而变化,且周长与边长的比值都是4,所以正方形的周长与边长成正比例。
(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。请生用自己的语言说一说。
2.小明和爸爸的年龄变化情况如下:
(1)把表填写完整。
(2)父子的年龄成正比例吗?为什么?
(3)与同桌交流,再集体汇报。
三、深化练习(课本中练一练)。
四、总结。
五、作业。选用作业设计习题
六年级下册《反比例》教案 10
教学目标:
知识与技能:
1.结合丰富的实例,认识反比例。
2.能根据反比例的意义,判断两个相关联的量是不是反比例。
过程与方法:
通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。
情感态度价值观:
培养学生自主、合作学习、探索新知的能力,激发学习数学的热情。感受反比例关系在生活中的广泛应用。初步渗透函数思想。
教学重点:
认识反比例,根据反比例意义判断两个相关联的量是否成反比例。
教学难点:
认识反比例,根据反比例意义判断两个相关联的量是否成反比例。
教具准备:
电脑课件
教学过程:
一、复习引入
1、计算
2、判断下面各题中的两种量是否成正比例?为什么?
(1)文具盒的单价一定,买文具盒的个数和总价。
(2)一堆货物一定,运走的量和剩下的量。
(3)汽车行驶的速度一定,行驶的路程和时间。
3、说说什么是正比例。
师:大家对正比例知识理解掌握得非常好,接下来我们就该学习什么了?
二、出示学习目标
1.能根据反比例的意义,判断两个相关联的量是不是反比例。
2.通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。
3.培养学生探索研究的能力,感受反比例关系在生活中的广泛应用。
三、指导自学
师:给你们讲个小故事:
有一个贪婪的财主,拿了一匹上好的布料准备做一顶帽子,到了裁缝店,觉得这样好的布料做一顶帽子似乎浪费了,于是问裁缝:“这匹布可以做两顶帽子吗?”裁缝看了看财主一眼,说:“可以。”财主见他回答得那么爽快,心想,这裁缝肯定是从中占了些什么便宜,于是又问,“那做3顶帽子吗?”裁缝依然很爽快地说:“行!”这时,财主更加疑惑了,嘀咕着:“多好的一匹布啊,那我做4顶可以吗”“行!”裁缝仍然很快地回答。经过一翻的较量后,财主最后问:“那我想做10顶帽子可以吗?”裁缝迟疑了一会,然后打量着财主,慢慢的说:“可以的。”这时财主才放下心来,心想:这匹布料如果只做一顶帽子,那就便宜裁缝了。瞧!这不让我说到10顶了吧。我还真聪明!嘿嘿??
过了几天,财主到了裁缝店取帽子,结果一看,顿时傻了眼:10顶的帽子小得只能戴在手指头上了!
学习提示: 独立思考?
1、“为什么同一匹布,裁缝说做1顶帽子,2顶帽子,10顶都可以呢?”
2、故事中相关的数量关系式是什么?哪两个是变化的量,怎样变?另一个是什么量?有什么特点?
合作学习小组讨论上述的问题。看书合作学习
1、把25页例
2、例3的表格补充完整。
2、每个表格中有哪些变量?有不变的量吗?分别是什么?变化有什么规律?相关的数量关系式是什么?
3、三个数量关系式有相同点吗?是什么?你能把这种变化规律用一个含有字母的关系式来表示吗?
4、你知道什么是反比例吗?
四、学生自学
五、检查自学效果
让学生说说自学要求中的内容。
师归纳:两种相关联的量,一种量随着另一种量的变化而变化,在变化过程中两种量的积一定,那么这两种量成反比例。
六、引导更正,指导运用
你们还找出类似这样关系的量来吗?”
学生:要走一段路,速度越慢(快),用的时间就越多(少)运一堆货物,每次运的越多(少),运的次数就越小(多)百米赛跑,路程100米不变,速度和时间是反比例; 排队做操,总人数不变,排队的行数和每行的人数是反比例; 长方体的体积一定,底面积和高是反比例。
七、当堂训练 基础练习
1、填空
两种 _____ 的'量,一种量随着另一种量变化,如果这两种量中相对应的两个数的______,这两种量叫做成反比例的量,它们的关系叫做_______关系。
2、判断下面每题中的两种量是不是成反比例,并说明理由。
(1)煤的总量一定,每天的烧煤量和能够烧的天数。
(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。
(3)生产电视机的总台数一定,每天生产的台数和所用的天数。
(4)圆柱体的体积一定,底面积和高。
(5)小林做10道数学题,已做的题和没有做的题。
(6)长方形的长一定,面积和宽。
(7)平行四边形面积一定,底和高。提高练习
1、一长方形的周长为20厘米,若长是9厘米,则宽是1厘米。请你填写下表,并判断这个长方形在周长不变的情况下,长和宽是否成反比例,并说明理由。长/cm
四、小结
通过这节课的学习,你有什么收获?
这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。板书:反比例
相关联,一个量变化,另一个量也随着变化积一定
xy=k(一定)
六年级下册《反比例》教案 11
教学目标:
1、理解反比例的意义。
2、能根据反比例的意义,正确判断两种量是否成反比例。
3、培养学生的抽象概括能力和判断推理能力。
教学重点:
引导学生理解反比例的意义。
教学难点:
利用反比例的意义,正确判断两种量是否成反比例。
教学过程:
一、复习铺垫
1、成正比例的量有什么特征?
2、下表中的两种量是不是成正比例?为什么?
二、自主探究
(一)教学例1
1.出示例1,提出观察思考要求:
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(1)表中的两种量是每小时加工的数量和所需的加工时间。
教师板书:每小时加工数和加工时间
(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的'数量缩小,所需的加工时间反而扩大。
教师追问:这是两种相关联的量吗?为什么?
(3)每两个相对应的数的乘积都是600.
2.这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?
教师板书:零件总数
每小时加工数×加工时间=零件总数
3.小结
通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
(二)教学例2
1.出示例2,根据题意,学生口述填表。
2.教师提问:
(1)表中有哪两种量?是相关联的量吗?
教师板书:每本张数和装订本数
(2)装订的本数是怎样随着每本的张数变化的?
(3)表中的两种量有什么变化规律?
(三)比较例1和例2,概括反比例的意义。
1.请你比较例1和例2,它们有什么相同点?
(1)都有两种相关联的量。
(2)都是一种量变化,另一种量也随着变化。
(3)都是两种量中相对应的两个数的积一定。
2.教师小结
像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
3.如果用字母x和y表示两种相关联的量,用k表示它们的积一定,反比例关系可以用一个什么样的式子表示?
教师板书:xy=k(一定)
三、课堂小结
1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?
四、课堂练习
完成教材43页做一做
五、课后作业
练习七6、7、8、9题。
六、板书设计
成反比例的量xy=k(一定)
每小时加工数×加工时间=零件总数(一定)
每本页数×装订本数=纸的总页数(一定)
六年级下册《反比例》教案 12
教学内容:
教科书69、70页练习十三第9~13题
教学目标:
1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。
2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。
教学重难点:
进一步认识正、反比例的意义,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。
教学准备:
实物投影
教学过程:
一、复习
1、复习正反比例的意义。
要求学生说出成正反比例量的关键,根据学生回答板书关系式。
2、判断下面各题中的两种量是不是成比例,成什么比例
(1)圆锥的体积和底面积。
(2)用铜制成的零件的体积和质量。
(3)一个人的身高和体重。
(4)互为倒数的两个数。
(5)三角形的底一定,它的面积和高。
(6)圆的周长和直径。
(7)被除数一定,商和除数。
二、练习
完成练习十三9~13题
1、第9题。
观察每个表中的数据,讨论表下的问题。要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。
2、第10题。
(1)看图填写表格。
(2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的计算结果作出判断。要让学生认识到:同一幅地图的比例尺一定,所以这幅图的'图上距离和实际距离成正比例。
(3)启发学生运用有关比例尺的知识进行解答。
3、第11题。
填写表格,组织学生对两个问题进行比较,进一步突出成反比例量的特点。
4、第12题。
引导学生说说每题中的哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。
5、第13题。
让学生小组进行讨论,教师指导有困难的学生。
三、补充练习
1、a与b成正比例,并且在a =1。时,b的对应值是0.15
(1)a与b的关系式是a/b=()
(2)当a=2.5时,b的对应值是()
(3)当b=9.2时,a的对应值是()
2、甲、乙两人步行速度的比为5:6,从A地到B地,甲走12小时,乙要走几小时?
- 相关推荐
【六年级下册《反比例》教案】相关文章:
成反比例的量教案05-14
关于反比例的教案设计06-23
正反比例的数学复习教案05-13
六年级下册的习作教案05-05
《六年级品德下册》教案06-21
《反比例》教学反思06-26
六年级下册手指教案06-06
六年级下册《认识圆柱》的教案06-22
六年级下册《统计与概率》教案06-22