函数的应用知识点总结

2021-04-11 总结

  函数的应用类型问题一直是期末数学重要题型之一,那一起来看看函数的应用的知识点吧,下面是小编为大家收集整理的函数的应用知识点总结,欢迎阅读。

  函数的应用知识点总结:函数图象的判断与应用

  1.图象的变换

  (1)平移变换

  ①y=f(x±a) (a>0)的图象,可由y=f(x)的图象沿x轴方向向左(+a)或向右(-a)平移 a个单位得到;

  ②y=f(x)±b (b>0)的图象,可由y=f(x)的图象沿y轴方向向上(+b)或向下(-b)平移 b个单位得到。

  (2)对称变换

  ①y=f(-x)与y=f(x)的图象关于y轴对称;

  ②y=-f(x)与y=f(x)的图象关于x轴对称;

  ③y=-f(-x)与y=f(x)的图象关于原点对称。

  (3)伸缩变换

  ①y=kf(x) (k>0)的图象,可由y=f(x)的图象上每一个点的纵坐标伸长(k>1)或缩短(0<k<1)为原来的k倍而得到;

  ②y=f(kx) (k>0)的图象,可由y=f(x)的图象上每一个点的横坐标伸长(0<k<1)或缩短(k>1)为原来的1/k 而得到。

  (4)翻折变换

  ①要得到y=|f(x)|的图象,可先画出y=f(x)的图象,然后“上不动,下翻上”即可得到;

  ②由于y=f(|x|)是偶函数,要得到y=f(|x|)的图象,可先画出y=f(x)的图象,然后“右不动,左去掉,右翻左”即可得到。

  2.利用函数的性质确定函数图象的一般步骤

  (1)确定函数的定义域;

  (2)化简函数的解析式;

  (3)讨论函数的性质(奇偶性、单调性、周期性等)和图象上的特殊点线(如渐近线、对称轴等);

  (4)利用基本函数的图象确定所给函数的图象。

  二、函数零点

  1.函数零点的等价关系

  2.零点存在性定理

  【注意】

  零点存在性定理只能判断函数在某区间上是否存在零点,并不能判断零点的个数,但如果函数在区间上是单调函数,则该函数在区间上至多有一个零点。

  【注意】

  在解决有关零点问题时,一定要充分利用这三者的关系,观察、分析函数的图象,找函数的零点,判断各区间上函数值的符号,使问题得以解决。

  三、函数模型及其应用

  1.几种常见的函数模型

  2.“幂、指、对”三种函数模型的区别与联系

  3.“对勾”函数的性质

  函数的应用知识点总结:二次函数知识点

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(x-x)(x-x)[仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]

  注:在3种形式的'互相转化中,有如下关系:

  h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

  III.二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

  Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

  Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  V.二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax^2+bx+c,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0

  此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

  1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

  当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

  当h<0时,则向左平行移动|h|个单位得到.

  当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

  当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

  2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

  3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.

  4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的两根.这两点间的距离AB=|x-x|

  当△=0.图象与x轴只有一个交点;

  当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

  5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

  y=ax^2+bx+c(a≠0).

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a≠0).

  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

【函数的应用知识点总结】相关文章:

奇函数的反函数是奇函数吗10-12

高教版数学说课稿 分段函数的实际应用说课稿11-03

函数与反函数关于什么对称10-12

常数函数是周期函数吗?10-12

奇函数乘奇函数等于什么10-12

余弦函数的性质说课稿11-06

函数单调性的定义10-12

一次函数和正比例函数的概念   10-12

幂函数教案04-07

正弦函数的对称轴10-12

高中力学知识点总结 国税财税知识点总结