六年级数学上册知识点总结

2022-11-10 知识点总结

  总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它能够使头脑更加清醒,目标更加明确,不如立即行动起来写一份总结吧。那么你真的懂得怎么写总结吗?下面是小编精心整理的苏教版六年级数学上册知识点总结,仅供参考,欢迎大家阅读。

苏教版六年级数学上册知识点总结1

  方程以及列方程解应用题1、形如ax±b=c方程的解法

  【解方程时,可以利用等式的基本性质来解,注意两边要同时加上或减去同一个数】2、形如ax±bx=c方程的解法

  【解方程时,第一步要把x前面的序数相加或相减,再

  在两边同时除以同一个数】

  3、列方程解决实际问题

  基本步骤:审清题意→找准等量关系→设未知数→列方程→解方程→检验→作答基本类型:比较大小关系;总数和部分数关系;和倍与差倍关系;行程问题中的关系;

  涉及图形的周长、面积的关系等等。

  长方体和正方体1、长方体和正方体的特征形体面顶点棱12相对的棱条长度相等关系长方体6个至少4个面相对面8个是长方形完全相同正方体6个正方形6个面8个完全相同正方体是特殊1212条长度的长方体条都相等2、表面积概念及计算

  【长方体或正方体6个面的总面积,叫做它们的表面积】算法:长方体(长×宽+长×高+宽×高)×2(ab+ah+bh)×2

  正方体棱长×棱长×6a×a×6=6

  a2

  注:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。3、体积概念及计算体积(容积)定义物体所占空间的大小叫做它们的体积;容器所能容纳其它物体的体积叫做它的容积。分数乘法1、

  分数乘法算式的意义:比如3×

  形体长方体正方体体积(容积)体积单位计算方法V=abhV=a3进率V=Sh33m1=1000dm立方米立方分米33dmcm1=1000立方厘米1L=1000mL=1dm333表示3个相加的和是多少,也可以表示3的553是多少?

  注:【求一个数的几分之几用乘法解答】2、分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,

  日期:________________姓名:_________________重要资料请勿外传

  最后约分成最简分数。或者先将整数与分数的分母进行约分,再应用前面计算法则。

  注:【任何整数都可以看作为分母是1的分数】3、分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约

  分成最简分数。

  4、分数连乘:通过几个分数的分子与分母直接约分再进行计算。倒数的认识1、乘积是1的两个数互为倒数。2、求一个数(不为0)的倒数,只要将这个数的分子与分母交换位置。【整数是

  分母为1的分数】

  3、1的倒数是1,0没有倒数。4、假分数的倒数都小于或等于1(或者说不大于1);

  真分数的倒数都大于1。

  分数除法1、分数除法计算法则:甲数除以乙数(不为0)等于甲数乘乙数的倒数。2、分数连除或乘除混合计算:可以从左向右依次计算,但一般是遇到除以一个数,

  把它改写成乘这个数的倒数来计算。

  【转化成分数的连乘来计算】

  3、除数大于1,商小于被除数;除数小于1,商大于被除数;除数等于1,商等于被

  除数。

  4、分数除法的意义:已知一个数的几分之几是多少,求这个数?可以用列方程的方

  法来解,也可以直接用除法。

  注:在单位换算中,要弄清需要换算的单位之间的进率是多少。

  认识比1、比的意义:比表示两个数相除的关系。

  2、

  比与分数、除法的关系:a:b=a÷b=

  a(b≠0)b区别后项比值除数商关系运算比相互关系前项比号(:)分数分子分数线(-)分母分数值数除法被除数除号(÷)3、比值:比的前项除以比的后项,所得的商就叫比值。

  注:比值是一个数,可以是整数、分数、小数,不带单位名称。

  4、比的基本性质:比的前项和后项同时乘或除以一个相同的数(0除外),比值

  不变。

  5、最简整数比:比的前项和后项是互质数。也就是比的前项和后项除了1意外

  没有其它公因数。

  6、化简:运用比的基本性质对比进行化简,方法:先把比的前、后项变成整数,

  再除以它们的最大公因数。

  注:化简比和求比值是不同的两个概念

  【意义不同,方法不同,结果不同】

苏教版六年级数学上册知识点总结2

  第一章:方程以及列方程解应用题

  1、形如ax±b=c方程的解法

  【解方程时,可以利用等式的基本性质来解,注意两边要同时加上或减去同一个数】例:3x+15=30要在两边同时减去15;而4x-6=14要在两边同时加上6.最后算出结果.

  2、形如ax±bx=c方程的解法

  【解方程时,第一步要把x前面的序数相加或相减,再在两边同时除以同一个数】例:3x+4x=28要把x前面的3和4相加得到x的系数即7x=28,解得x=4列方程解决实际问题

  3、基本步骤:审清题意→写解、设出未知数→找准等量关系→列方程→解方程→检验→作答

  4、基本类型:比较大小关系;

  总数和部分数关系(总数=各部分数的和);

  和倍与差倍关系(已知一个数与另一个数的和或差的几倍是多少,求这个数?);行程问题中的关系;路程=速度×时间;总路程=甲行走的路程+乙行走的路程涉及图形的周长、面积的关系等:

  周长:正方形的周长=边长×4

  长方形的周长=(长+宽)×2面积:正方形的面积=边长×边长

  长方形的面积=长×宽

  三角形的面积=(底×高)÷2

  梯形的面积=(上底+下底)×高÷2

  体积:长方体的体积=长×宽×高=底面积×高

  正方体的体积=棱长×棱长×棱长=底面积×高

  第二单元长方体和正方体

  1、两个面相交的线叫做棱,三条棱相交的点叫做顶点。

  2、长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高。

  3、长方体的特征:面有六个面,都是长方形(特殊情况下有两个相对的面是正方形),相对的面完全相同;棱有12条棱,相对的棱长度相等;顶点有8个顶点。

  4、正方体的特征:面有六个面,都是正方形,所有的面完全相同;棱有12条棱,所有的棱长度相等;顶点有8个顶点。5、正方体也是一种特殊的长方体。

  6、把一个长方体或正方体纸盒展开,至少要剪开7条棱。7、长方体(或正方体)的六个面的总面积,叫做它的表面积。8、长方体的表面积=(长×宽+宽×高+高×长)×2

  正方体的表面积=棱长×棱长×6。

  注:在解决实际问题中没有的部分应减掉。如:没有盖或底边为:

  面积=表面积-没有的部分=(长×宽+宽×高+长×高)×2-长×宽没有左侧或右侧为:

  面积=表面积-没有的部分=((长×宽+宽×高+长×高)×2-宽×高没有前面或后面为:

  面积=表面积-没有的部分=((长×宽+宽×高+长×高)×2-长×高9、物体所占空间的大小叫做物体的体积。

  10、容器所能容纳物体的体积,叫做这个容器的容积。11、常用的体积单位有立方厘米、立方分米、立方米。

  1立方米=1000立方分米,1立方分米=1000立方厘米。

  12、计量液体的体积,常用升和毫升作单位。

  1立方分米=1升,1立方厘米=1毫升,1升=1000毫升。

  13、长方体的体积=长×宽×高V=abh

  14、正方体的体积=棱长×棱长×棱长V=a×a×a=a

  15、长方体(或正方体)的体积=底面积×高=横截面×长V=Sh

  16、1=12=83=274=645=1256=216

  7=3438=5129=72910=1000

  17、每相邻两个长度单位(除千米外)的进率都是10,每相邻两个面积单位之间的进都是100,每相邻两个体积单位之间的进率都是1000。

  18、正方体的棱长扩大n倍,表面积会扩大n的.平方倍,体积会扩大n的立方倍。

  第三单元分数乘法

  1、分数乘整数的意义与整数乘法的意义相同,是求几个相同加数的和的简便运算。2、分数和分数相乘,用分子相乘的积作分子,分母相乘的积作分母。3、一个数乘分数表示求这个数的几分之几是多少;

  4、求一个数的几分之几是多少用乘法计算。即:这个数×分数

  5、乘积是1的两个数互为倒数;1的倒数是1,0没有倒数,分子为1的分数的倒数就是这个分数的分母。

  6、一个数乘真分数(比1小的数)积比原来的数小;一个数乘以1等于它本身;一个数乘比1大的假分数(比1大的数)积比原来的数大。

  7、真分数的倒数都是假分数,都比1大;假分数的倒数是真分数或1,比1小或等于1。8、在计算分数乘法中,第二步约分时只能用分子与分母约,而不能用分子与分子约,分母与分母约;分数连乘计算时第一个分数可以和第二个进行约分,也可以和第三个进行约分,但是是分子与分母约,而不能用分子与分子约,分母与分母约。

  第四单元分数除法

  1、比较量=单位“1”的量×分率;

  2、单位“1”的量=比较量÷对应分率;分率=比较量÷单位“1”的量3、甲数除以乙数(0除外),等于甲数乘乙数的倒数(变号变倒数)。(可以用整数的除法来证明。如:4÷2=4×1/2=2)

  4、混合运算中,除号在哪个分数前面,变为乘号后就乘以哪个分数的倒数。(5/6×4/7÷5/7=5/6×4/7×7/5=2/3)

  5、一个数除以比1大的数商会比原数小,一个数除以比1小的数商会比原数大。交换被除数与除数的位置,所得的商和原来的商互为倒数。6、运用分数乘除法解决相应的实际问题:

  (1)已知一个数及这个数的几分之几,求这个数的几分之几是多少?

  这个数×分数

  (2)已知一个数和它占另一个数的几分之几,求另一个数是多少?方法一:方法二:一个数÷分数解:设另一个数为xX×分数=一个数

  第五单元认识比

  1、两个数相除又叫做这两个数的比,“:”是比号。

  2、比号前面的数叫做比的前项,比号后面的数叫做比的后项。3、比的前项除以后项所得的商叫做比值

  4、比的前项相当于除法算式的被除数,相当于分数的分子;比号相当于除号,相当于分数线;比的后项相当于除法算式的除数,相当于分数的分母;比值相当于除法算式的商,相当于分数的值。

  5、两个数的比可以用比号连接也可以写成分数形式。6、比的前项和后项同时乘或除以相同的数(0除外),比值不变,这是比的基本性质。7、化简比时,运用比的基本性质把比的前项和后项同时乘或除以相同的数(0除外),所得的最简比的前项和后项不能有公因数,也不能是分数或小数。

  (1)整数比化简:比的前项和后项同时除以比前项和后项的最大公因数,所得的比为最简整数比。

  (2)小数比化简:先看比前项和后项最多的项有几位小数,一位小数扩大10倍,两位小数扩大100倍;再按整数比化简的方法化简。

  (3)分数比化简:比前项和后项的分数的同时乘以比前项和后项的分数的分母的最小公倍数;再按整数比化简的方法化简。8、运用比的知识解决实际问题:

  按比例分配:分配总分数等于比例前项和后项的和(如按3:2分,即总共分5份,前项占3份,后项占2份;也可以说前项占总数的3/5,后项占总数的2/5。)则可以用总数乘以前项所占的分数,求出前项对应的值;用总数乘以后项所占的分数,求出后项对应的值。

  求大树高度:同一地点,同一时间物体高度与影长的比例相同。竹竿长:竹竿影长=大树高:大树影长或竹竿长/竹竿影长=大树高/大树影长

  第六单元分数四则运算

  分数四则运算和整数一样:先算乘除,后算加减,有括号的先算括号里的。一、定律

  (1)加法交换律:交换两个加数的位置,和不变:a+b=b+a

  (2)加法结合律:三个数相加,先用前两个数相加,再加上第三个数,或者先用后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)

  (3)乘法交换律:交换两个乘数的位置,积不变。a×b=b×a

  (4)乘法结合律:三个数相乘,先用前两个数相乘,再乘以第三个数,或者先用后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×(b×c)(5)乘法分配律:ac+bc=(a+b)cac-bc=(a-b)c二、简便运算:(一)加法

  三个数相加,先找出加数中分母相同的加数;运用加法交换律或结合律把这两个加数移到一起,在这个算式中先算这两个数的和,再用这两个的和加上另一个数。(二)减法

  减法的性质:一个数连续减去几个数,等于减去这几个数的和。

  即:a-b-c=a-(b+c)或a-b+c=a-(b-c);a-(b+c)=a-b-c或a-(b-c)=a-b+c

  1、在分数四则混合运算中,如果只有加减法,并且在括号里面和外面有分母相同的分数,则利用减法的性质进行去括号计算。即:a-(b+c)=a-b-ca-(b-c)=a-b+c

  2、在分数四则混合运算中,如果只有加减法,被减数外的两个分数是分母相同的分数,则利用减法的性质进行加括号计算即:a-b-c=a-(b+c)或a-b+c=a-(b-c)(四)乘、除法

  1、在四则混合运算中,先观察题中是否有相同的分数。如果有且相同的分数分布在加减号的两侧,则可以根据乘法分配律来简便计算。即:ac+bc=(a+b)cac-bc=(a-b)c2、分数除法:除以一个数等于乘以这个数的倒数。

  3、除法的性质:一个数连续除以几个数,等于除以这几个数的积。

  即:a÷b÷c=a÷(b×c)或a÷b×c=a÷(b÷c);a÷(b×c)=a÷b÷c或a÷(b÷c)=a÷b×c五、解决实际问题

  已知A和B是A的几分之几,求B?A×几分之几=B

  已知A和B比A多几分之几,求B?A+A×几分之几=B

  已知A和B比A少几分之几,求B?

  A×几分之几=B

  探索与实践结论:把一个长方形的长和宽分别增加1/2,即长和宽变为原来的3/2,现在的面积变为原来的9/4,即为:现在面积:原来面积的=现在长:原来长=现在宽:原来宽注:在计算的过程中,根据实际情况确定使用的简便方法。

  第七单元:解决问题的策略

  一、替换的策略

  1、根据题目意思,写出等量关系。2、把相等的量互换。3、根据题意列方程解答。

  二、假设的策略(鸡兔同笼问题及延伸题)例:(大船坐的人数×总船数-总人数)÷(大船坐的人数-小船坐的人数)=小船数(总人数-小船坐的人数×总船数)÷(大船坐的人数-小船坐的人数)=大船数假设全部为其中的一种,用假设的这种×总头数和总脚数作比较谁大谁作被减数,再除以两种脚之差,所求出的为另一种的只数。

  (1)已知总头数和总脚数,求鸡、兔各多少:

  (总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

  或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

  (2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数

  或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。(例略)

  (3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

  (每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

  或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。(例略)(4)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

  (5)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

  或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元。它的解法显然可套用上述公式。)

  第八单元:可能性

  求摸到某种球的可能是几分之几?

  这种球的个数÷总个数=这种球的个数/总个数

  第九单元、认识百分数

  1、百分数:表示一个数是另一个数的百分之几的数叫百分数,又叫百分比或百分率。通常在原来的分子后面加“%”来表示:如30/100可以写成30%注:在用%号表示百分数中,后面带单位的百分之几不能用%表示。2、百分数与小数的互化(1)、小数化为百分数:一位小数写成十分之几,分子分母同时扩大10倍;两位小数写成百分之几;三位小数写成千分之几,分子分母同时缩小10倍……。(或把小数的小数点向右移动两位,后面加上百分号)

  (2)百分数化为小数:把百分数的分子分母同时缩小100倍(即把百分数的分子小数点向左移动两位)

  3、分数与小数的互化

  (1)分数化为小数:分数的分子除以分母,结果保留三位小数

  (2)小数化为分数:一位小数写成十分之几;两位小数写成百分之几;三位小数写成千分之几;然后约成最简分数。4、百分数与分数的互化(1)分数化为百分数:

  A:分母是100的因数或倍数,直接进行通分或约分把分母化为100。

  B:分母不是100的因数或倍数,用分子除以分母,所得结果保留三位小数,再根据小数化百分数的方法把这个小数化为百分数。(2)百分数化分数:

  A:分子为整数,直接进行约分,约成最简分数。

  B:分子为小数,先把百分数扩大相应的倍数,化成分子为整数的分数,再进行约分,约成最简分数。

  5、求一个数是另一个数的百分之几?

  一个数÷另一个数×100%6、出勤率=出勤人数÷总人数×100%缺勤率=缺勤人数÷总人数×100%发芽率=发芽种子数÷总种子数×100%成活率=成活棵树÷总种植棵树×100%

苏教版六年级数学上册知识点总结3

  第一单元略

  第二单元长方体和正方体

  1、两个面相交的线叫做棱,三条棱相交的点叫做顶点。

  2、长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高。

  3、长方体的特征:面有六个面,都是长方形(特殊情况下有两个相对的面是正方形),相对的面完全相同;棱有12条棱,相对的棱长度相等;顶点有8个顶点。

  4、正方体的特征:面有六个面,都是正方形,所有的面完全相同;棱有12条棱,所有的棱长度相等;顶点有8个顶点。

  5、正方体也是一种特殊的长方体。

  6、把一个长方体或正方体纸盒展开,至少要剪开7条棱。

  7、长方体(或正方体)的六个面的总面积,叫做它的表面积。

  8、长方体的表面积=(长×宽+宽×高+高×长)×2

  正方体的表面积=棱长×棱长×6。

  9、物体所占空间的大小叫做物体的体积。

  10、容器所能容纳物体的体积,叫做这个容器的容积。

  11、常用的体积单位有立方厘米、立方分米、立方米。1立方米=1000立方分米,1立方分米=1000立方厘米。

  12、计量液体的体积,常用升和毫升作单位。1立方分米=1升,1立方厘米=1毫升,1升=1000毫升。

  13、长方体的体积=长×宽×高V=abh

  14、正方体的体积=棱长×棱长×棱长V=a×a×a

  15、长方体(或正方体)的体积=底面积×高=横截面×长V=Sh

  16、1=12=83=274=645=1256=27=3438=5129=72910=1000

  17、每相邻两个长度单位(除千米外)的进率都是10,每相邻两个面积单位之间的进率都是100,每相邻两个体积单位之间的进率都是1000。

  18、正方体的棱长扩大n倍,表面积会扩大n的平方倍,体积会扩大n的立方倍。

  第三单元分数乘法

  1、分数乘整数的意义与整数乘法的意义相同,是求几个相同加数的和的简便运算。2、一个数乘分数表示求这个数的几分之几是多少,求一个数的几分之几是多少用乘法计算。

  3、分数和分数相乘,用分子相乘的积作分子,分母相乘的积作分母。

  4、乘积是1的两个数互为倒数。

  5、1的倒数是1,0没有倒数。

  6、一个数乘真分数(比1小的数)积比原数小;一个数乘比1大的假分数(比1大的数)积比原数大。

  7、真分数的倒数都是假分数,都比1大;假分数的倒数是真分数或1,比1小或等于1。

  第四单元分数除法

  1、比较量=单位“1”的量×分率;

  2、单位“1”的量=比较量÷对应分率;

  分率=比较量÷单位“1”的量

  3、甲数除以乙数(0除外),等于甲数乘乙数的倒数(变号变倒数)。

  4、一个数除以比1大的数商会比原数小,一个数除以比1小的数商会比原数大。

  第五单元认识比

  1、两个数相除又叫做这两个数的比。

  2、比号前面的数叫做比的前项,比号后面的数叫做比的后项。

  3、比的前项相当于除式的被除数,相当于分数的分子;比号相当于除号相当于分数线:比的后项相当于除式的除数相当于分数的分母;比值相当于除式的商相当于分数的值。

  4、两个数的比可以用比号连接也可以写成分数形式。

  5、比的前项和后项同时乘或除以相同的数(0除外),比值不变,这是比的基本性质。

  第八单元可能性

  概率=获胜的情况数除以所有可能出现的情况数。

  第九单元认识百分数

  1、表示一个数是另一个数的百分之几的数叫做百分数,百分数又叫做百分比或百分率。

  2、分数可以表示分率和数量,但百分数只能表示分率不能表示数量,所以百分数不能跟单位。

  3、我们不能说分母是100的分数叫做百分数,因为它有可能是表示数量的分数。

  4、把小数化成百分数:先把小数的小数点向右移动两位,再添上“%”。把百分数化成小数:先去掉“%”,再把小数点向左移动两位。

  5、把分数化成百分数,除不尽时要先除到第四位小数,保留三位小数再化成百分数。把百分数化成分数先化成分母是100的分数,再约成最简分数。

  扩展阅读:苏教版六年级数学上册知识点总结

  学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心!

  苏教版六年级上册知识点总结

  方程以及列方程解应用题1、

  形如ax±b=c方程的解法

  【解方程时,可以利用等式的基本性质来解,注意两边要同时加上或减去同一个数】2、

  形如ax±bx=c方程的解法

  【解方程时,第一步要把x前面的序数相加或相减,再

  在两边同时除以同一个数】3、

  列方程解决实际问题

  基本步骤:审清题意→找准等量关系→设未知数→列方程→解方程→检验

  →作答

  基本类型:比较大小关系;总数和部分数关系;和倍与差倍关系;行程问

  题中的关系;涉及图形的周长、面积的关系等等。

  长方体和正方体1、

  长方体和正方体的特征

  面相对面完全相同6个面完全相同2、

  表面积概念及计算【长方体或正方体6个面的总面积,叫做它们的表面积】

  算法:长方体(长×宽+长×高+宽×高)×2(ab+ah+bh)×2

  正方体棱长×棱长×6

  a×a×6=6a

  注:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。3、

  体积概念及计算

  学如逆水行舟,不进则退,不学则殆!第1页

  2形体顶点棱关系长方体6个至少4个面是长方形正方体6个正方形8个12相对的棱正方体条长度相等是特殊8个1212条长度的长方条都相等体学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心!

  体积(容积)定义形体体积(容积)体积单位计算方法立方米进率物体所占空间的1m=1000dm3333大小叫做它们的长方V=abh体积;容器所能容纳其它物体的体积叫做它的容正方积。分数乘法1、

  体体V=a3dm=1000cmV=Sh立方分米11L=1000mL立方厘米=1dm333分数乘法算式的意义:比如3×表示3个相加的和是多少,也可以

  553表示3的是多少?

  5注:【求一个数的几分之几用乘法解答】2、

  分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。或者先将整数与分数的分母进行约分,再应用前面计算法则。

  注:【任何整数都可以看作为分母是1的分数】3、

  分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。

  4、

  分数连乘:通过几个分数的分子与分母直接约分再进行计算。

  倒数的认识1、2、

  乘积是1的两个数互为倒数。

  求一个数(不为0)的倒数,只要将这个数的分子与分母交换位置。【整数是分母为1的分数】

  3、4、

  1的倒数是1,0没有倒数。

  假分数的倒数都小于或等于1(或者说不大于1);真分数的倒数都大于1。

  分数除法1、2、

  分数除法计算法则:甲数除以乙数(不为0)等于甲数乘乙数的倒数。分数连除或乘除混合计算:可以从左向右依次计算,但一般是遇到除

  学如逆水行舟,不进则退,不学则殆!第2页学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心!

  以一个数,把它改写成乘这个数的倒数来计算。【转化成分数的连乘来计算】

  3、

  除数大于1,商小于被除数;除数小于1,商大于被除数;除数等于1,商等于被除数。

  4、

  分数除法的意义:已知一个数的几分之几是多少,求这个数?可以用列方程的方法来解,也可以直接用除法。

  注:在单位换算中,要弄清需要换算的单位之间的进率是多少。认识比1、2、

  3、

  比相互关系前项比号(:)后项比值区别关系比的意义:比表示两个数相除的关系。比与分数、除法的关系:a:b=a÷b=

  a(b≠0)b分数分子分数线(-)分母分数值数除数商运算除法被除数除号(÷)比值:比的前项除以比的后项,所得的商就叫比值。

  注:比值是一个数,可以是整数、分数、小数,不带单位名称。

  4、

  比的基本性质:比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。5、

  最简整数比:比的前项和后项是互质数。也就是比的前项和后项除了1意外没有其它公因数。6、

  化简:运用比的基本性质对比进行化简,方法:先把比的前、后项变成整数,再除以它们的最大公因数。

  注:化简比和求比值是不同的两个概念

  【意义不同,方法不同,结果不同】7、

  按比例分配问题:将一个数量按照一定比例,分成几个部分,求每个部分是多少,这类问题称为按比例分配问题。

  学如逆水行舟,不进则退,不学则殆!第3页学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心!

  解决方法:先求出总份数,再求各部分数占总数的几分之几,转化成分数

  乘法来计算。

  分数四则混合运算1、

  运算顺序:分数四则混合运算的顺序与整数相同。先算乘除法,后算加减法;有括号的先算括号里面的,后算括号外面的。

  2、

  运算律:加法的交换律:a+b=b+a

  加法的结合律:(a+b)+c=a+(b+c)乘法的交换律:a×b=b×a

  乘法的结合律:(a×b)×c=a×(b×c)乘法的分配律:(a+b)×c=a×c+b×c3、

  分数四则混合运算的应用题:

  (1)总数与部分数相比较的问题:【分数乘法、减法】

  一般解题方法:先求出未知的部分数,再用总数减部分数等于另一部分数。

  (2)已知一个数量比另一个数量多(或少)几分之几,求这个数量是多

  少的问题:【分数乘法、加减法】

  一般解题方法:先求出多(或少)的部分,再用加法或减法求出结果。注:对于题中出现的带单位与不带单位的分数,要注意它们的意义不一样。解决问题的策略1、2、可能性

  用分数来表示可能性的大小:P认识百分数1、

  百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数,也叫百分比或百分率。

  2、

  百分数的读写:百分数不写成分数形式,先写分子,再写百分号。

  规定出现的情况数量

  所有可能出现的情况数量用“替换”策略解决实际问题用“假设”策略解决实际问题

  注:百分数后面不带单位名称。(常出现在判断题中)3、

  百分数与小数的互化:

  学如逆水行舟,不进则退,不学则殆!第4页学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心!

  去掉百分号,再将小数点向左移动两位

  百分数小数将小数点向右移动两位,再在后面添上4、

  百分数与分数的互化:

  先改写成分母是100的分数,再约分成最简分数

  百分数分数先将分数化成小数(遇到除不尽时,一般保留三位小数)。再改写成百分数5、

  百分数应用题:

  一般解题方法:求一个数是另一个数的百分之几,用除法计算。注:理解生活中常见的一些百分率。例如:出勤率、发芽率、成活率、合格率、含盐率、普及率等等。

【六年级数学上册知识点总结】相关文章:

数学六年级上册知识点12-13

小学六年级上册数学必考知识点总结02-28

初三上册数学实数知识点总结04-11

初三数学上册知识点总结归纳集锦02-11

初三数学上册章节重要知识点总结01-20

高二上册数学知识点总结09-26

初二上册数学知识点人教版总结08-02

九年级上册数学圆知识点总结11-29

五年级数学上册知识点总结01-12