第六课时:比的意义
教学内容:课本第43~44页的内容,完成练习十一的第1、3题。
教学目的:使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。
重点难点:比的意义,求比值.理解并灵活掌握比与分数、除法的关系。
教学过程:
一、 展示学习目标:掌握比的意义和写法
二、 展示学习指导:
1、自学课本43页内容,
2、杨利伟展示的两面旗都是长15cm,宽10cm。怎样用算式表示它们的长和宽的关系?
生:15÷10 表示长是宽的几倍
10÷15 表示宽和长的比是什么?
3、怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?
生:42252÷90 表示飞船速度
我们可以用比来表示路程的时间的关系。
路程和时间的比是42252比90
4、什么是比?
总结,两个数相除又叫做两个数的比。
比的书写形式:
板书: 15比10 记作:15:10
10比15 记作:10:15
42252比90 记作:42252:90
“:” 是比号
1、 比值
师,在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
板书: 15:10=15÷10=3/2
强调:因为比值是比的前项除以后项所得的商,所以比值是一个数。比值通常用分数表示,也可以用小数或整数表示。
求比值
15:25 1/2÷1/3 0.5÷0.05
学生独立计算,求出比值
说说计算方法和结果
2、 分数、除法和比有什么样的关系?
生总结,师板书:
比 前项 比号“:” 后项 比值
除法 被除数 除号:“÷” 除数 商
分数 分子 分数线“-” 分母 分数值
师强调补充:根据比与除法、分数的关系,可以理解比的后项不能为0
五:当堂训练:
完成课本“做一做”
独立完成练习十一第1、3题。
第七课时:比的基本性质
教学内容:
比的基本性质,化简比。课本第45页的内容及第46页例1,完成“做一做”题和练习十一的第2、4~6题。
教学目的:
使学生理解比的基本性质,掌握化简比的方法。
重难点:
比的基本性质理解比与除法 分数的关系.
教学过程:
一、 展示学习目标:理解比的基本性质
二、 提出问题
1、分数约分根据什么性质?说一说分数的基本性质
2、把被除数和除数转化为整数,根据什么,说一说商不变的性质.
三 、教学比的基本性质。
1. 我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。
问:在比中有什么样的规律?
(1) 求比值
6:8 12:16
(2) 观察求比值的过程
6:8=6÷8=6/8=3/4
12:16=12÷16=12/16=3/4
从上面可以看出:
6:8=12:16
那么这里的前项和后项都有什么变化?
6:8=( )=12:16
学生不难发现:6:8=(6×2):(8×2)=12:16
(3) 说一说你的发现
比的前项和后项同时乘相同的数(0除外),比值不变
(4) 观察算式。(将前一个等式倒过来)
12:16=6:8
师:如果这样看,前项和后项又有什么变化?
学生不难发现其中的变化
演示:
12:16=( )=6:8
12:16=(12÷2):(16÷2)=6:8
(5) 说一说你的发现
比的前项和后项同时除以相同的数(0除外),比值不变
(6) 规纳规律
师:你能不能把上面两句话合成一句话?
学生交流后得出结果,教师板书
比的前项和后项同时乘或除以相同的数(0除外),比值不变,这就是比的基本性质。
问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)
2. 教学化简比。
利用比的基本性质,我们可以把比化成最简单的整数比。
出示例1:把下面各比化成最简单的整数比。
(1)
问:这道题的前项和后项都是什么数?怎样才能使它化成最简整数比?(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)
(2)
问:这是一道分数比,怎样才能使它转化成整数比?(引
导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)
化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。
(3)
问:这道是小数比,怎样化成整数比?(启发学生说出:可根据比的基本性质,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)
或
1. 小结:
问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?
三、巩固练习。
1. 完成“做一做”的题目。
让学生说一说化简的方法。
2. 练习十一第2、4、6题。