在教学工作者实际的教学活动中,时常需要用到教案,教案是教材及大纲与课堂教学的纽带和桥梁。优秀的教案都具备一些什么特点呢?以下是小编为大家收集的平方差公式的优秀教案,欢迎大家分享。
平方差公式的优秀教案 1
教学目标
1、使学生理解和掌握平方差公式,并会用公式进行计算;
2、注意培养学生分析、综合和抽象、概括以及运算能力。
教学重点和难点
重点:平方差公式的应用。
难点:用公式的结构特征判断题目能否使用公式。
教学过程设计
一、师生共同研究平方差公式
我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子。
让学生动脑、动笔进行探讨,并发表自己的见解。教师根据学生的回答,引导学生进一步思考:
两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?
(当乘式是两个数之和以及这两个数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于乘式中这两个数的平方差)
继而指出,在多项式的.乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算。以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式。
在此基础上,让学生用语言叙述公式。
二、运用举例变式练习
例1计算(1+2x)(1-2x)。
解:(1+2x)(1-2x)
=12-(2x)2
=1-4x2.
教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么。
例2计算(b2+2a3)(2a3-b2)。
解:(b2+2a3)(2a3-b2)
=(2a3+b2)(2a3-b2)
=(2a3)2-(b2)2
=4a6-b4.
教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算。
课堂练习
运用平方差公式计算:
(1)(x+a)(x-a);
(2)(m+n)(m-n);
(3)(a+3b)(a-3b);
(4)(1-5y)(l+5y)。
例3计算(-4a-1)(-4a+1)。
让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演。
解法1:(-4a-1)(-4a+1)
=[-(4a+l)][-(4a-l)]
=(4a+1)(4a-l)
=(4a)2-l2
=16a2-1.
解法2:(-4a-l)(-4a+l)
=(-4a)2-l
=16a2-1.
根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果。解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果。采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷。因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案。
课堂练习
1、口答下列各题:
(l)(-a+b)(a+b);(2)(a-b)(b+a);
(3)(-a-b)(-a+b);(4)(a-b)(-a-b)。
2、计算下列各题:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法。
三、小结
1、什么是平方差公式?
2、运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形。
四、作业
1、运用平方差公式计算:
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
(5)(2x3+15)(2x3-15);(6)(0.3x-0.l)(0.3x+l);
平方差公式的优秀教案 2
教学内容:
P108—110 平方差公式 例1 例2 例3
教学目的:
1、使学生会推导平方差公式,并掌握公式特征。
2、使学生能正确而熟练地运用平方差公式进行计算。
教学重点:
使学生会推导平方差公式,掌握公式特征,并能正确而熟练地运用平方差公式进行计算。
教学难点:
掌握平方差公式的特征,并能正确而熟练地运用它进行计算。
教学过程:
一、复习引入
1、复述多项式与多项式的乘法法则
2、计算 (演板)
(1)(a+b)(a-b) (2)(m+n)(m-n)
(3)(x+y)(x-y) (4)(2a+3b)(2a-3b)
3、引入新课,由2题的计算引导学生观察题目特征,结果特征(引入新课,板书课题)
二、新课
1、平方差公式
由上面的运算,再让学生探究现在你能很快算出多项式(2m+3n)与多项式(2m-3n)的乘积吗? 引导学生把2m看成a,3n看成b写出结果.
(2m+3n)(2m-3n)=(2m)2-(3m)2=4m2-9n2
(a + b)(a - b)= a2 - b2
向学生说明:我们把(a+b)(a-b)=a2- b2 (重点强调公式特征)叫做平方差公式,也就是:两个数的和与这两个数的差等于这两个数的平方差.
3、练习:判断下列式子哪些能用平方差公计算。(小黑板)
(1)(-x-2y)(-x+2y) (2)(-2a+3b)(2a-3b)
(3)(a+3b)(3a-b) (4)(-m-3n)(m-3n)
2、教学例1
(1)(2x+1)(2x-1); (2) (x+2y)(x-2y)
(2)分析:让学生先说一说这两个式子是否符合平方差公式特征,再说一说哪个相当于公式中的'a,哪个相当于公式中的b,然后套公式。
(3)具体解题过程:板书,同教材,略
3、教学例2 例3
先引导学生分析后指名学生演板,略
4、练习:课本P110 1(指名演板) 2、(口答)3、演板
三、巩固练习:(小黑板)
1、填空:(1)(x+3)(x-3)=__________ (2)(-1-2x)(2x-1)=______
(3)(-1-2x)(-2x+1)=_____________ (4)(m+n)( )=n2-m2
(5)( )(-x-1)=1-x2 (6)( )(a-1)=1-a2
2、选择题
(1) 下列可以用平方差公式计算的是( )
A、(2a-3b)(-2a+3b) B、(- 4b-3a)(-3a+4b)
C、(a-b)(b-a) D、(2x-y) (2y+x)
(2)下列式子中,计算结果是4x2-9y2的是( )
A、(2x-3y)2 B、(2x+3y)(2x-3y)
C、(-2x+3y)2 D、(3y+2x)(3y-2x)
(3)计算(b+2a)(2a-b)的结果是( )
A、4a2- b2 B、b2- 4a2&
平方差公式的优秀教案 3
一、内容解析
《平方差公式》是在学习了有理数运算、列简单的代数式、一次方程及不等式、整式的加减及整式乘法等知识的基础上,在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例.对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法.因此,平方差公式在初中阶段的教学中也具有很重要地位,是初中阶段的第一个公式.
本节课的教学重点是:经历探索平方差公式的全过程,并能运用公式进行简单的运算.
二、目标和目标解析
目标
1.经历平方差公式的探索过程,进一步发展学生的`符号感和推理能力、归纳能力;
2.掌握平方差公式的结构特征,能运用公式进行简单的运算;
3.会用几何图形说明公式的意义,体会数形结合的思想方法.
目标解析:
1.让学生经历“特例──归纳──猜想──验证──用数学符号表示”这一数学活动过程,积累数学活动的经验,进一步发展学生的符号感、推理能力、归纳能力,同时体会数学的简洁美、培养他们的合情推理和归纳的能力以及在解决问题过程中与他人合作交流的重要性.
2.让学生了解平方差公式产生的背景,理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题.在数学活动中,引导学生观察、分析公式的结构特征以及公式中字母的广泛含义,并在练习中,对发生的错误做具体分析,加深学生对公式的理解.
3.通过自主探究与合作交流的学习方式,让学生经历探索新知、巩固新知和拓展新知这一过程,发挥学生的主体作用,增强学生学数学、用数学的兴趣.同时,让学生在公式的运用中积累解题的经验,体会成功的喜悦.
三、教学问题诊断分析
学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会确定错某些项符号及漏项等问题.学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛含义学生的理解.因此,教学中引导学生分析公式的结构特征,并运用变式训练揭示公式的本质特征,以加深学生对公式的理解.
本节课的教学难点:
利用数形结合的数学思想方法解释平方差公式,灵活运用平方差公式进行计算.
平方差公式的优秀教案 4
学习目标:
1、经历探索完全平方公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。
2、会推导完全平方公式,了解公式的几何背景,会用公式计算。
3、数形结合的数学思想和方法。
学习重点:
会推导完全平方公式,并能运用公式进行简单的计算。
学习难点:
掌握完全平方公式的.结构特征,理解公式中a.b的广泛含义。
学习过程:
一、学习准备
1、利用多项式乘以多项式计算:(a+b)2 (a-b)2
2、这两个特殊形式的多项式乘法结果称为完全平方公式。尝试用自己的语言叙述完全平方公式:
3、完全平方公式的几何意义:阅读课本64页,完成填空。
4、完全平方公式的结构特征:
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
左边是 形式,右边有三项,其中两项是 形式,另一项是
注意:公式中字母的含义广泛,可以是 ,只要题目符合公式的结构特征,就可以运用这一公式,可用符号表示为:(□±△)=□2±2□△+△2
5、两个完全平方公式的转化:
(a-b)2= 2=( )2+2( )+( )2=
二、合作探究
1、利用乘法公式计算:
(1) (3a+2b)2 (2) (-4x2-1)2
分析:要分清题目中哪个式子相当于公式中的a ,哪个式子相当于公式中的b
2、利用乘法公式计算:
(1) 992 (2) ( )2
分析:要利用完全平方公式,需具备完全平方公式的结构,所以992可以转化( )2,( )2可以转化为( )2
3、利用完全平方公式计算:
(1) (a+b+c)2 (2) (a-b)3
三、学习
对照学习目标,通过预习,你觉得自己有哪些方面的收获?又存在哪些方面的疑惑?
四、自我测试
1、下列计算是否正确,若不正确,请订正;
(1) (-1+3a)2=9a2-6a+1
(2) (3x2- )2=9x4-
(3) (xy+4)2=x2y2+16
(4) (a2b-2)2=a2b2-2a2b+4
2、利用乘法公式计算:
(1) (3x+1)2 (2) (a-3b)2
(3) (-2x+ )2 (4) (-3m-4n)2
3、利用乘法公式计算:
(1) 9992 (2) (100.5)2
4、先化简,再求值;
( m-3n)2-( m+3n)2+2,其中m=2,n=3
五、思维拓展
1、如果x2-kx+81是一个完全平方公式,则k的值是
2、多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是
3、已知(x+y)2=9, (x-y)2=5 ,求xy的值
4、x+y=4 ,x-y=10 ,那么xy=
5、已知x- =4,则x2+ =
平方差公式的优秀教案 5
教学目的:
进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。
教学重点和难点:
公式的应用及推广。
教学过程:
一、复习提问
1、(1)用较简单的代数式表示下图纸片的面积。
(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积。
讲评要点:
沿hd、gd裁开均可,但一定要让学生在裁开之前知道
hd=bc=gd=fe=a-b,这样裁开后才能重新拼成一个矩形。希望推出公式:
a2-b2=(a+b)(a-b)
2、(1)叙述平方差公式的数学表达式及文字表达式;
(2)试比较公式的两种表达式在应用上的差异。
说明:平方差公式的数学表达式在使用上有三个优点:
(1)公式具体,易于理解;
(2)公式的特征也表现得突出,易于初学的人“套用”;
(3)形式简洁。但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解。
依照公式的文字表达式可写出下面两个正确的式子:
经对比,可以让人们体会到公式的文字表达式抽象、准确、概括。因而也就“欠”明确(如结果不知是谁与谁的平方差)。故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活。
3、判断正误:
(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)
(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)
4、平方差公式
平方差公式是多项式乘法运算中一个重要的公式,是特殊的多项式与多项式相乘的一种简便计算。通过复习多项式乘以多项式的计算导入新课,为探究新知识奠定基础。在重难点处设计问题:“观察以上3个算式的特点和运算结果的特点,对比等号两边代数式的结构,你发现了什么?”让学生发现规律并尝试运用自己的语言来描述。
问题提出后,学生能积极进行分组讨论、交流,各组小组长阐述自己小组讨论的结果。大多数的学生能找出规律,说出大概意思,但是无法用精准的语言完整的描述出来,语言表达无条理、含糊。针对这种情况,在以后的课堂教学过程中要注意加强对学生的逻辑思维能力和语言表达能力的培养。最后经过师生的共同努力,得出了平方差公式以及公式的特征。
在例题展示环节中,我通过2道例题的运算,训练学生正确应用公式进行计算,体会公式在简化运算中的作用。实践练习的'设计,使学生从不同角度认识平方差公式,进一步加强学生对公式的理解。在运用公式时,学生基本掌握运用平方差公式的步骤:首先要判断算式是否符合平方差公式特征,然后再寻找算式中的a,b项,最后运用平方差公式运算。
拓展延伸环节中,学生通过寻找算式中的a,b项,慢慢发现a,b项不仅可以代表数,也可以代表单项式、多项式等代数式,这样设计可以进一步深化学生对字母含义的理解。在学生独立完成练习和堂测中,经过巡视,我发现近三分之一的学生对较复杂的多项式不能准确找出a,b项,特别是b项代表多项式时,负数去括号时出错较多。
最后通过设计递进式的问题串,引导学生自己一步步总结出本节课所学的知识内容,从而培养他们的归纳总结和语言表达能力。
本节课采用学习小组讨论、交流的学习方式,让学优生带动学困生,整体教学效果良好,学生基本掌握平方差公式的运用,对于较复杂的a、b项的运算,在自习课上将加强练习。
- 相关推荐
【平方差公式的优秀教案】相关文章:
完全平方公式与平方差公式的教案09-20
完全平方公式与平方差公式教案08-27
平方差公式二教案参考09-29
平方差公式总结08-05
《乘法公式——平方差公式》教学反思07-16
关于平方差公式分解因式教案09-19
《平方差公式》的教案范文(精选11篇)05-17
平方差公式的教学反思08-02
平方差公式导学案参考03-19