《乘法分配律》教学反思

2024-08-13

关于《乘法分配律》教学反思

  乘法分配律是所有运算律中形式变化较为复杂,且跨越加法和乘法两级运算的定律,对学生的记忆、理解与运用都提出了较高的要求。教学中,教师需要在探析错因、读法纠正、变式训练上做足功夫,巧制策略。学生在正式接触乘法分配律之前,学生陆续掌握了加法和乘法的交换律和结合律,并能熟练使用这些定律进行简单的运算。照常理推测,同为等式恒等变换,借助已有的经验,学生对于乘法分配律应该很容易接受。然而,实际情况却不容乐观,学生在运用乘法分配律进行简算时出错率较高。为此,教师应巧制策略,帮助学生克服困难。

  如何帮学生建立数学模型,展现乘法分配律的性质,是教学的根本,也是学生理解的前提。要让学生对乘法分配律有深刻准确的记忆和理解,用最符合学生心理特征的方式进行阐述才是上策。

  为此,我改进了教学方式——切换读法,化难为易。

  [例题]植树节那天,学校组织二(1)班的学生植树,上午植树4小时,下午植树2小时,平均每小时植树25棵,问:植树节那天,学生一共植树多少棵?

  步骤1:学生列式多为“25×4+25×2”和“25×(4+2)”两种式子。

  步骤2:简述各算式的算理:25×4+25×2表示先分别求出半天的植树数,再求一天的植树总数;25×(4+2)表示先求植树总时长,再求植树总数。

  步骤3:引导学生从数字计算的角度去理解:25×4+25×2表示两个积的和,25×(4+2)表示两个数的积。接着用一句话揭示它们的共同点:4个25加上2个25等于6个25,6就是4与2的和。以实例为对象,换成通俗的说法,完美呈现了算式的内涵,深化了学生的理解。

  步骤4:针对代数式表示的乘法分配律“a×c+b×c=(a+b)×c”,让学生尝试用通俗方式解读,即a个c加上b个c等于(a+b)个c。

  实践证明,渗入思维的读法比机械复读教学效果要好。

【《乘法分配律》教学反思】相关文章:

《乘法分配律》教学设计02-23

《2、3乘法口诀》的教学反思02-26

数学《表内乘法二》教学反思02-02

不进位乘法教学反思(精选10篇)11-21

《用7的乘法口诀求商》的教学反思03-19

《5的乘法口诀》的教学反思(通用11篇)10-18

《8的乘法口诀及求商》的教学反思(通用13篇)11-23

《用7、8、9的乘法口诀求商》教学反思(通用15篇)04-10

整数乘法运算定律推广到小数课程教学后的反思(通用10篇)06-08

《乘法运算定律》的课堂教学设计02-16