数学必修二圆的方程知识点总结

2021-10-05 总结

  总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以给我们下一阶段的学习和工作生活做指导,快快来写一份总结吧。但是却发现不知道该写些什么,以下是小编收集整理的数学必修二圆的方程知识点总结,希望能够帮助到大家。

  圆的方程

  1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

  2、圆的方程

  (1)标准方程,圆心,半径为r;

  (2)一般方程

  当时,方程表示圆,此时圆心为,半径为

  当时,表示一个点;当时,方程不表示任何图形。

  (3)求圆方程的方法:

  一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

  3、直线与圆的位置关系:

  直线与圆的位置关系有相离,相切,相交三种情况:

  (1)设直线,圆,圆心到l的距离为,则有;;

  (2)过圆外一点的'切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程

  (3)过圆上一点的切线方程:圆(x—a)2+(y—b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0—a)(x—a)+(y0—b)(y—b)=r2

  4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

  设圆,

  两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

  当时两圆外离,此时有公切线四条;

  当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

  当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

  当时,两圆内切,连心线经过切点,只有一条公切线;

  当时,两圆内含;当时,为同心圆。

  注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

  圆的辅助线一般为连圆心与切线或者连圆心与弦中点

  数学如何预习

  上课前对即将要上的数学内容进行阅读,做到心中有数,以便于掌握听课的主动权。这样有利于提高学习能力和养成自学的习惯,所以它是数学学习中的重要一环。

  (1)看书要动笔。(不动笔墨不读书)

  ①一般采用边阅读、边思考、边书写的方式,把内容的要点、层次、联系划出来或打上记号,写下自己的看法或在弄不懂的地方与问题上做记号;

  ②预习时一旦发现旧知识掌握得不好,甚至不理解时,就要及时翻书查阅摘抄,采取措施补上,为顺利学习新内容创造条件。

  ③了解本节课的基本内容,也就是知道要讲些什么,要解决什么问题,采取什么方法,重点关键在哪里等等。

  ④要把某一本练习册所对应的章节拿出来大致看一遍,看哪些题一下能看会,哪些题根本看不懂,然后带着疑问去听课。

  成数概念

  一数为另一数的几成,泛指比率:应在生产组内找标准劳动力,互相比较,评成数。

  表示一个数是另一个数的十分之几的数,叫做成数。

  通常用在工农业生产中表示生产的增长状况。几成就是十分之几。

  例如,粮食产量增产“二成”。

  “二成”即是十分之二,也就是粮食产量增加了20%。

  在计算成数时,设有甲、乙两数,求乙数对于甲数的比,并把比值化成纯小数,那么所得的纯小数叫做乙数对于甲数的成数。其中小数第一位叫做“成”或“分”,第二位叫做“厘”。

  例如,计划粮食产量为5万斤,实际多产了1万斤,那么粮食增产的成数是1÷5=0.2,即粮食增产了二成。

  成数与其他数的互化

  方法:分数X10=成数成数/10=小数(成数除以10等于小数)成数X10=百分数

【数学必修二圆的方程知识点总结】相关文章:

1.高一数学必修2直线与方程知识点总结

2.必修三数学知识点总结

3.高二数学必修二知识点总结

4.高二数学必修2知识点总结

5.关于方程的知识点总结

6.高一数学必修五的知识点总结

7.高中必修一数学知识点总结

8.高一数学必修3知识点总结

上一篇:体育活动周的总结 下一篇:茶话会活动后的总结