勾股定理的教案

2024-10-30

勾股定理的教案

  1、勾股定理

  勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.

  即直角三角形两直角的平方和等于斜边的平方.

  因此,在运用勾股定理计算三角形的边长时,要注意如下三点:

  (1)注意勾股定理的使用条件:只对直角三角形适用,而不适用于锐角三角形和钝角三角形;

  (2)注意分清斜边和直角边,避免盲目代入公式致错;

  (3)注意勾股定理公式的变形:在直角三角形中,已知任意两边,可求第三边长.即c2=a2+b2,a2=c2-b2,b2=c2-a2.

  2.学会用拼图法验证勾股定理

  拼图法验证勾股定理的基本思想是:借助于图形的面积来验证,依据是对图形经过割补、拼接后面积不变的原理.

  如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形.

  请读者证明.

  如上图示,在图(1)中,利用图1边长为a,b,c的四个直角三角形拼成的一个以c为边长的正方形,则图2(1)中的小正方形的边长为(b-a),面积为(b-a)2,四个直角三角形的面积为4×ab=2ab.

  由图(1)可知,大正方形的面积=四个直角三角形的面积+小正方形的的面积,即c2=(b-a)2+2ab,则a2+b2=c2问题得证.

  请同学们自己证明图(2)、(3).

  3.在数轴上表示无理数

  将在数轴上表示无理数的问题转化为化长为无理数的线段长问题.第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中一条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点.

  二、典例精析

  例1如果直角三角形的斜边与一条直角边的长分别是13cm和5cm,那么这个直角三角形的面积是cm2.

  分析:欲求直角三角形的面积,已知一直角三角形的斜边与一条直角边的长,则求得另一直角边的长即可.根据勾股定理公式的变形,可求得.

  解:由勾股定理,得

  132-52=144,所以另一条直角边的长为12.

  所以这个直角三角形的面积是×12×5=30(cm2).

  例2如图3(1),一只蚂蚁沿棱长为a的正方体表面从顶点A爬到

  顶点B,则它走过的最短路程为()

  A.B.C.3aD.分析:本题显然与例2属同种类型,思路相同.但正方体的

  各棱长相等,因此只有一种展开图.

  解:将正方体侧面展开

【勾股定理的教案】相关文章:

证明勾股定理的4种方法04-03

《左传》教案10-24

存货教案02-28

爱莲说的经典教案03-20

《牧场上的家教案》经典教案设计03-20

茶花赋教案04-06

《什么虫》教案01-08

《文化苦旅》教案02-27

大学教案的写法10-05

《认识钟表》的教案03-19