学习方法是通过学习实践总结出的快速掌握知识的方法。因其与学习掌握知识的效率有关,越来越受到人们的重视。下面和小编一起来看中考数学第二轮复习攻略,希望有所帮助!
专题一 新定义型问题
一、中考专题诠释
所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型。“新定义”型问题成为近年来中考数学压轴题的新亮点,在复习中应重视学生应用新的知识解决问题的能力。
二、解题策略和解法精讲
“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移。
三、中考典例剖析
考点一:规律题型中的新定义。
考点二:运算题型中的新定义。
考点三:探索题型中的新定义。
考点四:开放题型中的新定义。
考点五:阅读材料题型中的新定义。
专题二 阅读理解型问题
一、中考专题诠释
阅读理解型问题在近几年的全国中考试题中频频“亮相”,特别引起我们的重视。这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多样,既考查学生的阅读能力,又考查学生的解题能力的新颖数学题。
二、解题策略与解法精讲
解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题。
三、中考考点精讲
考点一:阅读试题提供新定义、新定理,解决新问题。
考点二、阅读试题信息,借助已有数学思想方法解决新问题。
专题三 探究型问题
一、中考专题诠释
探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类。
二、解题策略与解法精讲
由于探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答。由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:
1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律。
2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致。
3.分类讨论法。当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果。
4.类比猜想法。即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证。
以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用
三、中考考点精讲
考点一:条件探索型:
此类问题结论明确,而需探究发现使结论成立的条件。
考点二:结论探究型:
此类问题给定条件但无明确结论或结论不惟一,而需探索发现与之相应的结论。
考点三:规律探究型:
规律探索问题是指由几个具体结论通过类比、猜想、推理等一系列的数学思维过程,来探求一般性结论的问题,解决这类问题的一般思路是通过对所给的具体的结论进行全面、细致的观察、分析、比较,从中发现其变化的规律,并猜想出一般性的结论,然后再给出合理的证明或加以运用。
考点四:存在探索型:
此类问题是在一定的条件下,需探究发现某种数学关系是否存在的题目。
专题四 动点型问题
一、中考专题诠释
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目。解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题。“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。
二、解题策略和解法精讲
解决动点问题的关键是“分类讨论,动中求静”。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
三、中考考点精讲
考点一:建立动点问题的函数解析式(或函数图像)。
函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容。动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系。
考点二:动态几何型题目
点动、线动、形动构成的问题称之为动态几何问题。它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题。这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力。
动态几何特点——问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
考点三:双动点问题
动态问题是近几年来中考数学的热点题型。这类试题信息量大,其中以灵活多变而著称的双动点问题更成为中考试题的热点中的热点,双动点问题对同学们获取信息和处理信息的能力要求更高高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。
专题五 归纳猜想型问题
一、中考专题诠释
归纳猜想型问题在中考中越来越被命题者所注重。这类题要求根据题目中的图形或者数字,分析归纳,直观地发现共同特征,或者发展变化的趋势,据此去预测估计它的规律或者其他相关结论,使带有猜想性质的推断尽可能与现实情况相吻合,必要时可以进行验证或者证明,依此体现出猜想的实际意义。
二、解题策略和解法精讲
归纳猜想型问题对考生的观察分析能力要求较高,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程。相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到。
由于猜想本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的持续热点。
三、中考考点精讲
考点一:猜想数式规律
通常给定一些数字、代数式、等式或者不等式,然后猜想其中蕴含的规律。一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。
考点二:猜想图形规律
根据一组相关图形的变化规律,从中总结通过图形的变化所反映的规律。其中,以图形为载体的数字规律最为常见。猜想这种规律,需要把图形中的有关数量关系列式表达出来,再对所列式进行对照,仿照猜想数式规律的方法得到最终结论。
考点三:猜想坐标变化规律
考点四:猜想数量关系
数量关系的表现形式多种多样,这些关系不一定就是我们目前所学习的函数关系式。在猜想这种问题时,通常也是根据题目给出的关系式进行类比,仿照猜想数式规律的方法解答。
考点五:猜想变化情况
随着数字或图形的变化,它原先的一些性质有的不会改变,有的则发生了变化,而且这种变化是有一定规律的。比如,在几何图形按特定要求变化后,只要本质不变,通常的规律是“位置关系不改变,乘除乘方不改变,减变加法加变减,正号负号要互换”。这种规律可以作为猜想的一个参考依据。
考点六:猜想数字求和
专题六 方案设计型问题
一、中考专题诠释
方案设计型问题,是指根据问题所提供的信息,运用学过的技能和方法,进行设计和操作,然后通过分析、计算、证明等,确定出最佳方案的一类数学问题,随着新课程改革的不断深入,一些新颖、灵活、密切联系实际的方案设计问题正越来越受到中考命题人员的喜爱,这些问题主要考查学生动手操作能力和创新能力,这也是新课程所要求的核心内容之一。
二、解题策略和解法精讲
方案设计型问题涉及生产生活的方方面面,如:测量、购物、生产配料、汽车调配、图形拼接等。所用到的数学知识有方程、不等式、函数、解直角三角形、概率和统计等知识。这类问题的应用性非常突出,题目一般较长,做题之前要认真读题,理解题意,选择和构造合适的数学模型,通过数学求解,最终解决问题。另外,解题时还要注重综合运用转化思想、数形结合的思想、方程函数思想及分类讨论等数学思想。
三、中考考点精讲
考点一:设计测量方案问题
这类问题主要包括物体高度的测量和地面宽度的测量。所用到的数学知识主要有相似、全等、三角形中位线、投影、解直角三角形等。
考点二:设计搭配方案问题
这类问题不仅在中考中经常出现,大家在平时的练习中也会经常碰到。它一般给出两种元素,利用这两种元素搭配出不同的新事物,设计出方案,使获利最大或成本最低。解题时要根据题中蕴含的不等关系,列出不等式(组),通过不等式组的整数解来确定方案。
考点三:设计销售方案问题
在商品买卖中,更多蕴含着数学的学问。在形形色色的让利、打折、买一赠一、摸奖等促销活动中,大家不能被表象所迷惑,需要理智的分析。通过计算不同的销售方案盈利情况,可以帮助我们明白更多的道理,近来还出现运用概率统计知识进行设计的问题。
考点四:设计图案问题
图形的分割、拼接问题是考查动手操作能力与空间想能力的一类重要问题,在各地的中考试题中经常出现。这类问题大多具有一定的开放性,要求学生多角度、多层次的探索,以展示思维的灵活性、发散性。
专题七 选择题解题方法
一、中考专题诠释
选择题是各地中考必考题型之一,近年来各地命题设置上,选择题的数目稳定在8~16题,这说明选择题有它不可替代的重要性,选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养。
二、解题策略与解法精讲
选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做,解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程。因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略。具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件。事实上,后者在解答选择题时更常用、更有效
三、中考典例剖析
考点一:直接法
从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。
考点二:筛选法(也叫排除法、淘汰法)
从运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确。
考点三:逆推代入法
将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法。在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度。
考点四:直观选择法
利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法。这种解法贯穿数形结合思想,每年中考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速。
考点五:特征分析法
对有关概念进行全面、正确、深刻的理解或根据题目所提供的信息,如数值特征、结构特征、位置特征等,提取、分析和加工有效信息后而迅速作出判断和选择的方法。
考点六:动手操作法
与剪、折操作有关或者有些关于图形变换的试题是各地中考热点题型,只凭想象不好确定,处理时要根据剪、折顺序动手实践操作一下,动手可以直观得到答案,往往能达到快速求解的目的。
- 相关推荐
【中考数学第二轮复习攻略】相关文章:
中考数学复习的攻略05-17
中考作文复习攻略04-16
中考数学复习策略04-27
中考数学复习计划03-15
中考数学复习工作计划12-13
中考数学复习方案(精选8篇)03-28
数学中考复习的备考方案(精选18篇)06-18
中考数学复习计划及备考策略05-10
数学中考复习计划(精选14篇)06-17
中学高三数学第二轮复习计划(通用10篇)05-18