高中物理知识点的总结

2024-06-13 知识点总结

  物理定律是宇宙间最强大的规律,它们让我们更好地理解世界,把握事物的本质。以下是小编精心整理的高中物理知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。


目录
【1】高中物理必修一知识点的总结【4】高中物理磁场的知识点的总结
【2】高中物理必修二知识点的总结【5】高中物理电场的知识点的总结
【3】高中物理力的知识点的总结【6】高中物理知识点及公式总结


  高中物理必修一知识点的总结

  第一章运动的描述

  一、基本概念

  1、质点

  2、 参考系

  3、坐标系

  4、时刻和时间间隔

  5、路程:物体运动轨迹的长度

  6、位移:表示物体位置的变动。可用从起点到末点的有向线段来表示,是矢量。位移的大小小于或等于路程。

  7、速度:

  物理意义:表示物体位置变化的快慢程度。

  分类平均速度:方向与位移方向相同

  瞬时速度:

  与速率的区别和联系速度是矢量,而速率是标量

  平均速度=位移/时间,平均速率=路程/时间

  瞬时速度的大小等于瞬时速率

  8、加速度

  物理意义:表示物体速度变化的快慢程度

  定义:(即等于速度的变化率)

  方向:与速度变化量的方向相同,与速度的方向不确定。(或与合力的方向相同)

  二、运动图象(只研究直线运动)

  1、x—t图象(即位移图象)

  (1)、纵截距表示物体的初始位置。

  (2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体静止,曲线表示物体作变速直线运动。

  (3)、斜率表示速度。斜率的绝对值表示速度的大小,斜率的正负表示速度的方向。

  2、v—t图象(速度图象)

  (1)、纵截距表示物体的初速度。

  (2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体作匀速直线运动,曲线表示物体作变加速直线运动(加速度大小发生变化)。

  (3)、纵坐标表示速度。纵坐标的绝对值表示速度的大小,纵坐标的正负表示速度的方向。

  (4)、斜率表示加速度。斜率的绝对值表示加速度的大小,斜率的正负表示加速度的方向。

  (5)、面积表示位移。横轴上方的面积表示正位移,横轴下方的面积表示负位移。

  三、实验:用打点计时器测速度

  1、两种打点即使器的异同点

  2、纸带分析;

  (1)、从纸带上可直接判断时间间隔,用刻度尺可以测量位移。

  (2)、可计算出经过某点的瞬时速度

  (3)、可计算出加速度

  第二章匀变速直线运动的研究

  一、基本关系式v=v0+at

  x=v0t+1/2at2

  v2-vo2=2ax

  v=x/t=(v0+v)/2

  二、推论

  1、 vt/2=v=(v0+v)/2

  2、vx/2=

  3、△x=at2 { xm-xn=(m-n)at2}

  4、初速度为零的匀变速直线运动的比例式

  应用基本关系式和推论时注意:

  (1)、确定研究对象在哪个运动过程,并根据题意画出示意图。

  (2)、求解运动学问题时一般都有多种解法,并探求最佳解法。

  三、两种运动特例

  (1)、自由落体运动:v0=0 a=g v=gt h=1/2gt2 v2=2gh

  (2)、竖直上抛运动;v0=0 a=-g

  四、关于追及与相遇问题

  1、寻找三个关系:时间关系,速度关系,位移关系。两物体速度相等是两物体有最大或最小距离的临界条件。

  2、处理方法:物理法,数学法,图象法。

  五、理解伽俐略科学研究过程的基本要素。

  第三章相互作用

  一、三种常见的力

  1、重力:由于地球对物体的吸引而产生的。大小:G=mg,方向:竖直向下,作用点:重心(重力的等效作用点)

  2、弹力

  (1)、形变、弹性形变、定义等。

  (2)、产生条件:

  (3)、拉力、支持力、压力。(按照力的作用效果来命名的)

  (4)、弹簧的'弹力的大小和方向,胡克定律F=kx

  (5)、可用假设法来判断是否存在弹力。

  3、摩擦力

  (1)、静摩擦力:

  ①、产生条件

  ②、方向判断

  ③、大小要用“力的平衡”或“牛顿运动定律”来解。

  (2)滑动摩擦力:

  ①、产生条件

  ②、方向判断

  ③、大小:f=uN。也可用“力的平衡”或“牛顿运动定律”来解。

  (3)、可用假设法来判断是否存在摩擦力。

  二、力的合成

  1、定义;由分力求合力的过程。

  2、合成法则:平行四边形定则或三角形定则。

  3、求合力的方法

  ①、作图法(用刻度尺和量角器)

  ②、计算法(通常是利用直角三角形)

  2、合力与分力的大小关系

  三、力的分解

  1、分解法则:平行四边形定则或三角形定则、

  2、分解原则:按照实际作用效果分解(即已知两分力的方向)

  3、把一个已知力分解为两个分力

  ①、已知两个分力的方向,求两个分力的大小。(解是唯一的)

  ②、已知一个分力的大小和方向,求另一个分力的大小和方向,(解是唯一的)

  (注意:通过作平行四边形或三角形判断)

  4、合力和分力是“等效替代”的关系。

  三、实验:探究求合力的方法(或“验证平行四边形定则”)

  第四章牛顿运动定律

  一、牛顿第一定律

  1、内容:(揭示物体不受力或合力为零的情形)

  2、两个概念:

  ①、力

  ②、惯性:(一切物体都具有惯性,质量是惯性大小的唯一量)

  二、牛顿第二定律

  1、内容:(不能从纯数学的角度表述)

  2、公式:F合=ma

  3、理解牛顿第二定律的要点:

  ①、式中F是物体所受的一切外力的合力。

  ②、矢量性

  ③、瞬时性

  ④、独立性

  ⑤、相对性

  三、牛顿第三定律

  作用力和反作用力的概念

  1、内容

  2、作用力和反作用力的特点:

  ①等值、反向、共线、异点

  ②瞬时对应

  ③性质相同

  ④各自产生其作用效果

  3、一对相互作用力与一对平衡力的异同点

  四、力学单位制

  1、力学基本物理量:长度(l)质量(m)时间(t)

  力学基本单位:米(m)千克(kg)秒(s)

  2、应用:用单位判断结果表达式,能肯定错误(但不能肯定正确)

  五、动力学的两类问题。

  1、已知物体的受力情况,求物体的运动情况(v0 v t x )

  2、已知物体的运动情况,求物体的受力情况( F合或某个分力)

  3、应用牛顿第二定律解决问题的一般思路

  (1)明确研究对象。

  (2)对研究对象进行受力情况分析,画出受力示意图。

  (3)建立直角坐标系,以初速度的方向或运动方向为正方向,与正方向相同的力为正,与正方向相反的力为负。在Y轴和X轴分别列牛顿第二定律的方程。

  (4)解方程时,所有物理量都应统一单位,一般统一为国际单位。

  4、分析两类问题的基本方法

  (1)抓住受力情况和运动情况之间联系的桥梁——加速度。

  (2)分析流程图

  六、平衡状态、平衡条件、推论

  1、处理方法:解三角形法(合成法、分解法、相似三角形法、封闭三角形法)和正交分解法

  2、若物体受三力平衡,封闭三角形法最简捷。若物体受四力或四力以上平衡,用正交分解法

  七、超重和失重

  1、超重现象和失重现象

  2、超重指加速度向上(加速上升和减速下降),超了ma;失重指加速度向下(加速下降和减速上升),失ma。

  返回目录>>>

  高中物理必修二知识点的总结

  第六章 万有引力与航天

  万有引力定律

  1、内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比、

  2、公式:F=Gr2m1m2,其中G=6.67×10-11 N·m2/kg2,称为引力常量、

  3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离、对于均匀的球体,r是两球心间的距离、

  万有引力定律的应用

  1、解决天体(卫星)运动问题的基本思路

  (1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式:Gr2Mm=mrv2=mω2r=mT2π2r.

  (2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=GR2Mm,gR2=GM.

  2、天体质量和密度的估算通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即Gr2Mm=mT24π2r,得出天体质量M=GT24π2r3.

  (1)若已知天体的半径R,则天体的密度ρ=VM=πR34=GT2R33πr3

  (2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=GT23π可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度、

  3、人造卫星

  (1)研究人造卫星的基本方法:看成匀速圆周运动,其所需的向心力由万有引力提供、Gr2Mm=mrv2=mrω2=mrT24π2=ma向、

  (2)卫星的线速度、角速度、周期与半径的关系

  ①由Gr2Mm=mrv2得v=rGM,故r越大,v越小、

  ②由Gr2Mm=mrω2得ω=r3GM,故r越大,ω越小、

  ③由Gr2Mm=mrT24π2得T=GM4π2r3,故r越大,T越大

  (3)人造卫星的超重与失重

  ①人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动,这两个过程加速度方向均向上,因而都是超重状态、

  ②人造卫星在沿圆轨道运动时,由于万有引力提供向心力,所以处于完全失重状态、在这种情况下凡是与重力有关的力学现象都会停止发生、

  (4)三种宇宙速度

  ①第一宇宙速度(环绕速度)v1=7.9 km/s.这是卫星绕地球做圆周运动的最大速度,也是卫星的最小发射速度、若7.9 km/s≤v<11.2 km/s,物体绕地球运行、

  ②第二宇宙速度(脱离速度)v2=11.2 km/s.这是物体挣脱地球引力束缚的最小发射速度、若11.2 km/s≤v<16.7 km/s,物体绕太阳运行、

  ③第三宇宙速度(逃逸速度)v3=16.7 km/s这是物体挣脱太阳引力束缚的最小发射速度、若v≥16.7 km/s,物体将脱离太阳系在宇宙空间运行、

  题型:

  1、求星球表面的重力加速度在星球表面处万有引力等于或近似等于重力,则:GR2Mm=mg,所以g=R2GM(R为星球半径,M为星球质量)、由此推得两个不同天体表面重力加速度的关系为:g2g1=R12R22·M2M1.

  2、求某高度处的重力加速度若设离星球表面高h处的重力加速度为gh,则:G(R+h)2Mm=mgh,所以gh=(R+h)2GM,可见随高度的增加重力加速度逐渐减小、ggh=(R+h)2R2.

  3、近地卫星与同步卫星

  (1)近地卫星其轨道半径r近似地等于地球半径R,其运动速度v=RGM==7.9 km/s,是所有卫星的最大绕行速度;运行周期T=85 min,是所有卫星的最小周期;向心加速度a=g=9.8 m/s2是所有卫星的最大加速度、

  (2)地球同步卫星的五个“一定”

  ①周期一定T=24 h. ②距离地球表面的高度(h)一定③线速度(v)一定④角速度(ω)一定

  ⑤向心加速度(a)一定

  第七章 机械能守恒定律

  功、功率、机械能和能源

  1.做功两要素:力和物体在力的方向上发生位移

  2.功:功是标量,只有大小,没有方向,但有正功和负功之分,单位为焦耳(J)

  3.物体做正功负功问题(将α理解为F与V所成的角,更为简单)

  (1)当α=90度时,W=0.这表示力F的方向跟位移的方向垂直时,力F不做功,如小球在水平桌面上滚动,桌面对球的支持力不做功。

  (2)当α<90度时,cosα>0,W>0.这表示力F对物体做正功。

  如人用力推车前进时,人的推力F对车做正功。

  (3)当α大于90度小于等于180度时,cosα<0,W<0.这表示力F对物体做负功。

  如人用力阻碍车前进时,人的推力F对车做负功。

  一个力对物体做负功,经常说成物体克服这个力做功(取绝对值)。

  例如,竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J的功,可以说成球克服重力做了6J的功。说了“克服”,就不能再说做了负功

  4.动能是标量,只有大小,没有方向。表达式

  5.重力势能是标量,表达式

  (1)重力势能具有相对性,是相对于选取的参考面而言的。因此在计算重力势能时,应该明确选取零势面。

  (2)重力势能可正可负,在零势面上方重力势能为正值,在零势面下方重力势能为负值。

  6.动能定理:

  W为外力对物体所做的总功,m为物体质量,v为末速度,为初速度

  解答思路:

  ①选取研究对象,明确它的运动过程。

  ②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和。

  ③明确物体在过程始末状态的动能和。

  ④列出动能定理的方程。

  7.机械能守恒定律:(只有重力或弹力做功,没有任何外力做功。)

  解题思路:

  ①选取研究对象----物体系或物体

  ②根据研究对象所经历的物理过程,进行受力,做功分析,判断机械能是否守恒。

  ③恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能。

  ④根据机械能守恒定律列方程,进行求解。

  8.功率的表达式:,或者P=FV功率:描述力对物体做功快慢;是标量,有正负

  9.额定功率指机器正常工作时的最大输出功率,也就是机器铭牌上的标称值。

  实际功率是指机器工作中实际输出的功率。机器不一定都在额定功率下工作。实际功率总是小于或等于额定功率。

  10、能量守恒定律及能量耗散

  能量的转化与守恒

  1.化学能:由于化学反应,物质的分子结构变化而产生的能量。

  2.核能:由于核反应,物质的原子结构发生变化而产生的能量。

  3.能量守恒定律:能量既不会消灭,也不会创生,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而能的总量保持不变。

  ●内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。

  即

  E机械能1+E其它1=E机械能2+E其它2

  ●能量耗散:无法将释放能量收集起来重新利用的现象叫能量耗散,它反映了自然界中能量转化具有方向性。

  能源与社会

  1.可再生能源:可以长期提供或可以再生的能源。

  2.不可再生能源:一旦消耗就很难再生的能源。

  3.能源与环境:合理利用能源,减少环境污染,要节约能源、开发新能源。

  开发新能源

  1.太阳能

  2.核能

  3.核能发电

  4、其它新能源:地热能、潮汐能、风能。

  能源的分类和能量的转化

  能源品种繁多,按其来源可以分为三大类:一是来自地球以外的太阳能,除太阳的辐射能之外,煤炭、石油、天然气、水能、风能等都间接来自太阳能;第二类来自地球本身,如地热能,原子核能(核燃料铀、钍等存在于地球自然界);第三类则是由月球、太阳等天体对地球的引力而产生的能量,如潮汐能。

  【一次能源】指在自然界现成存在,可以直接取得且不必改变其基本形态的能源,如煤炭、天然气、地热、水能等。由一次能源经过加工或转换成另一种形态的能源产品,如电力、焦炭、汽油、柴油、煤气等属于二次能源。

  【常规能源】也叫传统能源,就是指已经大规模生产和广泛利用的能源。表2-1所统计的几种能源中如煤炭、石油、天然气、核能等都属一次性非再生的常规能源。而水电则属于再生能源,如葛洲坝水电站和未来的三峡水电站,只要长江水不干涸,发电也就不会停止。煤和石油天然气则不然,它们在地壳中是经千百万年形成的(按现在的采用速率,石油可用几十年,煤炭可用几百年),这些能源短期内不可能再生,因而人们对此有危机感是很自然的。

  【新能源】指以新技术为基础,系统开发利用的能源。其中最引人注目的'是太阳能的利用。据估计太阳辐射到地球表面的能量是目前全世界能量消费的1.3万倍。如何把这些能量收集起来为我们所用,是科学家们十分关心的问题。植物的光合作用是自然界“利用”太阳能极为成功的范例。它不仅为大地带来了郁郁葱葱的森林和养育万物的粮菜瓜果,地球蕴藏的煤、石油、天然气的起源也与此有关。寻找有效的光合作用的模拟体系、利用太阳能使水分解为氢气和氧气及直接将太阳能转变为电能等都是当今科学技术的重要课题,一直受到各国政府和工业界的支持与鼓励。

  以上是从能源的使用进行分类的方法,若从物质运动的形式看,不同的运动形式,各有对应的能量,如机械能(包括动能和势能)、热能、电能、光能等等。各种形式的能量可以互相转化,如动能可与势能互相转化(建筑工地打夯的落锤的上、下运动所包括的能量转化过程);化学能可与电能互相转化(化学电池和电解就是实现这种转化的两种过程)。在能量相互转化过程中,尽管做功的效率因所用工具或技术不同而有差别,但是折算成同种能量时,其总值却是不变的,这就是能量转化和能量守恒定律,这是自然界中一条极为基本的定律(另一条为质量守恒定律),也是识破各式各样永动机的有力判据。在能量转化过程过中,未能做有用功的部分称为“无用功”,通常以热的形式表现。

  物质体系中,分子的动能、势能、电子能量和核能等的总和称为内能。内能的绝对值至今尚无法直接测定,但体系状态发生变化时,内能的变化以功或热的形式表现,它们是可以被精确测量的。体系的内能、热效应和功之间的关系式为:

  △E=Q+W

  其中△E是体系内能的变化,Q是体系从外界吸收的热量,W是外界对体系所做的功。这就是著名的热力学第一定律的数学表达式,也就是能量守恒定律的数学表达式。应用上述公式时,要注意各种物理量的正、负号,即:

  △E──(+)体系内能增加, (-)体系内能体系减少;

  Q──(+)体系吸收热量, (-)体系放出能量;

  W──(+)外界对体系做功, (-)体系对外界做功。

  例如1.00 g乙醇在78.3℃时气化,需吸收 854 J的热,这些乙醇由液态变成气态,在101 kPa压力下所做的体积膨胀功为63.2J,这是体系对外界所做的功,应为负值,所以该体系内能的变化△E=[854+(- 63.2)]J=+791J,△E为正值,即体系内能增加了791J。

  能源的利用,其实就是能量的转化过程。如煤燃烧放热使蒸汽温度升高的过程就是化学能转化为蒸汽内能的过程;高温蒸汽推动发电机发电的过程是内能转化为电能的过程;电能通过电动机可转化为机械能;电能通过白炽灯泡或荧光灯管可转化为光能;电能通过电解槽可转化为化学能等等。柴草、煤炭、石油和天然气等常用能源所提供的能量都是随化学变化而产生的,多种新能源的利用也与化学变化有关。化学变化的实质是化学键的改组,所以了解化学键及键能等基本概念,将有助于加深对能源问题的认识。

  返回目录>>>

  高中物理力的知识点的总结

  一、重力势能

  1.电势能的概念

  (1)电势能

  电荷在电场中具有的势能。

  (2)电场力做功与电势能变化的关系

  在电场中移动电荷时电场力所做的功在数值上等于电荷电势能的减少量,即WAB=εA-εB。

  ①当电场力做正功时,即WAB>0,则εA>εB,电势能减少,电势能的减少量等于电场力所做的功,即Δε减=WAB。

  ②当电场力做负功时,即WAB<0,则εA<εB,电势能在增加,增加的电势能等于电场力做功的绝对值,即Δε增=εB-εA=-WAB=|WAB|,但仍可以说电势能在减少,只不过电势能的减少量为负值,即ε减=εA-εB=WAB。

  说明:某一物理过程中其物理量的增加量一定是该物理量的末状态值减去其初状态值,减少量一定是初状态值减去末状态值。

  (3)零电势能点

  在电场中规定的任何电荷在该点电势能为零的点。理论研究中通常取无限远点为零电势能点,实际应用中通常取大地为零电势能点。

  说明:

  ①零电势能点的选择具有任意性。

  ②电势能的数值具有相对性。

  ③某一电荷在电场中确定两点间的电势能之差与零电势能点的选取无关。

  2.电势的概念

  (1)定义及定义式

  电场中某点的电荷的电势能跟它的电量比值,叫做这一点的电势。

  (2)电势的单位:伏(V)。

  (3)电势是标量。

  (4)电势是反映电场能的性质的物理量。

  (5)零电势点

  规定的电势能为零的点叫零电势点。理论研究中,通常以无限远点为零电势点,实际研究中,通常取大地为零电势点。

  (6)电势具有相对性

  电势的数值与零电势点的选取有关,零电势点的选取不同,同一点的电势的数值则不同。

  (7)顺着电场线的方向电势越来越低。电场强度的方向是电势降低最快的方向。

  (8)电势能与电势的关系:ε=qU。

  二、重力及其相互作用

  1、力是物体之间的相互作用,有力必有施力物体和受力物体。力的大小、方向、作用点叫力的三要素。用一条有向线段把力的三要素表示出来的方法叫力的图示。

  按照力命名的依据不同,可以把力分为:

  ①按性质命名的力(例如:重力、弹力、摩擦力、分子力、电磁力等。)

  ②按效果命名的力(例如:拉力、压力、支持力、动力、阻力等)。

  力的作用效果:

  ①形变;

  ②改变运动状态。

  2、重力:

  由于地球的吸引而使物体受到的力。重力的大小G=mg,方向竖直向下。作用点叫物体的重心;重心的位置与物体的质量分布和形状有关。质量均匀分布,形状规则的物体的重心在其几何中心处。薄板类物体的重心可用悬挂法确定。

  注意:重力是万有引力的一个分力,另一个分力提供物体随地球自转所需的向心力,在两极处重力等于万有引力。由于重力远大于向心力,一般情况下近似认为重力等于万有引力。

  3、四种基本相互作用

  万用引力相互作用、电磁相互作用、强相互作用、弱相互作用

  三、弹力:

  (1)内容:发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形变的物体产生力的.作用,这种力叫弹力。

  (2)条件:

  ①接触;

  ②形变。但物体的形变不能超过弹性限度。

  (3)弹力的方向和产生弹力的那个形变方向相反。(平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过研究点的曲面的切面;点面接触处产生的弹力,其方向垂直于面、绳子产生的弹力的方向沿绳子所在的直线。)

  (4)大小:

  ①弹簧的弹力大小由F=kx计算

  ②一般情况弹力的大小与物体同时所受的其他力及物体的运动状态有关,应结合平衡条件或牛顿定律确定。

  四、滑动摩擦力

  1、两个相互接触的物体有相对滑动时,物体之间存在的摩擦叫做滑动摩擦。

  2、在滑动摩擦中,物体间产生的阻碍物体相对滑动的作用力,叫做滑动摩擦力。

  3、滑动摩擦力f的大小跟正压力N(≠G)成正比。即:f=μN

  4、μ称为动摩擦因数,与相接触的物体材料和接触面的粗糙程度有关。0<μ<1。

  5、滑动摩擦力的方向总是与物体相对滑动的方向相反,与其接触面相切。

  6、条件:直接接触、相互挤压(弹力),相对运动/趋势。

  7、摩擦力的大小与接触面积无关,与相对运动速度无关。

  8、摩擦力可以是阻力,也可以是动力。

  9、计算:公式法/二力平衡法。

  五、研究静摩擦力

  1、当物体具有相对滑动趋势时,物体间产生的摩擦叫做静摩擦,这时产生的摩擦力叫静摩擦力。

  2、物体所受到的静摩擦力有一个最大限度,这个最大值叫最大静摩擦力。

  3、静摩擦力的方向总与接触面相切,与物体相对运动趋势的方向相反。

  4、静摩擦力的大小由物体的运动状态以及外部受力情况决定,与正压力无关,平衡时总与切面外力平衡。0≤F=f0≤fm

  5、最大静摩擦力的大小与正压力接触面的粗糙程度有关。fm=μ0·N(μ≤μ0)

  6、静摩擦有无的判断:概念法(相对运动趋势);二力平衡法;牛顿运动定律法;假设法(假设没有静摩擦)。

  六、摩擦力

  (1)产生的条件:

  相互接触的物体间存在压力;接触面不光滑;接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力)这三点缺一不可。

  (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反。

  (3)判断静摩擦力方向的方法:

  ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同。然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向。

  ②平衡法:根据二力平衡条件可以判断静摩擦力的方向。

  (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解。

  ①滑动摩擦力大小:利用公式f=μFN进行计算,其中FN是物体的正压力,不一定等于物体的重力,甚至可能和重力无关。或者根据物体的运动状态,利用平衡条件或牛顿定律来求解。

  ②静摩擦力大小:静摩擦力大小可在0与fmax之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解。

  总结

  1、重力

  由于地球的吸引而使物体受到的力叫做重力。物体受到的重力G与物体质量m的关系是G=mg,g称为重力加速度或自由落体加速度,与物体所处位置的高低和纬度有关。重力的方向竖直向下,在南北极或赤道上指向地心。物体各部分受到重力的等效作用点叫做重心,重心位置与物体的形状和质量分布有关。

  2、万有引力

  存在于自然界任何两个物体之间的力。万有引力F与两个物体的质量m1 、m2和它们之间距离r的关系是,G称为引力常量,适用于任何两个物体,其大小通常取。 万有引力的方向在两物体的连线上。

  3、弹力

  发生弹性形变的物体,由于要恢复原状而对与它接触的物体产生的力。弹簧的弹力F与其形变量x之间的关系是F=kx,k称为弹簧的劲度系数,单位为N/m,与弹簧的长短、粗细、材料和横截面积等因素有关。弹力的方向与形变的方向相反。弹簧都有弹性限度,超过弹性限度后,前述力与形变量的关系不再成立。

  4、静摩擦力

  两个相互接触的物体,当它们发生相对运动或具有相对运动的趋势时,在接触面产生阻碍相对运动或相对运动趋势的力叫做摩擦力。当两个物体间只有相对运动的趋势,而没有相对运动,这时的摩擦力叫做静摩擦力。两个物体间的静摩擦力有一个限度,两个物体刚刚开始相对运动时,它们之间的摩擦力称为最大静摩擦力。两个物体间实际发生的静摩擦力F在0和最大静摩擦力Fmax之间。静摩擦力的方向总是沿着接触面,并且跟物体相对运动趋势的方向相反。

  5、滑动摩擦力

  当一个物体在另一个物体表面滑动时,受到另一个物体阻碍它滑动的力。滑动摩擦力的大小跟压力(两个物体表面间的垂直作用力)成正比。滑动摩擦力f与压力FN之间的关系是f=uFN,u称为动摩擦因数,与相互接触的两个物体的材料、接触面的情况有关。滑动摩擦力的方向总是沿着接触面,并且跟物体的相对运动方向相反。

  6、静电力

  静止的点电荷之间的力。静电力F与两个点电荷q1、q2和它们之间的距离r的关系是,k称为静电力常量,其大小为。两个点电荷带同种电荷时,它们之间的作用力为斥力;两个点电荷带异种电荷时,它们之间的作用力为引力。静电力也称库仑力。

  7、电场力

  试探电荷(带电体)在电场中受到的力。电场力F与试探电荷的电荷量q之间的关系是F=Eq,E称为电场强度,大小由电场本身决定,方向与正电荷所受电场力的方向相同,其单位为N/C。

  8、安培力

  通电导线在磁场中受到的力。当直导线与匀强磁场方向垂直时,导线所受安培力F与导线中电流强度I,导线的长度L,磁感应强度B之间的关系是F=BIL。安培力的方向可由左手定则确定。

  9、洛伦兹力

  带电粒子在磁场中运动时受到的力。当粒子运动的方向与磁感应强度方向垂直时,粒子所受的洛伦兹力与粒子的电荷量q,粒子运动的速度v,磁感应强度B之间的关系是F=qvB。安培力的方向可由左手定则确定。安培力是大量带电粒子所受洛伦兹力的宏观表现。

  10、分子力

  存在于分子间的作用力。分子力比较复杂,分子间同时存在着引力和斥力,当分子间距离为r0时,引力与斥力的合力为0,当r>r0时合力表现为引力,r

  11、核力

  存在于原子核内核子之间的一种力。核力是强相互作用的一种表现,在原子核尺度内,核力比库仑力大的多;核力是短程力,作用范围在之内。

  重力的本质是万有引力,是物体和地球之间万有引力的具体化,若不考虑地球自转的影响,地面上的物体所受的重力等于地球对物体的引力。弹力、摩擦力、静电力、电场力、安培力、洛伦兹力的本质是电磁相互作用。核力是一种强相互作用。还有一种基本相互作用称为弱相互作用,弱相互作用与放射现象有关。四种基本相互作用构筑了力的体系。

  返回目录>>>

  高中物理磁场的知识点的总结

  1、磁现象:

  磁性:物体能够吸引钢铁、钴、镍一类物质的性质叫磁性。

  磁体:具有磁性的物体,叫做磁体。

  磁体的分类:

  ①形状:条形磁体、蹄形磁体、针形磁体;

  ②来源:天然磁体(磁铁矿石)、人造磁体;

  ③保持磁性的时间长短:硬磁体(永磁体)、软磁体。

  磁极:磁体上磁性最强的部分叫磁极。磁体两端的磁性最强,中间的磁性最弱。

  磁体的指向性:可以在水平面内自由转动的条形磁体或磁针,静止后总是一个磁极指南(叫南极,用S表示),另一个磁极指北(叫北极,用N表示)。

  磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引。

  无论磁体被摔碎成几块,每一块都有两个磁极。

  磁化:一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。

  钢和软铁都能被磁化:软铁被磁化后,磁性很容易消失,称为软磁性材料;钢被磁化后,磁性能长期保持,称为硬磁性材料。所以钢是制造永磁体的好材料。

  2、磁场:

  磁场:磁体周围的空间存在着一种看不见、摸不着的物质,我们把它叫做磁场。

  磁场的基本性质:对放入其中的磁体产生磁力的作用。

  磁场的方向:物理学中把小磁针静止时北极所指的'方向规定为该点磁场的方向。

  磁感线:在磁场中画一些有方向的曲线,方便形象的描述磁场,这样的曲线叫做磁感线。对磁感线的认识:

  ①磁感线是假想的曲线,本身并不存在;

  ②磁感线切线方向就是磁场方向,就是小磁针静止时N极指向;

  ③在磁体外部,磁感线都是从磁体的N极出发,回到S极。在磁体内部正好相反。

  ④磁感线的疏密可以反应磁场的强弱,磁性越强的地方,磁感线越密;

  3、地磁场:

  地磁场:地球本身是一个巨大的磁体,在地球周围的空间存在着磁场,叫做地磁场。

  指南针:小磁针指南的叫南极(S),指北的叫北极(N),小磁针能够指南北是因为受到了地磁场的作用。地磁场的北极在地理南极附近;地磁场的南极在地理北极附近。

  地磁偏角:地理的两极和地磁的两极并不重合,磁针所指的南北方向与地理的南北极方向稍有偏离(地磁偏角),世界上最早记述这一现象的人是我国宋代的学者沈括。

  返回目录>>>

  高中物理电场的知识点的总结

  1.两种电荷

  (1)自然界中存在两种电荷:正电荷与负电荷

  (2)电荷守恒定律

  2.库仑定律

  (1)内容:在真空中两个点电荷间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在它们的连线上.

  (2)适用条件:真空中的点电荷.

  点电荷是一种理想化的模型.如果带电体本身的线度比相互作用的带电体之间的距离小得多,以致带电体的体积和形状对相互作用力的影响可以忽略不计时,这种带电体就可以看成点电荷,但点电荷自身不一定很小,所带电荷量也不一定很少.

  3.电场强度、电场线

  (1)电场:带电体周围存在的一种物质,是电荷间相互作用的媒体.电场是客观存在的,电场具有力的特性和能的特性.

  (2)电场强度:放入电场中某一点的电荷受到的电场力跟它的电荷量的比值,叫做这一点的电场强度.定义式:

  E=F/q方向:正电荷在该点受力方向.

  (3)电场线:在电场中画出一系列的从正电荷出发到负电荷终止的曲线,使曲线上每一点的切线方向都跟该点的场强方向一致,这些曲线叫做电场线.电场线的性质:

  ①电场线是起始于正电荷(或无穷远处),终止于负电荷(或无穷远处);

  ②电场线的疏密反映电场的强弱;

  ③电场线不相交;

  ④电场线不是真实存在的;

  ⑤电场线不一定是电荷运动轨迹.

  (4)匀强电场:在电场中,如果各点的场强的大小和方向都相同,这样的电场叫匀强电场.匀强电场中的电场线是间距相等且互相平行的直线.

  (5)电场强度的叠加:电场强度是矢量,当空间的电场是由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和.

  4.电势差U:电荷在电场中由一点A移动到另一点B时,电场力所做的功WAB与电荷量q的比值WAB/q叫做AB两点间的电势差.公式:UAB=WAB/q电势差有正负:UAB=-UBA,一般常取绝对值,写成U.

  5.电势φ:电场中某点的电势等于该点相对零电势点的电势差.

  (1)电势是个相对的量,某点的电势与零电势点的.选取有关(通常取离电场无穷远处或大地的电势为零电势).因此电势有正、负,电势的正负表示该点电势比零电势点高还是低.

  (2)沿着电场线的方向,电势越来越低.

  6.电势能:电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处(电势为零处)电场力所做的功ε=qU

  7.等势面:电场中电势相等的点构成的面叫做等势面.

  (1)等势面上各点电势相等,在等势面上移动电荷电场力不做功.

  (2)等势面一定跟电场线垂直,而且电场线总是由电势较高的等势面指向电势较低的等势面.

  (3)画等势面(线)时,一般相邻两等势面(或线)间的电势差相等.这样,在等势面(线)密处场强大,等势面(线)疏处场强小.

  8.电场中的功能关系

  (1)电场力做功与路径无关,只与初、末位置有关.

  计算方法有:由公式W=qEcosθ计算(此公式只适合于匀强电场中),或由动能定理计算.

  (2)只有电场力做功,电势能和电荷的动能之和保持不变.

  (3)只有电场力和重力做功,电势能、重力势能、动能三者之和保持不变.

  9.静电屏蔽:处于电场中的空腔导体或金属网罩,其空腔部分的场强处处为零,即能把外电场遮住,使内部不受外电场的影响,这就是静电屏蔽.

  10.带电粒子在电场中的运动

  (1)带电粒子在电场中加速

  带电粒子在电场中加速,若不计粒子的重力,则电场力对带电粒子做功等于带电粒子动能的增量.

  (2)带电粒子在电场中的偏转

  带电粒子以垂直匀强电场的场强方向进入电场后,做类平抛运动.垂直于场强方向做匀速直线运动

  (3)是否考虑带电粒子的重力要根据具体情况而定.一般说来:

  ①基本粒子:如电子、质子、α粒子、离子等除有说明或明确的暗示以外,一般都不考虑重力(但不能忽略质量).

  ②带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示以外,一般都不能忽略重力.

  (4)带电粒子在匀强电场与重力场的复合场中运动

  由于带电粒子在匀强电场中所受电场力与重力都是恒力,因此可以用两种方法处理:

  ①正交分解法;

  ②等效“重力”法.

  11.示波管的原理:示波管由电子枪,偏转电极和荧光屏组成,管内抽成真空.如果在偏转电极--′上加扫描电压,同时加在偏转电极YY′上所要研究的信号电压,其周期与扫描电压的周期相同,在荧光屏上就显示出信号电压随时间变化的图线.

  12.电容定义:电容器的带电荷量跟它的两板间的电势差的比值

  [注意]电容器的电容是反映电容本身贮电特性的物理量,由电容器本身的介质特性与几何尺寸决定,与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关。

  (3)单位:法拉(F),1F=106μF,1μF=106pF.

  13、稳恒电流

  电流---

  (1)定义:电荷的定向移动形成电流.

  (2)电流的方向:规定正电荷定向移动的方向为电流的方向.

  在外电路中电流由高电势点流向低电势点,在电源的内部电流由低电势点流向高电势点(由负极流向正极).

  2.电流强度:------

  (1)定义:通过导体横截面的电量跟通过这些电量所用时间的比值,I=q/t

  (2)在国际单位制中电流的单位是安.1mA=10-3A,1μA=10-6A

  (3)电流强度的定义式中,如果是正、负离子同时定向移动,q应为正负离子的电荷量和.

  2.电阻--

  (1)定义:导体两端的电压与通过导体中的电流的比值叫导体的电阻

  (2)定义式:R=U/I,单位:Ω

  (3)电阻是导体本身的属性,跟导体两端的电压及通过电流无关.

  3.电阻定律

  (1)内容:在温度不变时,导体的电阻R与它的长度L成正比,与它的横截面积S成反比.

  (2)公式:R=ρL/S.

  (3)适用条件:

  ①粗细均匀的导线;

  ②浓度均匀的电解液.

  4.电阻率:反映了材料对电流的阻碍作用.

  (1)有些材料的电阻率随温度升高而增大(如金属);有些材料的电阻率随温度升高而减小(如半导体和绝缘体);有些材料的电阻率几乎不受温度影响(如锰铜和康铜).

  (2)半导体:导电性能介于导体和绝缘体之间,而且电阻随温度的增加而减小,这种材料称为半导体,半导体有热敏特性,光敏特性,掺入微量杂质特性.

  (3)超导现象:当温度降低到绝对零度附近时,某些材料的电阻率突然减小到零,这种现象叫超导现象,处于这种状态的物体叫超导体。

  返回目录>>>

  高中物理知识点及公式总结

  一、质点的运动——直线运动

  匀变速直线运动:

  1.平均速度V平=s/t(定义式)

  2.有用推论Vt2-Vo2=2as

  3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

  5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2

  6.位移s=V平t=Vot+at2/2=Vt/2t

  7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

  8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

  9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

  自由落体运动:

  1.初速度Vo=0

  2.末速度Vt=gt

  3.下落高度h=gt2/2(从Vo位置向下计算)

  4.推论Vt2=2gh

  竖直上抛运动

  位移s=Vot-gt2/2

  2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)

  3.有用推论Vt2-Vo2=-2gs

  4.上升最大高度Hm=Vo2/2g(抛出点算起)

  5.往返时间t=2Vo/g (从抛出落回原位置的时间)

  二、质点的运动——曲线运动、万有引力

  平抛运动

  1.水平方向速度:Vx=Vo

  2.竖直方向速度:Vy=gt

  3.水平方向位移:x=Vot

  4.竖直方向位移:y=gt2/2

  5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

  6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

  合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

  7.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo

  8.水平方向加速度:ax=0;竖直方向加速度:ay=g

  匀速圆周运动

  1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf

  3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

  5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

  7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

  8.主要物理量及单位:弧长(s):(m);角度(Φ):弧度(rad);频率(f);赫(Hz);周期(T):秒(s);转速(n);r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

  万有引力

  1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

  2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

  3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

  4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

  5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

  6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

  三、力(常见的力、力的合成与分解)

  常见的力

  1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)

  2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

  3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

  4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)

  5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

  6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)

  7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

  8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

  9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

  力的.合成与分解

  1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

  2.互成角度力的合成:

  F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

  3.合力大小范围:|F1-F2|≤F≤|F1+F2|

  4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

  四、动力学(运动和力)

  1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

  2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

  3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

  4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}

  5.超重:FN>G,失重:FN

  6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子

  五、振动和波(机械振动与机械振动的传播)

  1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}

  2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}

  3.受迫振动频率特点:f=f驱动力

  4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用

  5.机械波、横波、纵波

  六、冲量与动量(物体的受力与动量的变化)

  1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}

  3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}

  4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}

  5.动量守恒定律:p前总=p后总或p=p’?也可以是m1v1+m2v2=m1v1?+m2v2?

  6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}

  7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}

  8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}

  9.物体m1以v1初速度与静止的物体m2发生弹性正碰:

  v1?=(m1-m2)v1/(m1+m2) v2?=2m1v1/(m1+m2)

  10.由9得的推论——-等质量弹性正碰时二者交换速度(动能守恒、动量守恒)

  11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失

  E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}

  七、功和能(功是能量转化的量度)

  1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}

  2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}

  3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}

  4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}

  5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}

  6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}

  7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)

  8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}

  9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}

  10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

  11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

  12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}

  13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}

  14.动能定理(对物体做正功,物体的动能增加):

  W合=mvt2/2-mvo2/2或W合=ΔEK

  {W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}

  15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

  16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP

  八、分子动理论、能量守恒定律

  1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米

  2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}

  3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。

  4.分子间的引力和斥力(1)r

  (2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)

  (3)r>r0,f引>f斥,F分子力表现为引力

  (4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0

  5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的)

  返回目录>>>

【高中物理知识点的总结】相关文章:

高中物理知识点总结07-11

高中物理的知识点总结02-07

高中物理知识点总结04-02

高中物理知识点总结04-19

高中物理知识点总结优秀05-25

高中物理必修一的知识点总结03-27

高中物理必修一知识点总结03-08

高中物理必修一知识点总结07-28

高中物理知识点总结15篇11-05