《函数的概念》教案

2024-08-22

  作为一位不辞辛劳的人民教师,时常会需要准备好教案,借助教案可以提高教学质量,收到预期的教学效果。我们该怎么去写教案呢?以下是小编精心整理的《函数的概念》教案,希望能够帮助到大家。

  《函数的概念》教案 1

  一、教学目标

  1、知识与技能:

  函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.

  2、过程与方法:

  (1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

  (2)了解构成函数的要素;

  (3)会求一些简单函数的定义域和值域;

  (4)能够正确使用“区间”的符号表示某些函数的定义域;

  3、情态与价值,使学生感受到学习函数的必要性的重要性,激发学习的积极性。

  二、教学重点与难点:

  重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;

  难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

  三、学法与教学用具

  1、学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节课的教学目标.

  2、教学用具:投影仪.

  四、教学思路

  (一)创设情景,揭示课题

  1、复习初中所学函数的概念,强调函数的模型化思想;

  2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的'思想:

  (1)炮弹的射高与时间的变化关系问题;

  (2)南极臭氧空洞面积与时间的变化关系问题;

  (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题

  3、分析、归纳以上三个实例,它们有什么共同点。

  4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

  5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

  (二)研探新知

  1、函数的有关概念

  (1)函数的概念:

  设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么就称f:a→b为从集合a到集合b的一个函数(function).

  记作:y=f(x),x∈a.

  其中,x叫做自变量,x的取值范围a叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈a}叫做函数的值域(range).

  注意:

  ①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

  (2)构成函数的三要素是什么?

  定义域、对应关系和值域

  (3)区间的概念

  ①区间的分类:开区间、闭区间、半开半闭区间;

  ②无穷区间;

  ③区间的数轴表示.

  (4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?

  通过三个已知的函数:y=ax+b(a≠0)

  y=ax2+bx+c(a≠0)

  y=(k≠0)

  比较描述性定义和集合,与对应语言刻画的定义,谈谈体会。

  师:归纳总结

  《函数的概念》教案 2

  一、教材分析及处理

  函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。

  对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。

  教学重点是函数的概念,难点是对函数概念的本质的理解。

  学生现状:

  学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。

  二、教学三维目标分析

  1、知识与技能(重点和难点)

  (1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。

  (2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。

  (3)、掌握定义域的表示法,如区间形式等。

  (4)、了解映射的概念。

  2、过程与方法

  函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题:

  (1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。

  (2)、面向全体学生,根据课本大纲要求授课。

  (3)、加强学法指导,既要让学生学会本节知识点,也要让学生会自我主动学习。

  3、情感态度与价值观

  (1)、通过多媒体给出实例,学生小组讨论,给出自己的结论和观点,加上老师的.辅助讲解,培养学生的实践能力和和大胆创新。

  (2)、让学生自己讨论给出结论,培养学生的自我动手能力和小组团结能力。

  三、教学器材

  多媒体ppt课件

  四、教学过程

  教学内容教师活动学生活动设计意图

  《函数》课题的引入(用时一分钟)配着简单的音乐,从简单的例子引入函数应用的广泛,将同学们的视线引入函数的学习上听着悠扬的音乐,让同学们的视线全注意在老师所讲的内容上从贴近学生生活入手,符合学生的认知特点。让学生在领略大自然的美妙与和谐中进入函数的世界,体现了新课标的理念:从知识走向生活。

  知识回顾:初中所学习的函数知识(用时两分钟)回顾初中函数定义及其性质,简单回顾一次函数、二次函数、正比例函数、反比例函数的性质、定义及简单作图认真听老师回顾初中知识,发现异同在初中知识的基础上引导学生向更深的内容探索、求知。即复习了所学内容又做了即将所学内容的铺垫。

  思考与讨论:通过给出的问题,引出本节课的主要内容(用时四分钟)给出两个简单的问题让同学们思考,讲述初中内容无法给出正确答案,需要从新的高度来认识函数结合老师所回顾的知识,结合自己所掌握的知识,思考老师给出的问题,小组形式作讨论,从简单问题入手,循序渐进,引出本节主要知识,回顾前一节的集合感念,应用到本节知识,前后联系、衔接。

  新知识的讲解:从概念开始讲解本节知识(用时三分钟)详细讲解函数的知识,包括定义域,值域等,回到开始提问部分作答做笔记,专心听讲讲解函数概念,由知识讲解回到问题身上,解决问题。

  对提问的回答(用时五分钟)引导学生自己解决开始所提的两个问题,然后同个互动给出最后答案通过与老师共同讨论回答开始问题,总结更好的掌握函数概念,通过问题来更好的掌握知识。

  函数区间(用时五分钟)引入函数定义域的表示方法简洁明了的方法表示函数的定义域或值域,在集合表示方法的基础上引入另一种方法。

  注意点(用时三分钟)做个简单的的回顾新内容,把难点重点提出来,让同学们记住通过问题回答,概念解答,把重难点给出,提醒学生注意内容和知识点。

  习题(用时十分钟)给出习题,分析题意在稿纸上简单作答,回答问题通过习题练习明确重难点,把不懂的地方记住,课后学生在做进一步的联系。

  映射(用时两分钟)从概念方面讲解映射的意义,象与原象在新知识的基础上了解更多知识,映射的学习给以后的知识内容做更好的铺垫。

  小结(用时五分钟)简单讲述本节的知识点,重难点做笔记前后知识的连贯,总结,使学生更明白知识点。

  五、教学评价

  为了使学生了解函数概念产生的背景,丰富函数的感性认识,获得认识客观世界的体验,本课采用"突出主题,循序渐进,反复应用"的方式,在不同的场合考察问题的不同侧面,由浅入深。本课在教学时采用问题探究式的教学方法进行教学,逐层深入,这样使学生对函数概念的理解也逐层深入,从而准确理解函数的概念。函数引入中的三种对应,与初中时学习函数内容相联系,这样起到了承上启下的作用。这三种对应既是函数知识的生长点,又突出了函数的本质,为从数学内部研究函数打下了基础。

  在培养学生的能力上,本课也进行了整体设计,通过探究、思考,培养了学生的实践能力、观察能力、判断能力;通过揭示对象之间的内在联系,培养了学生的辨证思维能力;通过实际问题的解决,培养了学生的分析问题、解决问题和表达交流能力;通过案例探究,培养了学生的创新意识与探究能力。

  虽然函数概念比较抽象,难以理解,但是通过这样的教学设计,学生基本上能很好地理解了函数概念的本质,达到了课程标准的要求,体现了课改的教学理念。

  《函数的概念》教案 3

  教学目标:

  1.进一步理解用集合与对应的语言来刻画的函数的概念,进一步理解函数的本质是数集之间的对应;

  2.进一步熟悉与理解函数的定义域、值域的定义,会利用函数的定义域与对应法则判定有关函数是否为同一函数;

  3.通过教学,进一步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.

  教学重点:

  用对应来进一步刻画函数;求基本函数的定义域和值域.

  教学过程:

  一、问题情境

  1.情境.

  复述函数及函数的定义域的概念.

  2.问题.

  概念中集合A为函数的定义域,集合B的作用是什么呢?

  二、学生活动

  1.理解函数的值域的概念;

  2.能利用观察法求简单函数的值域;

  3.探求简单的复合函数f(f(x))的定义域与值域.

  三、数学建构

  1.函数的值域:

  (1)按照对应法则f,对于A中所有x的值的对应输出值组成的.集合称之

  为函数的值域;

  (2)值域是集合B的子集.

  2.xg(x)f(x)f(g(x)),其中g(x)的值域即为f(g(x))的定义域;

  四、数学运用

  (一)例题.

  例1已知函数f(x)=x2+2x,求f(-2),f(-1),f(0),f(1).

  例2根据不同条件,分别求函数f(x)=(x-1)2+1的值域.

  (1)x∈{-1,0,1,2,3};

  (2)x∈R;

  (3)x∈[-1,3];

  (4)x∈(-1,2];

  (5)x∈(-1,1).

  例3求下列函数的值域:

  ①=;②=.

  例4已知函数f(x)与g(x)分别由下表给出:

  x1234x1234

  f(x)2341g(x)2143

  分别求f(f(1)),f(g(2)),g(f(3)),g(g(4))的值.

  (二)练习.

  (1)求下列函数的值域:

  ①=2-x2;②=3-|x|.

  (2)已知函数f(x)=3x2-5x+2,求f(3)、f(-2)、f(a)、f(a+1).

  (3)已知函数f(x)=2x+1,g(x)=x2-2x+2,试分别求出g(f(x))和f(g(x))的值域,比较一下,看有什么发现.

  (4)已知函数=f(x)的定义域为[-1,2],求f(x)+f(-x)的定义域.

  (5)已知f(x)的定义域为[-2,2],求f(2x),f(x2+1)的定义域.

  五、回顾小结

  函数的对应本质,函数的定义域与值域;

  利用分解的思想研究复合函数.

  六、作业

  课本P31-5,8,9.

  《函数的概念》教案 4

  【高考要求】:三角函数的有关概念(B).

  【教学目标】:理解任意角的概念;理解终边相同的角的意义;了解弧度的意义,并能进行弧度与角度的互化.

  理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切.

  【教学重难点】:终边相同的角的意义和任意角三角函数(正弦、余弦、正切)的定义.

  【知识复习与自学质疑】

  一、问题.

  1、角的概念是什么?角按旋转方向分为哪几类?

  2、在平面直角坐标系内角分为哪几类?与终边相同的角怎么表示?

  3、什么是弧度和弧度制?弧度和角度怎么换算?弧度和实数有什么样的关系?

  4、弧度制下圆的弧长公式和扇形的面积公式是什么?

  5、任意角的三角函数的定义是什么?在各象限的符号怎么确定?

  6、你能在单位圆中画出正弦、余弦和正切线吗?

  7、同角三角函数有哪些基本关系式?

  二、练习.

  1.给出下列命题:

  (1)小于的角是锐角;

  (2)若是第一象限的角,则必为第一象限的角;

  (3)第三象限的角必大于第二象限的角;

  (4)第二象限的角是钝角;

  (5)相等的.角必是终边相同的角;终边相同的角不一定相等;

  (6)角2与角的终边不可能相同;

  (7)若角与角有相同的终边,则角(的终边必在轴的非负半轴上。其中正确的命题的序号是

  2.设P点是角终边上一点,且满足则的值是

  3.一个扇形弧AOB的面积是1,它的周长为4,则该扇形的中心角=弦AB长=

  4.若则角的终边在象限。

  5.在直角坐标系中,若角与角的终边互为反向延长线,则角与角之间的关系是

  6.若是第三象限的角,则-,的终边落在何处?

  【交流展示、互动探究与精讲点拨】

  (1)求终边落在阴影部分(含边界)的所有角的集合;

  (2)求终边落在阴影部分、且在上所有角的集合;

  (3)求始边在OM位置,终边在ON位置的所有角的集合.

  例2.(1)已知角的终边在直线上,求的值;

  (2)已知角的终边上有一点A,求的值。

  例3.若,则在第象限.

  例4.若一扇形的周长为20,则当扇形的圆心角等于多少弧度时,这个扇形的面积最大?最大面积是多少?

  【矫正反馈】

  1、若锐角的终边上一点的坐标为,则角的弧度数为。

  2、若,又是第二,第三象限角,则的取值范围是。

  3、一个半径为的扇形,如果它的周长等于弧所在半圆的弧长,那么该扇形的圆心角度数是弧度或角度,该扇形的面积是.

  4、已知点P在第三象限,则角终边在第象限。

  5、设角的终边过点P,则的值为。

  6、已知角的终边上一点P且,求和的值。

  《函数的概念》教案 5

  一、教材分析

  本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1函数的概念》共3课时,本节课是第1课时。

  托马斯说:“函数概念是近代数学思想之花”。生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。

  函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。函数的的重要性正如恩格斯所说:“数学中的转折点是笛卡尔的变数,有了变数,运动就进入了数学;有了变数,辩证法就进入了数学”。

  二、学生学习情况分析

  函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:

  (一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;

  (二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;

  (三)高中用导数工具研究函数的单调性和最值。

  1.有利条件

  现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。

  初中用运动变化的观点对函数进行定义的,它反映了历史上人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。

  2.不利条件

  用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。

  三、教学目标分析

  课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.

  1.知识与能力目标:

  ⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;

  ⑵理解函数的'三要素的含义及其相互关系;

  ⑶会求简单函数的定义域和值域

  2.过程与方法目标:

  ⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;

  ⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.

  3.情感、态度与价值观目标:

  感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。

  四、教学重点、难点分析

  1.教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;

  重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。但是,初中定义并未完全揭示出函数概念的本质,对y1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。

  突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。

  2.教学难点:第一:从实际问题中提炼出抽象的概念;第二:符号“y=f(x)”的含义的理解.

  难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。

  突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。

  五、教法与学法分析

  1.教法分析

  本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。

  2.学法分析

  在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。

  《函数的概念》教案 6

  教学目标:

  1.通过现实生活中丰富的实例,让学生了解函数概念产生的背景,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数的概念,掌握函数是特殊的数集之间的对应;

  2.了解构成函数的要素,理解函数的定义域、值域的定义,会求一些简单函数的定义域和值域;

  3.通过教学,逐步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的`联系的一种数学化的思考.

  教学重点:

  两集合间用对应来描述函数的概念;求基本函数的定义域和值域.

  教学过程:

  一、问题情境

  1.情境.

  正方形的边长为a,则正方形的周长为,面积为.

  2.问题.

  在初中,我们曾认识利用函数来描述两个变量之间的关系,如何定义函数?常见的函数模型有哪些?

  二、学生活动

  1.复述初中所学函数的概念;

  2.阅读课本23页的问题(1)、(2)、(3),并分别说出对其理解;

  3.举出生活中的实例,进一步说明函数的对应本质.

  三、数学建构

  1.用集合的语言分别阐述23页的问题(1)、(2)、(3);

  问题1某城市在某一天24小时内的气温变化情况如下图所示,试根据函数图象回答下列问题:

  (1)这一变化过程中,有哪几个变量?

  (2)这几个变量的范围分别是多少?

  问题2略.

  问题3略(详见23页).

  2.函数:一般地,设A、B是两个非空的数集,如果按某种对应法则f,对于集合A中的每一个元素x,在集合B中都有惟一的元素和它对应,这样的对应叫做从A到B的一个函数,通常记为=f(x),x∈A.其中,所有输入值x组成的集合A叫做函数=f(x)的定义域.

  (1)函数作为一种数学模型,主要用于刻画两个变量之间的关系;

  (2)函数的本质是一种对应;

  (3)对应法则f可以是一个数学表达式,也可是一个图形或是一个表格

  (4)对应是建立在A、B两个非空的数集之间.可以是有限集,当然也就可以是单元集,如f(x)=2x,(x=0).

  3.函数=f(x)的定义域:

  (1)每一个函数都有它的定义域,定义域是函数的生命线;

  (2)给定函数时要指明函数的定义域,对于用解析式表示的集合,如果没

  有指明定义域,那么就认为定义域为一切实数.

  四、数学运用

  例1.判断下列对应是否为集合A到B的函数:

  (1)A={1,2,3,4,5},B={2,4,6,8,10},f:x→2x;

  (2)A={1,2,3,4,5},B={0,2,4,6,8},f:x→2x;

  (3)A={1,2,3,4,5},B=N,f:x→2x.

  练习:判断下列对应是否为函数:

  (1)x→2x,x≠0,x∈R;

  (2)x→,这里2=x,x∈N,∈R。

  例2求下列函数的定义域:

  (1)f(x)=x—1;(2)g(x)=x+1+1x。

  例3下列各组函数中,是否表示同一函数?为什么?

  A.=x与=(x)2;

  B.=x2与=3x3;

  C.=2x-1(x∈R)与=2t-1(t∈R);

  D.=x+2x-2与=x2-4

  练习:课本26页练习1~4,6.

  五、回顾小结

  1.生活中两个相关变量的刻画→函数→对应(A→B)

  2.函数的对应本质;

  3.函数的对应法则和定义域.

  《函数的概念》教案 7

  一、教学目标

  【知识与技能】

  理解函数的概念,能对具体函数指出定义域、对应法则、值域。

  【过程与方法】

  通过对函数的学习,进一步体会集合与对应的数学思想方法。

  【情感、态度与价值观】

  在探索中感受到成功的喜悦,提高学习数学的兴趣。

  二、教学重难点

  【重点】函数的概念。

  【难点】从具体实例中抽象出函数概念。

  三、教学过程

  (一)导入新课

  带领学生复习初中阶段函数的概念,并举例说明,从而引出高中阶段对函数的学习。

  (二)讲解新知

  利用多媒体展示上一节的实例,例如:

  (1)加油站储油罐的储油量和高度的关系;

  (2)高速公路总里程与年份的`关系。引导学生分析归纳以上两个实例,变量分别是谁、变量的范围是什么、变量之间存在的关系是什么、这些例子有什么共同特点。

  《函数的概念》教案 8

  教学目标:

  使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系.

  教学重点:

  函数的概念,函数定义域的求法.

  教学难点:

  函数概念的理解.

  教学过程:

  Ⅰ.课题导入

  [师]在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的?

  (几位学生试着表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述).

  设在一个变化的过程中有两个变量x和y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量.

  [师]我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题:

  问题一:y=1(xR)是函数吗?

  问题二:y=x与y=x2x 是同一个函数吗?

  (学生思考,很难回答)

  [师]显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概念(板书课题).

  Ⅱ.讲授新课

  [师]下面我们先看两个非空集合A、B的元素之间的一些对应关系的例子.

  在(1)中,对应关系是乘2,即对于集合A中的每一个数n,集合B中都有一个数2n和它对应.

  在(2)中,对应关系是求平方,即对于集合A中的每一个数m,集合B中都有一个平方数m2和它对应.

  在(3)中,对应关系是求倒数,即对于集合A中的每一个数x,集合B中都有一个数 1x 和它对应.

  请同学们观察3个对应,它们分别是怎样形式的对应呢?

  [生]一对一、二对一、一对一.

  [师]这3个对应的共同特点是什么呢?

  [生甲]对于集合A中的任意一个数,按照某种对应关系,集合B中都有惟一的数和它对应.

  [师]生甲回答的很好,不但找到了3个对应的共同特点,还特别强调了对应关系,事实上,一个集合中的数与另一集合中的数的对应是按照一定的关系对应的,这是不能忽略的. 实际上,函数就是从自变量x的集合到函数值y的集合的一种对应关系.

  现在我们把函数的概念进一步叙述如下:(板书)

  设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称f︰AB为从集合A到集合B的一个函数.

  记作:y=f(x),xA

  其中x叫自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{y|y=f(x),xA}叫函数的值域.

  一次函数f(x)=ax+b(a0)的定义域是R,值域也是R.对于R中的任意一个数x,在R中都有一个数f(x)=ax+b(a0)和它对应.

  反比例函数f(x)=kx (k0)的`定义域是A={x|x0},值域是B={f(x)|f(x)0},对于A中的任意一个实数x,在B中都有一个实数f(x)= kx (k0)和它对应.

  二次函数f(x)=ax2+bx+c(a0)的定义域是R,值域是当a0时B={f(x)|f(x)4ac-b24a };当a0时,B={f(x)|f(x)4ac-b24a },它使得R中的任意一个数x与B中的数f(x)=ax2+bx+c(a0)对应.

  函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题.

  y=1(xR)是函数,因为对于实数集R中的任何一个数x,按照对应关系函数值是1,在R中y都有惟一确定的值1与它对应,所以说y是x的函数.

  Y=x与y=x2x 不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域是R,而y=x2x 的定义域是{x|x0}. 所以y=x与y=x2x 不是同一个函数.

  [师]理解函数的定义,我们应该注意些什么呢?

  (教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结)

  注意:①函数是非空数集到非空数集上的一种对应.

  ②符号f:AB表示A到B的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可.

  ③集合A中数的任意性,集合B中数的惟一性.

  ④f表示对应关系,在不同的函数中,f的具体含义不一样.

  ⑤f(x)是一个符号,绝对不能理解为f与x的乘积.

  [师]在研究函数时,除用符号f(x)表示函数外,还常用g(x) 、F(x)、G(x)等符号来表示

  Ⅲ.例题分析

  [例1]求下列函数的定义域.

  (1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x

  分析:函数的定义域通常由问题的实际背景确定.如果只给出解析式y=f(x),而没有指明它的定义域.那么函数的定义域就是指能使这个式子有意义的实数x的集合.

  解:(1)x-20,即x2时,1x-2 有意义

  这个函数的定义域是{x|x2}

  (2)3x+20,即x-23 时3x+2 有意义

  函数y=3x+2 的定义域是[-23 ,+)

  (3) x+10 x2

  这个函数的定义域是{x|x{x|x2}=[-1,2)(2,+).

  注意:函数的定义域可用三种方法表示:不等式、集合、区间.

  从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:

  (1)如果f(x)是整式,那么函数的定义域是实数集R;

  (2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;

  (3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合;

  (4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集);

  (5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.

  例如:一矩形的宽为x m,长是宽的2倍,其面积为y=2x2,此函数定义域为x0而不是全体实数.

  由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义决定.

  [师]自变量x在定义域中任取一个确定的值a时,对应的函数值用符号f(a)来表示.例如,函数f(x)=x2+3x+1,当x=2时的函数值是f(2)=22+32+1=11

  注意:f(a)是常量,f(x)是变量 ,f(a)是函数f(x)中当自变量x=a时的函数值.

  下面我们来看求函数式的值应该怎样进行呢?

  [生甲]求函数式的值,严格地说是求函数式中自变量x为某一确定的值时函数式的值,因此,求函数式的值,只要把函数式中的x换为相应确定的数(或字母,或式子)进行计算即可.

  [师]回答正确,不过要准确地求出函数式的值,计算时万万不可粗心大意噢!

  [生乙]判定两个函数是否相同,就看其定义域或对应关系是否完全一致,完全一致时,这两个函数就相同;不完全一致时,这两个函数就不同.

  [师]生乙的回答完整吗?

  [生]完整!(课本上就是如生乙所述那样写的).

  [师]大家说,判定两个函数是否相同的依据是什么?

  [生]函数的定义.

  [师]函数的定义有三个要素:定义域、值域、对应关系,我们判定两个函数是否相同为什么只看两个要素:定义域和对应关系,而不看值域呢?

  (学生窃窃私语:是啊,函数的三个要素不是缺一不可吗?怎不看值域呢?)

  (无人回答)

  [师]同学们预习时还是欠仔细,欠思考!我们做事情,看问题都要多问几个为什么!函数的值域是由什么决定的,不就是由函数的定义域与对应关系决定的吗!关注了函数的定义域与对应关系,三者就全看了!

  (生恍然大悟,我们怎么就没想到呢?)

  [例2]求下列函数的值域

  (1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}

  (3)y=x2+4x+3 (-31)

  分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域.

  对于(1)(2)可用直接法根据它们的定义域及对应法则得到(1)(2)的值域.

  对于(3)可借助数形结合思想利用它们的图象得到值域,即图象法.

  解:(1)yR

  (2)y{1,0,-1}

  (3)画出y=x2+4x+3(-31)的图象,如图所示,

  当x[-3,1]时,得y[-1,8]

  Ⅳ.课堂练习

  课本P24练习17.

  Ⅴ.课时小结

  本节课我们学习了函数的定义(包括定义域、值域的概念)、区间的概念及求函数定义域的方法.学习函数定义应注意的问题及求定义域时的各种情形应该予以重视.(本小结的内容可由学生自己来归纳)

  Ⅵ.课后作业

  课本P28,习题1、2.

  《函数的概念》教案 9

  一、教材分析

  函数是数学中最重要的概念之一,且贯穿在中学数学的始终,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中学生对函数概念理解的程度会直接影响数学其它知识的学习,结合教学课程标准与学生的认知水平,函数的第一课应以函数概念的理解为中心进行教学。

  二、学情分析

  从学生知识层面看:学生在初中初步探讨了函数的相关知识,通过高一“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数提供了知识保证。

  从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力。

  三、教学目标

  知识与技能:让学生理解构成函数的三要素、函数概念的本质、抽象的函数符号f(x)的意义。

  过程与方法:在教师设置的问题引导下,学生通过自主学习交流,反馈精讲、当堂训练,经历函数概念的形成过程,渗透归纳推理的数学思想,发展学生的抽象思维能力。

  情感态度价值观:在学习过程中,学会数学表达和交流,体验获得成功的乐趣,建立自信心。

  四、教学难重点重点:理解函数的概念;

  难点:概念的形成过程及理解函数符号y = f (x)的含义。

  [重难点确立的依据]:函数的概念抽象性都比较强,要求学生的`理性认识的能力也比较高,对于刚刚升入高中不久的学生来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来高考有一种“函数热”的趋势,所以本节的重点难点必然落在和函数的概念及函数符号的理解与运用上。

  从多个角度创设多个问题情境,组织学生围绕重点自主思考,让学生自主、合作探索,体会函数概念的本质从而突破难点。

  五、教法与学法选择

  充分尊重学生的主体地位,让学生在教师设置的问题的引导下、通过自主学习等环节自主构建知识体系,自主发展数学思维,教师采用问题教学法、探究教学法、交流讨论法等多种学习方法,充分调动学生的积极性。

  六、教学过程设计引入

  现实世界是充满变化的,函数是描述变化规律的重要数学模型,也是数学的基本概念,也是基本思想,另外函数的概念也是不断发展的。引出课题

  问题提出

  1、请回忆在初中我们学过那些函数?(学生回答老师补充)

  2、回忆初中函数的定义是什么?一般地,设在一个变化过程中有两个变量x、y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

  知识探究一函数

  给定两个非空的数集A,B,如果按照某个对应关系f,对于集合A中的任何一个数x,在集合B中都有唯一确定的数f(x)与之对应,那么就把对应关系f叫做定义在集合A上的函数记作f:A→B或y=f(x),x∈A.其中,x叫做自变量,与x值相对应的f(x)值叫做函数值。 x的取值范围称为定义域,函数值f(x)的取值范围称为值域。定义理解一y=f(x)

  1.x是自变量,它是法则所施加的对象。

  2.f是对应法则,它可以是解析式,可以是表格,也可以是图像。

  3.y=f(x)表示y是x的函数,不是f与x的乘积。f(x)只是函数值,f才是函数,()表示f对自变量x作用。

  定义理解二唯一确定

  通过三个例子和学生共同总结出:

  1、函数中每个x与y的对应关系,可以是一对一,也可以是多对一,但不能是一对多,即y是唯一确定的

  2.A中元素不能剩,B中元素可以剩下。

  定义理解三定义域值域

  根据定义,函数是两个数集A,B间的对应关系

  自变量的集合A叫做函数的定义域;函数值的集合{f(x)|x∈A}叫做函数的值域。例如:A={0,1,2},B={0,2,4,5},f:A→B f(x)=2x

  定义域为{0,1,2},值域为{0,2,4}从而共同探究出:值域是集合B的子集

  函数的三要素:

  定义域、对应关系、值域;

  函数的值域由函数的定义域和对应关系所确定;定义域相同,对应关系完全一致,则两个函数相等。 f(x)=3x+1与f(t)=3t+1是同一个函数。 x2f(x)=x与f(x)=不是同一个函数。 x然后和学生共同探究常见的已学函数的定义域和值域:

  知识探究二区间

  (设a, b为实数,且a

  例题:试用区间表示下列数集:

  (1){x|x ≤ -1或5 ≤ x

  (5){x|x≥0且x≠1}

  练习作业:把常见的函数的定义域和值域用区间表示。

  七、小结

  1、用集合的语言描述函数的概念2.函数的三要素3.用区间表示数集

  八、作业

  1.P28练习1,2 2.P34习题2-1A组:1,2

  《函数的概念》教案 10

  教学目标

  1.知识目标:正确理解现阶段函数的概念,理解定义域的概念

  2.能力目标:使学生具有使用函数模型研究生活中简单的事物变化规律的能力。

  3.情感目标:渗透数学来源于生活,运用于生活的思想。

  重点让学生理解现阶段函数的概念,定义域的概念。

  难点用函数模型去研究生活中简单的事物变化规律时,如何确定定义域。

  学情

  分析授课班级为高一年级的学生,有朝气,有活力,爱实践,爱生活。本课之前,学生已经学习了初中函数概念,为本课的学习打下基础。

  教法与学法教法:微课视频中包含情境教学法、多媒体辅助教学法的使用。

  信息化教学资源

  1.动画设计《世界在不断的变化》

  2.专业录频软件;

  3.视频后期处理软件;

  4.QQ;

  5.其它图片、背景音乐。

  课前准备

  复习初中数学函数概念

  教学过程

  环节设计:教师活动、学生活动、设计意图

  环节一创设情境

  兴趣导入首先让学生观看视频《世界在不断的变化》

  老师解说:这个世界在不断的变化,有一句很有哲理的话“这个世界唯一没有变化的就是这个世界一直在改变”。聪明的人类为了在这个不断变化的世界中生存,想出了很多记录世界变化规律的办法。今天我们就来学习一个好办法,它就是数学函数,函数是研究事物变化规律的数学模型之一。

  1看视频。

  2听老师解说,函数是研究世界变化规律的数学模型之一。

  3了解函数的作用,对函数产生兴趣。

  通过让学生观看视频,并对学生讲解,让学生了解函数是用来研究事物变化规律的数学模型之一,这样学生能更深刻的理解函数的功能,即激发了学生学习热情,又回顾初中学习的'数学函数的定义。

  在某一个变化过程中有两个变更x和y,在某一法则的作用下,如果对于x的每一个值,y都有唯一的值与其相对应,就称y是x的函数,这时x是自变量,y是因变量.

  用一个生活实例加深对知识的理解。

  实例:到学校商店购买某种果汁饮料,每瓶售价2.5元,那么购买瓶数x,与应付款y之间存在一种对应关系y=2.5x.瓶数x在自然数集中每取定一个值,应付款y就有唯一一个值与其对应,我们可以运用对应关系y=2.5x去进行方便的运算。

  在这个例子中,我们发现自变更x只有在自然数集中取值才有意义,其实如果我们细心研究所有已知函数,就会发现确定自变量x的取值范围,是使用函数模型描述世界变化规律的前提.

  所以我们重新定义函数,将自变量x的取值范围用集合D来表示.

  函数的定义:

  在某一个变化的过程中有两个变量x和y,设变量x的取值范围为数集D,如果对于D内的每一个x值,按照某个对应法则f,y都有唯一确定的值与它对应环节三

  知识总结

  (1)函数的概念。

  (2)强调用函数来研究事物变化规律的前提是确定自变量x的取值范围,即定义域。

  学生回顾本次微课所学习的知识。让学生回顾本节课学习内容,强化本节课重点,为下节课打下基础。

  环节四实例检测

  实例:文具店出售某种铅笔,每只售价0.12元,应付款额是购买铅笔数的函数,当购买6支以内(含6支)的铅笔时,请用表达式来表示这个函数.

  要求学生把做题结果拍成照片,发到邮箱,及时反馈.学生练习,并把做题结果拍成照片,发到我的邮箱,并通过QQ与学生进行交流实例巩固今天学习的函数概念。

  • 相关推荐

【《函数的概念》教案】相关文章:

集合与函数概念总结07-14

计划的概念与作用11-30

总结的作用和概念03-21

正弦函数公式总结09-14

反三角函数公式总结11-03

《函数在实际生活中的应用》教学反思09-21

正弦函数的四则运算公式总结09-09

六年级数学分数概念归纳总结06-01

一元二次方程概念的教学反思03-19