九年级上册数学圆知识点总结

2021-11-29 总结

  总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它能帮我们理顺知识结构,突出重点,突破难点,不妨让我们认真地完成总结吧。总结怎么写才不会流于形式呢?下面是小编整理的九年级上册数学圆知识点总结,仅供参考,大家一起来看看吧。

  圆定义:

  (1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。

  (2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

  圆心:

  (1)如定义(1)中,该定点为圆心

  (2)如定义(2)中,绕的那一端的端点为圆心。

  (3)圆任意两条对称轴的交点为圆心。

  (4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

  注:圆心一般用字母O表示

  直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

  半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

  圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

  圆的半径或直径决定圆的大小,圆心决定圆的位置。

  圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

  圆的周长与直径的比值叫做圆周率。圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。

  直径所对的圆周角是直角。90°的圆周角所对的弦是直径。

  圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2,用字母S表示。

  一条弧所对的圆周角是圆心角的二分之一。

  在同圆或等圆中,相等的圆心角所对的弧相等,所对的'弦相等,所对的弦心距也相等。

  在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

  在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

  周长计算公式

  1.、已知直径:C=πd

  2、已知半径:C=2πr

  3、已知周长:D=cπ

  4、圆周长的一半:12周长(曲线)

  5、半圆的长:12周长+直径

  面积计算公式:

  1、已知半径:S=πr平方

  2、已知直径:S=π(d2)平方

  3、已知周长:S=π(c2π)平方

  点、直线、圆和圆的位置关系

  1.点和圆的位置关系

  ①点在圆内<=>点到圆心的距离小于半径

  ③点在圆外<=>点到圆心的距离大于半径

  ②直线l和⊙O相切<=>d=r;

  圆和圆定义:

  两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。

  两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。

  两个圆有两个交点,叫做两个圆的相交。

  两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。

  两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。

  原理:圆心距和半径的数量关系:

  两圆外离<=>d>R+r两圆外切<=>d=R+r两圆相交<=>R-r<>=r)

  正多边形和圆

  1、正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。

  2、正多边形与圆的关系:

  (1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。

  (2)这个圆是这个正多边形的外接圆。

  3、正多边形的有关概念:

  (1)正多边形的中心——正多边形的外接圆的圆心。

  (2)正多边形的半径——正多边形的外接圆的半径。

  (3)正多边形的边心距——正多边形中心到正多边形各边的距离。

  (4)正多边形的中心角——正多边形每一边所对的外接圆的圆心角。

  4、正多边形性质:

  (1)任何正多边形都有一个外接圆。

  (2)正多边形都是轴对称图形,当边数是偶数时,它又是中心对称图形,正n边形的对称轴有n条。(3)边数相同的正多边形相似。

【九年级上册数学圆知识点总结】相关文章:

1.有关圆的数学日记

2.《圆的认识》数学教学反思

3.文学常识语文上册知识点总结

4.高考数学知识点总结

5.小学数学《圆的认识》教学设计

6.初二英语上册知识点总结归纳

7.初二数学上册期末总结

8.七年级上册数学第二章知识点总结

9.初一上册英语知识点梳理总结

上一篇:计算机专业实习小结 下一篇:学生军训表个人总结