2.
教学内容:成正比例的量
教学目标:
1. 使学生理解正比例的意义,会正确判断成正比例的量。
2. 使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。
教学重点:正比例的意义。
教学难点:正确判断两个量是否成正比例的关系。
教学过程:
一揭示课题
1. 在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?
在教师的此导下,学生会举出一些简单的例子,如:
(1) 班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
(2) 送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。
(3) 上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
(4) 排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。
2.这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量
二探索新知
1. 教学例1
(1) 出示例题情境图。
问:你看到了什么?
生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。
(2)出示表格。
高度/㎝ 2 4 6 8 10 12
体积/㎝3 50 100 150 200 250 300
底面积/㎝2
问:你有什么发现?
学生不难发现:杯子的底面积不变,是25㎝2。
板书:
教师:体积与高度的比值一定。
(2) 说明正比例的意义。
① 在这一基础上,教师明确说明正比例的意义。
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。
② 学生读一读,说一说你是怎么理解正比例关系的。
要求学生把握三个要素:
第一, 两种相关联的量;
第二, 其中一个量增加,另一个量也增加; 一个量减少,另一个量也减少。
第三, 两个量的比值一定。
(3) 用字母表示。
如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:
(4) 想一想:
师:生活中还有哪些成正比例的量?
学生举例说明。如:
长方形的宽一定,面积和长成正比例。
每袋牛奶质量一定,牛奶袋数和总质量成正比例。
衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
地砖的面积一定,教室地板面积和地砖块数成正比例。
2. 教学例2。
(1) 出示表格(见书)
(2) 依据下表中的数据描点。(见书)
(3) 从图中你发现了什么?
这些点都在同一条直线上。
(4) 看图回答问题。
① 如果杯中水的高度是7㎝,那么水的体积是多少?
生:175㎝3。
② 体积是225㎝3的水,杯里水面高度是多少?
生:9㎝。
③ 杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?
生:水的体积是350㎝3,相对应的点一定在这条直线上。
(5) 你还能提出什么问题?有什么体会?
通过交流使学生了解成正比例量的图像特往。
3. 做一做。
过程要求:
(1) 读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?
比值表示每小时行驶多少千米。
(2) 表中的路程和时间成正比例吗?为什么?
成正比例。理由:
① 路程随着时间的变化而变化;
② 时间增加,路程也增加,时间减少,路程也随着减少;
③ 种程和时间的比值(速度)一定。
(3) 在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。
(4) 行驶120KM大约要用多少时间?
(5) 你还能提出什么问题?
4. 课堂小结
说一说成正比例关系的量的变化特征。
三巩固练习
完成课文练习七第1~5题。
教学内容:成反比例的量
教学目标:
1. 经历探索两种相关联的量的变化情况过程,发现规律,理解反比例的意义。
2. 根据反比例的意义,正确判断两种量是否成反比例。
教学重点:反比例的意义。新课标第一网
教学难点:正确判断两种量是否成反比例。
教学过程:
一导入新课
1. 让学生说一说成正比例的两种量的变化规律。
回答要点:
(1) 两种相关联的量;
(2) 一个量增加,另一个量也相应增加;一个量减少,另一个量也相应减少;
(3) 两个量的比值一定。
2. 举例说明。
如:每袋大米质量相同,大米的袋数与总质量成正比例。
理由:
(1) 每袋大米质量一定,大米的总质量随着袋数的变化而变化;
(2) 大米的袋数增加,大米的总质量也相应增加,大米的袋数减少,大米的总质量也相应减少;
(3) 总质量与袋数的比值一定。xkb1.com
所以,大米的袋数与总质量成正比例。
板书:
3. 揭示课题。
今天,我们一起来学习反比例。两种量是什么样的关系时,这两种量成反比例呢?
板书课题:成反比例的量
二探索新知
1. 教学例3。
(1) 出示课文例题情境图。
问:从图中你看到了什么?
① 把相同体积的水倒入底面积不同的杯子。
② 杯里水的高度不相同。
③ 杯子底面积小的,水的高度比较高,杯子底面积大的,水的高度比较低。
(2)出示表格。
高度/㎝ 30 20 15 10 5
底面积/㎝2 10 15 20 30 60
体积/㎝3
请学生认真观察表中数据的变化情况。
问:你有什么发现?
学生不难发现:底面积越大,水的高度越低,底面积越小,水的高度越高,而且高底和底面积的乘积(水的体积)一定。
教师板书配合说明这一规律:
30×10=20×15=15×20=……=300
(3)归纳反比例的意义。
在这一基础上,教师明确说明反比例的意义,并板书。
因为水的体积一定,所以水的高度随着底面积的变化而变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定。
板书出示:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
(4) 用字母表示。
如果用字母X和Y表示两种相关联的量,用K表示它们的乘积(一定),反比例关系的式子可以怎么表示?
学生探讨后得出结果。
X×Y=K(一定)
2. 想一想。
师:生活中还有哪些成反比例的量?
在教师的引导下,学生举例说明。如:xkb1.com
(1) 大米的质量一定,每袋质量和袋数成反比例。
(2) 教室地板面积一定,每块地砖的面积和块数成反比例。
(3) 长方形的面积一定,长和宽成反比例。
3. 你还有什么疑问?
如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察课文“你知道吗”中的图像。
(1) 反比例关系也可以用图像来表示。
(2) 表示两个量的点不在同一条直线上,点所连接起来是一条曲线。
(3) 图像特征不要求掌握。
4. 课堂小结。
说一说成反比例关系的量的变化特征。
三巩固练习
完成课文练习七第6~11题。
教学内容:练习课(一)
教学目标:
1. 使学生进一步理解反比例的意义,能正确判断两种量是否成反比例。
使学生能正确判断两种量是否成比例,成什么比例,提高学生的分析能力。
教学过程:
一、基础练习
1. 填一填,说一说。
(1) 每箱木瓜的个数一定,运来木瓜的箱数和木瓜总个数如下表。
箱数/箱 4 8 16 32
总个数/个 32 64
① 把表格填写完整,说一说你是怎么做的。
② 说一说箱数和总个数的变化情况。
③ 这里哪一个量不变?
④ 箱数和总个数成什么比例?
(2) 木瓜的总个数一定,每箱个数与所装的箱数情况如下表。
每箱个数 4 8 10 20
箱数 50 25
① 你能把表格填写完整吗?
② 说一说每箱个数和箱数的变化情况。
③ 这里哪一个量一定?
④ 每箱个数和箱数成什么比例?
(3) 看一本书,每天看的页数和所看天数的情况如下表。
每天看的页数 4 8 10 16 20
所看天数 80 40 32
① 把表格填写完整。
② 说一说你是怎么做的。
③ 这里哪一个量一定,你是怎么知道的?
④ 每天看的页数与所看天数有什么关系?说明理由。
(4)征订《XX学习报》,征订的份数与应付的钱数如下表。
征订份数/份 50 40 30 20 10
应付的钱数/元 1500 1200
① 请你把表格补充完整。
② 征订的份数与应付的钱数成什么比例?说明理由。
2. 正、反比例意义。
问:你是怎样判断两种量是否成正比例或反比例的?正反比例关系和反比例关系有什么不同?
过程要求:
(1) 学生独立思考,尝试归纳。
(2) 同学之间互相交流,学会表达。
(3) 全班交流。
使学生明确几个要点:
正比例:
① 两种相关联的量。
② 一种量增加,另一种量也相应增加;一种量减少,另一种量也相应减少。
③ 两种量的比值一定。
反比例:
① 两种相关联的量;
② 一种理增加,另一种量反而减少;一种量减少,另一种量反而增加;
③ 两种量的乘积一定。
二综合练习
判断下面各题中两种量是否成下比例或反比例。
(1)每袋面粉的质量一字,面粉的总质量和袋数。( )
(2)一个人的年龄和体重。( )
(3)长方形的周长和宽。( )
(4)长方形的长一定,面积与宽。( )
(5)三角形的高一定,面积与底。( )
(6)圆的面积与半径。( )
过程要求:
(1) 逐一出示以上各题。
(2) 学生判断,并说明理由。
(3) 教师小结。(方法,关键)
教学内容:练习课(二)
教学目标:
通过比较,使学生进一步理解正比例和反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能够正确地判断正、反比例的关系,进一步发展学生的分析、比较、抽象、概括等能力。
教学过程:
一、复习
判断下面每题中的两种量是成正比例还是成反比例?
1、速度一定,路程和时间。
2、正方形的边长和它的面积。
3、生产总时间一定,生产一个零件所用时间和零件总数。
4、中国儿童报的订数和钱数。xkb1.com
二、引导练习
这节课我们要通过比较弄清成正、反比例的量有什么相同点和不同点。
板书课题:正、反比例的比较
出示表格。
表一:
路程/千米 40 80 160 200 320
时间/时 1 2 4 5 8
表二
速度/每时行多少千米 120 90 60 40 30
时间/时 3 4 6 9 12
1、说一说。
提问:从表1中,你怎样发现速度是一定的?根据什么判断路程和时间成正比例?从表2中,你怎样发现路程是一定的?根据什么判断速度和时间成反比例?
2、想一想:路程、速度和时间这三个量中每两个量之间有什么样的比例关系?师板书:速度×时间=路程
师:当速度一定时,路程和时间成什么比例关系?
当路程一定时,速度和时间成什么比例关系?
当时间一定时,路程和速度成什么比例关系?
3、比较正比例和反比例关系。
通过前面的例子,比较正比例关系和反比例关系。你能写出它们的相同点和不同点吗?
学生同桌或前后桌讨论,教师提问并板书如下:
相同点:都有两种相关联的量,一种量变化,另一种量也随着变化。
不同点:正比例:两种量中相对应的两个数的积一定。关系式X×Y=K(一定)
4、小结;正比例和反比例有什么相同点和不同点?判断两种量是否比例,成什么比例的,方法是什么?
作业