从算式到方程的教学设计

2024-10-26

  作为一名教师,通常需要准备好一份教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。我们该怎么去写教学设计呢?以下是小编整理的从算式到方程的教学设计,希望对大家有所帮助。

  从算式到方程的教学设计 1

  一 、教学目标

  (一)基础知识目标:

  1.理解方程的概念,掌握如何判断方程。

  2.理解用字母表示数的好处。

  (二)能力目标

  体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。

  (三)情感目标

  增强用数学的意识,激发学习数学的热情。

  二、教学重点

  知道什么是方程、一元一次方程,找相等关系列方程。

  三、教学难点

  如何找相等关系列方程

  四、教学过程

  (一)创设情景,引入新课

  由学生已有的知识出发,结合章前图提出的问题,激发学生进一步探究的欲望。

  在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

  为了回答上述这几个问题,我们来看下面这个例题.

  (二)提出问题

  章前图中的'汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米,王家庄到翠湖的路程有多远?

  你会用算术方法解决这个实际问题么?不妨试一下。

  如果设王家庄到翠湖的路程为x千米,你能列出方程吗?

  根据题意画出示意图。

  由图可以用含x的式子表示关于路程的数量,

  王家庄距青山 千米,王家庄距秀水 千米,

  由时间表可以得出关于路程的数量,

  从王家庄到青山行车 小时,王家庄到秀水 小时,

  汽车匀速行驶,各路段车速相等,于是列出方程:

  各表示的意义是什么?

  以后我们将学习如何解出x,从而得到结果。

  例1 某数的3倍减2等于某数与4的和,求某数.

  例2 环行跑道一周长400米,沿跑道跑多少周,可以跑3000米?

  五、课堂小结

  用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只能用到已知数,而方程是根据问题中的等量关系列出的等式,其中有已知数,又有未知数,有了方程后人们解决很多问题就方便了,通过今后的学习,你会逐步认识,从算式到方程是数学的进步。

  从算式到方程的教学设计 2

  教学目标

  1.知识与技能

  (1)通过观察,归纳一元一次方程的概念.

  (2)根据方程解的概念,会估算出简单的一元一次方程的解.

  2.过程与方法.

  通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义.

  3.情感态度与价值观

  鼓励学生进行观察思考,发展合作交流的意识和能力.

  重、难点与关键

  1.重点:了解一元一次方程的有关概念,会根据已知条件,设未知数,列出简单的一元一次方程,并会估计方程的解.

  2.难点:找出问题中的相等关系,列出一元一次方程以及估计方程的解.

  3.关键:找出能表示实际问题的相等关系.

  教具准备:投影仪.

  教学过程

  一、复习提问

  在小学里,我们已学习了像2x=50,3x+1=4等简单方程,那么什么叫方程呢?什么叫方程的解和解方程呢?

  答:含有未知数的等式叫方程;能使方程等号两边相等的未知数的值叫方程的解,求方程解的过程叫解方程.

  方程是应用广泛的数学工具,把问题中未知数与已知数的联系用等式形式表示出来.在研究问题时,要分析数量关系,用字母表示未知数,列出方程,然后求出未知数.

  怎样根据问题中的数量关系列出方程?怎样解方程?这是本章研究的问题.

  通过本章中丰富多彩的'问题,你将进一步感受到方程的作用,并学习利用一地一次方程解决问题的方法.

  二、新授

  1.怎样列方程?

  让学生观察章前图表,根据图表中给出的信息,回答以下问题.

  (1)根据图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间表,你知道,汽车从王家庄行驶到青山用了多少时间?青山到秀水呢?

  (2)青山与翠湖、秀水到翠湖的距离分别是多少?

  (3)本问题要求什么?

  (4)你会用算术方法解决这个实际问题呢?不妨试试列算式.

  (5)如果设王家庄到翠湖的路程为x(千米),你能列出方程吗?

  解:(1)汽车从王家庄行驶到青山用了3小时,青山到秀水用了2小时.

  (2)青山与翠湖的距离为50千米,秀水与翠湖的距离为70千米.

  (3)王家庄到翠湖的距离是多少千米?

  (4)分析:要求王家庄到翠湖的距离,只要求出王家庄到青山的距离,而王家庄到青山的时间为3小时,所以必需求汽车的速度.

  如何求汽车的速度呢?

  这里青山到秀水的时间为2小时,路程为(50+70)千米,因此可求的汽车的平均速度为(50+70)÷2=60(千米/时)

  王家庄到青山的路程为:60×3=180(千米)

  所以王家庄到翠湖的路程为:180+50=230(千米)

  列综合算式为:×3+50

  (5)分析:先画出示意图,示意图往往有助于分析问题.

  从上图中可以用含x的式子表示关于路程的数量:

  王家庄距青山(x-50)千米,王家庄距秀水(x+70)千米.

  从章前图表中可以得出关于时间的数量:

  从王家庄到青山行车3小时,从王家庄到秀水行车5小时.

  由路程数量和行车时间的数量,可以得到行车速度的表达式.

  汽车从王家庄开往青山时的速度为千米/时,汽车从王家庄开往秀水的速度为千米/时.

  要列出方程,必需找出“相等关系”,题目中还有哪些相等关系吗?

  根据汽车是匀速行驶的,可知各段路程的车速相等.

  于是列出方程:

  =

  以后我们将学习如何解这个方程,求出未知数x的值,从而得出王家庄到翠湖的路程.

  思考:对于以上的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?

  根据汽车匀速行驶,可知各段路程的车速相等.

  所以还可以列方程:

  =或=

  (前者是汽车从王家庄到青山与从青山到秀水,这两段路程的车速相等,后者是汽车从王家庄到翠湖与从青山到秀水,这两段路程的车速相等)

  比较用算术方法和列方程方法解应用题,用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只能用已知数,对于较复杂的问题,列算式比较困难;而方程是根据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数,有了这个未知数,问题中的已知量与未知量之间的关系就很容易用含有这个未知数的式子表示,再根据“相等关系”列出方程.

  有了方程后人们解决许多问题就更方便了,通过今后的学习,你会逐步认识:从算式到方程是数学的进步.

  列方程时,要先设字母表示未知数,通常用x、y、z等字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式即方程.

  例1:根据下列问题,设未知数并列出方程.

  (1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?

  分析:设正方形的边长为x(cm),那么周长为4x(cm),依题意,得4x=24.

  从算式到方程的教学设计 3

  一、 教学目标

  (一)使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

  (二)培养学生观察能力,提高他们分析问题和解决问题的能力;

  二、教学重点和难点

  一元一次方程解简单的应用题的方法和步骤。

  三、教学过程

  我们可以直接看出像4x=24,x+1=3这样简单方程的解,但是仅仅依靠观察来解决比较复杂的方程是很困难的 ,因此,我们还要讨论怎么样解方程,方程是含有未知数的等式,为了讨论方程,我们先来看看等式有什么性质。

  像m+n=n+m,x+2x=3x,3x+!=5y这样的式子都是等式。

  由教科书中天平的图形,由它可以发现什么规律?

  我们可发现,如果在平衡的天平两边都加(或减)同样的量,天平还保持平衡。

  等式就像平衡的天平,它具有与上面的事实同样的性质。

  由此,我们得出等式的性质1

  等式两边加(或减)同一个数(或式子),结果仍相等。

  用字母表示:a=b,那么a±c=b±c

  等式的性质2

  等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

  用字母表示:

  如果a=b,那么ac=bc

  如果 a=b,(c≠0),那么 =

  通过例题来对等式的性质进行巩固。

  例:利用等式的性质解下列方程。

  (1)x+7=26; (2)—5x=20; (3)— x—5=4

  分析:要使方程x+7=26转化为x=a(常数)的形式,要去掉方程左边的'7,因此两边要减7,另外两个方程如何转化为x=a的形式。

  解:(1)两边减7,得

  x+7—7=26—7

  于是

  x=19

  (2)两边同时除以—5,得

  =

  于是

  x=—4

  (3)两边加5,得

  —

  化简,得

  两边同乘—3,得

  x=—27

  一般地,从方程解出未知数的值以后,可以带如原方程检验,看这个值能否使方程的两边相等。

  让学生检验上题是否正确。

  (四)课堂练习

  利用等式的性质解下列方程并检验。

  (1)x—5=2; (2)0.3x=45; (3)2— x=3; (4)5x+4=0

  教师引导学生做,做好师生互动。

  四、课后总结

  1。本节课学习了哪些内容?

  2。利用等式的性质解方程方法和步骤是什么?

  3。在运用上述方法和步骤时应注意什么?

  五、作业布置;

  习题3.1,3,4,5题

  从算式到方程的教学设计 4

  【教学习目标】

  一、知识与技能

  1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步。

  2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念。

  3、培养学生获取信息,分析问题,处理问题的能力。

  二、过程与方法

  通过实际问题,感受数学与生活的联系。

  三、情感态度与价值观

  培养学生热爱数学热爱生活的乐观人生态度。

  【教学方法】

  探索式教学法

  教师准备教学用课件。

  【教学过程】

  一、新课引入

  教师提出教科书第79页的问题,同时出现下图:

  问题2:你会用算术方法求出王家庄到翠湖的距离吗?

  问题3:能否用方程的知识来解决这个问题呢?

  可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)

  当学生列出不同算式时,应让他们说明每个式子的含义)

  教师可以在学生回答的基础上做回顾小结:

  1、问题涉及的三个基本物理量及其关系;

  2、从知的信息中可以求出汽车的速度;

  3、从路程的角度可以列出不同的算式:

  如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米,王家庄距秀水千米.

  问题1:题目中的“汽车匀速行驶”是什么意思?

  问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?

  问题3:根据车速相等,你能列出方程吗?

  教师引导学生设未知数,并用含未知数的字母表示有关的数量

  教师引导学生寻找相等关系,列出方程.

  教师根据学生的回答情况进行分析,如:

  依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:

  依据“王家庄至青山路段的.车速=青山至秀水路段的车速”

  可列方程:

  给出方程的概念,介绍等式、等式的左边、等式的右边等概念.

  含有未知数的等式叫方程.

  从算式到方程的教学设计 5

  一、教材分析

  (一)教材的地位和作用

  方程是初等数学的基本知识,也是进一步学习一元一次方程,二元一次方程组,一元一次不等式及一元二次方程的基础。方程在实际问题中的应用,是中学阶段应用数学知识解决实际问题的重要开端,也是增强学生学习数学、应用数学意识的重要题材。本节教材主要起着承前启后的作用,可以说是小学与中学内容上的衔接点,方法上的分水岭。

  (二)教学内容

  “从算式到方程”新教材与原教材的显著区别:方程这一部分内容不是按照由定义到解法最后讲应用的纯数学体系编排,而是首先从实际问题出发,通过比较算术方法与方程求解的区别,体会方程的优越性,让学生认识到从算式到方程是数学的一大进步。然后再通过具体实际问题所列方程,介绍方程等概念。新教材的编写更加体现了数学的应用价值。

  (三)教学重点难点

  由于学生在小学阶段已习惯用算术方法解决实际问题,对列方程不太熟练,为了防止学生仍停留在列算式解题的低层上,所以本节重点确定为:让学生在讨论问题、解决问题的过程中,比较列算式与列方程在分析数量关系上的区别及列方程时相等关系的建立。而本节中学生可能感到困难的仍是实际问题相等关系的建立。

  二、目标分析

  依据课程标准的要求,确定以下目标:

  (一)知识与技能目标

  1、了解方程等基本概念。

  2、会根据具体问题中的数量关系列出方程。

  (二)过程与方法目标

  经历从具体问题中的数量相等关系列出方程的过程,体会并认识方程是刻画现实世界的一个有效的数学模型,渗透数学建模的思想。

  (三)情感目标

  让学生进一步认识到方程与现实世界的密切关系,感受数学的价值。培养学生获取信息,分析问题,处理问题的能力。

  三、教法与学法分析

  根据本节内容与现实生活联系较紧密的特点,教学中选取学生熟悉的、感兴趣的背景材料,充分调动学生的学习热情。并恰当设计各种问题,让学生在教师的引导下,通过小组讨论、相互交流、动手操作、自主探索等活动,获得知识,积累经验,体验成功,积极推行自主学习、合作学习、探究学习等新的学习方式,努力完成教师和学生在教与学活动中角色的转变。

  四、教学过程分析

  教学目标①进一步理解用等式的性质解简简单的(两次运用等式的性质)一元一次方程

  ②初步具有解方程中的化归意识;

  ③培养言必有据的思维能力和良好的思维品质。

  教学重点用等式的性质解方程。

  知识难点需要两次运用等式的性质,并且有一定的思维顺序。

  教学过程(师生活动)设计理念

  复习引入解下列方程:

  (1)x+7=1.2;

  (2)在学生解答后的讲评中围绕两个问题:

  ①每一步的依据分别是什么?

  ②求方程的解就是把方程化成什么形式?

  这节课继续学习用等式的性质解一元一次方程。由于这一课时也是学习用等式的性质解方程,所以通过复习来引入比较自然。

  探究新知对于简单的方程,我们通过观察就能选择用等式的哪一条性质来解,下列方程你也能马上做出选择吗?

  例1利用等式的性质解方程:

  0.5x-x=3.4(2)

  先让学生对第(1)题进行尝试,然后教师进行引导:

  ①要把方程0.5x-x=3.4转化为x=a的形式,必须去掉方程左边的0.5,怎么去?

  ②要把方程-x=2.9转化为x=a的形式,必须去掉x前面的“-”号,怎么去?

  然后给出解答:

  解:两边减0.5,得0.5-x-0.5=3.4-0.5

  化简,得

  -x=-2.9

  两边同乘-1,得

  x=-2.9

  小结:(1)这个方程的解答中两次运用了等式的性质(2)解方程的目标是把方程最终化为x=a的形式,在运用性质进行变形时,始终要朝着这个目标去转化。

  你能用这种方法解第(2)题吗?

  在学生解答后再点评。

  解后反思:

  ①第(2)题能否先在方程的两边同乘“一3”?

  ②比较这两种方法,你认为哪一种方法更好?为什么?

  允许学生在讨论后再回答。

  例2(补充)服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米。现已做了80套成人服装,用余下的布还可以做几套儿童服装?

  在学生弄清题意后,教师再作分析:如果设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5x米,根据题意,你能列出方程吗?

  解:设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5米,根据题意,得

  80x×3.5+1.5x=355

  化简,得

  280+1.5x=355

  两边减280,得

  280+1.5x-280=355-280

  化简,得

  1.5x=75

  两边同除以1.5,得x=50

  答:用余下的布还可以做50套儿童服装。

  解后反思:对于许多实际间题,我们可以通过设未知数,列方程,解方程,以求出问题的解。也就是把实际问题转化为数学问题。

  问题:我们如何才能判别求出的答案50是否正确?

  在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x=50代入方程80×3.5+1.5x=355的左边,得80×3.5+1.5×50=280+75=355

  方程的左右两边相等,所以x=50是方程的解。

  你能检验一下x=-27是不是方程的解吗?不同层次的学生经过尝试就会有不同的收获:一部分学生能独立解决,一部分学生虽不能解答,但经过老师的引导后,也能受到启发,这比纯粹的老师讲解更能激发学生的积级性。

  这里补充一个例题的目的一是解方程的应用,二是前两节课中已学到了方程,在这里可以进一步应用,三是使后面的“检验”更加自然。

  解题的格式现在不一定要学生严格掌握。

  课堂练习①教科书第73页练习第(3)(4)题。

  ②小聪带了18元钱到文具店买学习用品,他买了5支单价为1.2元的圆珠笔,剩下的钱刚好可以买8本笔记本,问笔记本的单价是多少?(用列方程的方法求解)

  建议:采用小组竞赛的方法进行评议

  小结与作业

  课堂小结建议:①先让学生进行归纳、补充。主要围绕以下几个方面:

  (1)这节课学习的内容。

  (2)我有哪些收获?

  (3)我应该注意什么问题?

  ②教师对学生的学习情况进行评价。

  ③思考题用等式的`性质求x:-2x=-5x+7引发竞争意识,提高自我评价和自我表现的机会,以达到激发兴趣,巩固知识的目的。评价包括对学生个人、小组,对学生的学习态度、情感投入及学习的效果方面等。

  本课作业①必做题:教科书第73页第4(1)、(2)、(4)题;补充:用等式的性质解方程:①3+4x=17;②4-=3

  ②选做题:教科书第73页第4(3)题,第74页第10题。

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1、力求体现新课程理念:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会……学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。本设计从新课的引人、例题的处理(包括解题后的反思)、反馈练习及小结提高等各环节都力求充分体现这一点。

  2、在传统的课堂教学中,教师往往通过大量地讲解,把学生变成任教师“灌输”的“容器”,学生只能接受、输入并存储知识,而教师进行的也只不过是机械地复制文化知识。新课程的一个重要方面就是要改变学生的学习方式,将被动的、接受式的学习方式,转变为动手实践、自主探索与合作交流等方式。本设计在这方面也有较好的体现。

  3、为突出重点,分散难点,使学生能有较多机会接触列方程,本章把对实际问题的讨论作为贯穿于全章前后的一条主线。对一元一次方程解法的讨论始终是结合解决实际问题进行的,即先列出方程,然后讨论如何解方程,这是本章的又一特点。本设计充分体现了这一特点。

  从算式到方程的教学设计 6

  教学目标

  1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步。

  2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念。

  3、培养学生获取信息,分析问题,处理问题的能力。

  教学过程

  一、情景引入:

  教师提出教科书第79页的问题,同时出现下图:

  问题1:从上图中你能获得哪些信息?

  问题3:能否用方程的知识来解决这个问题呢?如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米,王家庄距秀水千米.

  二.新课讲解

  问题1:题目中的“汽车匀速行驶”是什么意思?

  问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?

  问题3:根据车速相等,你能列出方程吗?

  教师引导学生设未知数,并用含未知数的字母表示有关的数量

  教师引导学生寻找相等关系,列出方程.

  教师根据学生的回答情况进行分析,如:

  依据“王家庄至青山路段的车速=王家庄至秀水路段的`车速”可列方程:

  依据“王家庄至青山路段的车速=青山至秀水路段的车速”

  可列方程:

  对于上面的问题,你还能列出其他方程吗?

  如果能,你依据的是哪个相等关系?

  如果直接设元,还可列方程:

  如果设王家庄到青山的路程为x千米,那么可以列方程:

  依据各路段的车速相等,也可以先求出汽车到达翠湖的时刻:

  ,再列出方程=60

  三.练习巩固

  1、例题P/80

  2、练习(补充):

  从算式到方程的教学设计 7

  教学目标:

  1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步.

  2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念.

  3.培养学生获取信息、分析问题、处理问题的能力.

  教学重难点:从实际问题中寻找相等关系.

  教学过程:

  一、情境引入

  提出课本P78的问题,可用多媒体演示题目描述的行驶情境.

  1.理解题意:客车比卡车早1小时经过B地,从这句话中可知客车、卡车行驶的路程和时间分别有什么关系?

  2.能否列算式求出A、B两地之间的路程,要求能够解释列出的算式表示的实际意义.

  3.提出问题,如果用字母x表示A、B两地的路程,根据题意会得到一个什么样的式子?

  二、学习新知

  1.引导学生把题中的数量用表格形式反映题意:

  路程(km)速度(km/h)时间(h)卡车x 60客车x 70

  2.学生回顾方程的概念,探讨、列出方程,并说出列得方程的依据.

  3.讨论列出方程表示的意义,并对比算术方法,体会列方程解决问题与列算式解决问题的优越性.

  4.反思:这个问题中除了A、B两地的路程是一个未知量,还有没有其它的量是未知的?如果还有其它的量是未知的,能否用字母(或未知数y)表示这个未知量,列出与前面不同的.方程呢?学生分组讨论.

  5.将题中的已知量和未知量用表格列出:

  路程(km)速度(km/h)时间(h)卡车60 y客车70 y-1

  6.探讨:①列出关于y的方程;②解释这个方程表示的实际意义(或列出这个方程的依据);③如何求题目问题:A、B之间的路程.

  7.总结以上列出两个含不同未知数x、y的方程的方法:①以路程为未知数,则根据两车行驶时间的关系列方程.②以行驶时间为未知数,则从两车行驶路程的关系列方程.

  8.比较列算式和列方程两种方法的特点:阅读课本P79.

  9.举一反三:分别列算式和设未知数列方程解决下列问题:

  (1)某数与它的的和是8,求这个数;

  (2)班上有女生32人,比男生多,求男生人数;

  (3)公园购回一批风景树,其中桂花树占总数的,樟树比桂花树的棵数多,杉树比前两种树木的棵数和还多12棵,求这批树木总共多少棵?

  三、初步应用

  1.例1:课本P79例1.

  例2(补充):根据下列条件,列出关于x的方程:

  (1)x与18的和等于54;

  (2)27与x的差的一半等于x的4倍.

  列出方程后教师说明:“4x”表示4与x的积,当乘数中有字母时,通常省略乘号“×”,并把数字乘数写在字母乘数的前面.

  2.练习(补充)

  (1)列式表示:

  ①比a小9的数;   ② x的2倍与3的和;

  ③ 5与y的差的一半; ④ a与b的7倍的和.

  (2)根据下列条件,列出关于x的方程:

  ①12与x的差等于x的2倍;

  ②x的三分之一与5的和等于6.

  四、课时小结

  1.本节课我们学了什么知识?

  2.你有什么收获?

  五、课堂作业

  小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入.

  第2课时一元一次方程

  教学目标:

  1.理解一元一次方程、方程的解等概念.

  2.掌握检验某个值是不是方程的解的方法.

  3.培养学生根据问题寻找相等关系、根据相等关系列出方程的能力.

  4.体验用估算方法寻求方程的解的过程,培养学生求实的态度.

  教学重点:寻找相等关系,列出方程.

  教学难点:对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力.

  教学过程:

  一、情境引入

  问题:小雨、小思的年龄和是25.小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?

  如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?(25-x,2x-8)

  由于这两个不同的式子表示的是同一个量,因此我们又可以写成:25-x=2x-8,这样就得到了一个方程.

  二、自主尝试

  1.尝试:让学生尝试解答课本P79的例1.

  2.交流:

  在学生基本完成解答的基础上,请几名学生汇报所列的方程,并解释方程等号左右两边式子的含义.

  3.教师在学生回答的基础上作补充讲解,并强调:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.

  4.讨论:

  问题1:在第(1)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?

  问题2:在第(3)题中,你还能设其它的未知数为x吗?

  5.建立概念

  (1)概念的建立:

  在学生观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的次数都是1,这样的方程叫做一元一次方程.

  “一元”:一个未知数;“一次”:未知数的指数是一次.

  判断下列方程是不是一元一次方程:

  ①23-x=-7; ②2a-b=3;

  从算式到方程的教学设计 8

  【学习目标】

  1、理解什么是一元一次方程。

  2、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。

  【重点难点】能验证一个数是否是一个方程的解。

  1.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2 000度,全年用电15万度,如果设上半年每月平均用电x度,那么所列方程正确的是( )

  A.6x+6(x-2 000)=150 000

  B.6x+6(x+2 000)=150 000

  C.6x+6(x-2 000)=15

  D.6x+6(x+2 000)=15

  2.李红买了8个莲蓬,付50元,找回38元.设每个莲蓬的`价格为x元,根据题意,列出方程为________.

  3.一个正方形花圃边长增加2 m,所得新正方形花圃的周长是28 m,则原正方形花圃的边长是多少?(只列方程)

  《3.1.等式的性质》同步四维训练含答案

  知识点一:等式的性质1

  1.下列变形错误的是(D )

  A.若a=b,则a+c=b+c

  B.若a+2=b+2,则a=b

  C.若4=x-1,则x=4+1

  D.若2+x=3,则x=3+2

  2.已知m+a=n+b,根据等式的性质变形为m=n,那么a,b必须符合的条件是(C )

  A.a=-b

  B.-a=b

  C.a=b

  D.a,b可以是任意有理

  《3.1从算式到方程》同步练习含解析

  7.解:把x=3代入方程,得:15-a=3,

  解得:a=12.

  故选B.

  根据方程解的定义,将方程的解代入方程,就可得一个关于字母a的一元一次方程,从而可求出a的值.

  本题考查了方程的解的定义,解决本题的关键在于:根据方程的解的定义将x=3代入,从而转化为关于a的一元一次方程.

  8.解:A、7x-4=3x是方程;

  B、4x-6不是等式,不是方程;

  C、4+3=7没有未知数,不是方程;

  D、2x<5不是等式,不是方程;

  故选:A.

  根据方程的定义:含有未知数的等式叫方程解答即可.数或整式

  从算式到方程的教学设计 9

  一、教学目标

  (一)及时巩固所学知识;

  (二)培养学生观察能力,提高他们分析问题和解决问题的能力;

  (三)使学生初步养成正确思考问题的良好习惯。

  二、教学重点和难点

  一元一次方程解简单的应用题的方法和步骤。

  三、教学过程

  主要为习题处理,由浅入深,使学生把所学知识系统化。

  主要由学生完成,老师引导。

  习题3.1中,1.2.3都是基础知识题,让学生到黑板上做几道有代表意义的题,然后老师对错的给与纠正,让学生对基础知识题的`正确把握。

  主要针对学生比较难懂的应用题来讲解;

  习题5,把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生有多少人?

  分析:设获得一等奖的学生有X人,由已知条件得:

  X×200+(22—X)×50=1400

  本题要让学生理解这种设未知数建立方程的思想,设获得一等奖的学生有X人,那么二等奖的人数就是22—X。

  习题6,种一批树苗,如果每人种10棵,则剩6棵树苗未种,如果每人种12棵,则缺少6棵苗,有多少人种数?

  分析:两种方法种树苗,等式就是总树苗相等,设有X人种树,

  那么:10X+6=12X—6

  所以找到等式就是列出方程的重要一步。

  习题7,一辆汽车已经行驶了12000千米,计划每月再行驶800千米,几个月后这辆汽车将行驶20800千米?

  分析:由已经行驶了12000千米,计划每月再行驶800千米,最后达到20800千米,我们设X个月后达到目标,列出等式

  12000+800X=20800

  总之,找出他们之间存在的相等关系就是解决问题的关键。

  通过系统的学习,让学生的综合运用能力提高,对拓广探索中的题目老师要细心讲解,因为学生对这些题的理解有困难。

  四、课堂总结

  通过大量的练习,及时巩固所学知识,使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题。

  五、作业布置

  习题3.1第7、8题。

  从算式到方程的教学设计 10

  一、教学目标

  1. 知识与技能目标

  了解方程及一元一次方程的概念。

  体会方程是刻画现实世界数量关系的有效模型。

  会用方程表示简单实际问题中的等量关系。

  2. 过程与方法目标

  通过对实际问题的分析,经历从算式到方程的过程,体会方程思想。

  培养学生观察、分析、归纳的能力。

  3. 情感态度与价值观目标

  感受方程与生活的紧密联系,激发学生学习数学的兴趣。

  培养学生合作交流的意识和勇于探索的精神。

  二、教学重难点

  1. 重点

  方程及一元一次方程的概念。

  用方程表示实际问题中的.等量关系。

  2. 难点

  分析实际问题中的等量关系,列出方程。

  三、教学方法

  讲授法、讨论法、探究法。

  四、教学过程

  1. 创设情境,引入新课

  教师通过讲述一个实际生活中的问题,如“小明有一些苹果,小红的苹果数是小明的 2 倍还多 3 个,他们一共有 25 个苹果,问小明有多少个苹果?”引导学生先用算式方法求解。

  学生思考并回答:设小明有 x 个苹果,则小红有 2x + 3 个苹果,可列出算式 x + (2x + 3) = 25,解得 x = 8。

  教师提问:除了用算式方法,还有没有其他方法来解决这个问题呢?从而引出方程的概念。

  2. 探究新知

  方程的概念

  教师给出方程的定义:含有未知数的等式叫做方程。

  让学生举例说明什么是方程,如 2x + 5 = 11、3y - 4 = 10 等。

  强调方程必须满足两个条件:一是含有未知数,二是等式。

  一元一次方程的概念

  教师给出一元一次方程的定义:只含有一个未知数(元),未知数的次数都是 1,等号两边都是整式,这样的方程叫做一元一次方程。

  让学生分析一些方程,判断哪些是一元一次方程,如 x + 2y = 5(不是,含有两个未知数)、3x - 2 = 7(是)、x + 3x = 10(不是,未知数的次数是 2)等。

  总结一元一次方程的特点:一个未知数、次数是 1、整式方程。

  3. 巩固练习

  给出一些式子,让学生判断是否是方程,如果是方程,判断是否是一元一次方程。

  如 4x - 3、2x + 1 = 5、x - 2x = 3、3y = 9 等。

  让学生根据实际问题列出方程。

  例如:一个数的 3 倍比这个数大 10,求这个数。设这个数为 x,则可列出方程 3x - x = 10。

  4. 课堂小结

  教师引导学生回顾本节课的主要内容:方程及一元一次方程的概念,从算式到方程的思想转变。

  强调方程在解决实际问题中的重要性。

  5. 布置作业

  课本上的练习题。

  让学生在生活中寻找可以用方程解决的问题,并尝试列出方程。

  从算式到方程的教学设计 11

  一、教学目标

  1. 知识与技能

  理解方程的概念,掌握方程的解的含义。

  能根据实际问题列出方程,体会方程是解决实际问题的有效工具。

  2. 过程与方法

  通过实例分析,培养学生观察、分析、归纳问题的能力。

  经历从算式到方程的思维转变过程,提高学生的抽象思维能力。

  3. 情感态度与价值观

  感受方程的简洁美和实用性,激发学生学习数学的兴趣。

  培养学生用数学的眼光看待生活中的问题,增强应用意识。

  二、教学重难点

  1. 重点

  方程的概念及方程的解。

  根据实际问题列方程。

  2. 难点

  分析实际问题中的等量关系,正确列出方程。

  三、教学方法

  问题驱动法、小组合作法、直观演示法。

  四、教学过程

  1. 复习导入

  回顾小学学过的算式知识,如加法、减法、乘法、除法的运算。

  提出问题:在解决实际问题时,算式有哪些局限性?引出方程的学习。

  2. 探究方程的概念

  实例分析

  展示实际问题:(1)一个篮球的`价格是 50 元,小明买了 x 个篮球,共花费 200 元,求 x 的值。(2)一辆汽车以每小时 60 千米的速度行驶,行驶了 t 小时后,行驶的路程为 300 千米,求 t 的值。

  引导学生用算式和方程两种方法解决问题。

  对于问题(1),用算式方法:200÷50 = 4;用方程方法:50x = 200。

  对于问题(2),用算式方法:300÷60 = 5;用方程方法:60t = 300。

  归纳方程的概念

  让学生观察上述方程,总结方程的特点。

  教师引导得出方程的定义:含有未知数的等式叫做方程。

  3. 理解方程的解

  以方程 50x = 200 为例,提问学生 x = 4 是方程的解吗?为什么?

  让学生代入验证,得出方程的解的概念:使方程左右两边相等的未知数的值叫做方程的解。

  4. 列方程解决实际问题

  实例分析

  展示问题:小明和小红一共有 30 颗糖,小明的糖数是小红的 2 倍,求小明和小红各有多少颗糖?

  引导学生分析问题中的等量关系:小明的糖数 + 小红的糖数 = 30,小明的糖数 = 2×小红的糖数。

  设小红有 x 颗糖,则小明有 2x 颗糖,列出方程 x + 2x = 30。

  小组合作

  给出其他实际问题,让学生分组讨论,分析等量关系并列出方程。

  如:一个长方形的周长是 20 厘米,长是宽的 3 倍,求长方形的长和宽。

  5. 课堂小结

  总结方程的概念、方程的解以及列方程解决实际问题的步骤。

  强调方程在数学和实际生活中的重要性。

  6. 布置作业

  完成课本上的习题。

  思考生活中还有哪些问题可以用方程来解决。

  从算式到方程的教学设计 12

  一、教学目标

  1. 知识与技能

  认识方程的本质特征,理解方程与算式的区别和联系。

  学会根据实际问题中的等量关系列出方程。

  2. 过程与方法

  通过对比算式和方程,培养学生的比较、分析和概括能力。

  经历探索实际问题中数量关系的过程,提高学生的逻辑思维能力和解决问题的能力。

  3. 情感态度与价值观

  体验方程在解决实际问题中的优越性,增强学生学习数学的.信心。

  培养学生的数学应用意识和创新精神。

  二、教学重难点

  1. 重点

  方程的概念及列方程的方法。

  分析实际问题中的等量关系。

  2. 难点

  准确找出实际问题中的等量关系并列出方程。

  三、教学方法

  情景教学法、引导发现法、自主探究法。

  四、教学过程

  1. 创设情景,引出课题

  播放一段关于购物的视频,视频中展示了顾客购买商品的场景,以及商品的价格和数量。

  提出问题:如果知道顾客购买商品的总价和其中一种商品的价格,如何求出另一种商品的数量?

  引导学生用算式和方程两种方法解决问题,引出课题“从算式到方程”。

  2. 对比分析,认识方程

  算式与方程的区别

  给出一些算式和方程,如 5 + 3 = 8、2x + 5 = 11、3×4 = 12、4y - 3 = 10 等。

  让学生观察并比较算式和方程的特点。

  引导学生得出:算式是用数字和运算符号表示的计算过程,方程是含有未知数的等式。

  算式与方程的联系

  以实际问题为例,如“小明有 10 元钱,买了一支笔花了 3 元,还剩多少钱?”可以用算式 10 - 3 = 7 来解决;如果把问题改为“小明有一些钱,买了一支笔花了 3 元,还剩 7 元,小明原来有多少钱?”就可以用方程 x - 3 = 7 来解决。

  让学生体会到方程是在算式的基础上发展而来的,方程可以更方便地解决一些复杂的实际问题。

  3. 探索实际问题,列方程求解

  实例分析

  展示问题:一辆汽车从 A 地开往 B 地,每小时行驶 60 千米,5 小时后到达 B 地,求 A、B 两地的距离。

  引导学生分析问题中的等量关系:速度×时间 = 路程。

  设 A、B 两地的距离为 x 千米,列出方程 60×5 = x。

  自主探究

  给出其他实际问题,如“一个数的 4 倍比这个数大 12,求这个数。”让学生自主分析等量关系并列出方程。

  4. 课堂小结

  回顾本节课的主要内容,包括方程的概念、方程与算式的区别和联系、列方程解决实际问题的方法。

  强调方程在数学和实际生活中的重要作用。

  5. 布置作业

  完成课本上的练习题。

  设计一个实际问题,并用方程解决。

  • 相关推荐

【从算式到方程的教学设计】相关文章:

数学教学之方程教学反思03-20

总结常用的数学算式等式04-22

《椭圆及其标准方程》的教学反思02-24

《从百草园到三味书屋》教学设计与评析10-17

《一元一次方程》教学设计(通用8篇)02-21

《从百草园到三味书屋》公开课教学设计02-15

北师大版四年级下册《方程》的教学设计(精选12篇)08-08

《标牌设计》的教学设计03-14

《实际问题与方程二》的教学反思(精选10篇)11-29