数的整除2(人教版五年级教案设计)

发布时间:2016-7-14编辑:互联网数学教案

 教学目标

  1、使学生理解自然数与整数的意义.

  2、使学生掌握整除、约数与倍数的概念.

  3、培养学生抽象概括与观察物的能力.

教学过程

一、建议自然数与整数的概念

1、谈话引入:今天这节课,我们学习数的整除.(板书课题)

2、教师提问:既然是数的整除,自然就与数有关,同学们都学过什么数?

  (教师板书:整数、小数、分数)

  同学们会数数吧?(学生数数)

  (教师板书:1、2、3、4、5、)

  继续数下去,能数到头吗?

  数不到头,我们可以用一个什么标点符号来表示呢?

  (教师板书:“……”)

3、教师小结:

  用来表示物体个数的1、2、3、4、5等等,叫做自然数.(板书:自然数)

  提问:最小的自然数是几?有最大的自然数吗?

  当一个物体也没有时,我们用几来表示?(板书:0)

二、建立整除的概念

1、教师明确:数的整除,不仅与数有关,还与除有关,一说到除,在家就会想到两个数相除,那么整除又是什么意思呢?整除也是两个数相除,但是在小学阶段,我们研究整除不包括“0”.

2、出示卡片    1.2÷4

  提问:在数的整除中研究这样的两个数相除吗?为什么?

3、再出示卡片:10÷20,16÷5,15÷3,36÷9,24÷2

  提问:这几个式子中的被除数和除数都是什么数?

  教师明确:被除数和除数都是自然数,这是我们研究数的整除的一个非常重要的条件.

4、教师说明:被除数和除数都是自然数,如:10÷20,我们能不能说10能被20整除呢?还不能,还要看它的商.

  组织学生口算出5张卡片的商.(其中16÷5指定回答“商几余几”)

  提问:被除数和除数都是自然数,商可能有哪几种情况?

  排除没有整除关系的卡片,指15÷3=5一类的卡片,说明:只有这样的,我们才能说15能被3整除.

 5、学生举例 

6、提问:用字母a表示这样的被除数,用b表示这样的除数,商怎么样,我们就说a能被b整除呢?

  这样看来,整除除了被除数和除数都是自然数外,还得有一个什么条件?

  教师明确:商是自然数,没有余数是整除的又一个重要的条件.

7、出示卡片(区别整除和除尽)

  4÷3=1.3  18÷18=1  7÷5=1.4

  4÷0.2=20  42÷6=7

三、建立约数与倍数的概念

1、教师说明:当数a能被数b整除时,a就是b的倍数;b就是a的约数.

2、联想训练:教师说一句由学生说出另外两句.

  如:教师:15能被3整除(生:15是3的倍数,3是15的约数)

  教师:36是9的倍数(生:36能被9整除,9是36的约)

  教师:2是24的约数  (生:24能被2整除, 24是2的倍数)

  教师:7不能被4整除(生:7不是4的倍数,4又不是7的约数)

3、区分“倍数”与“几倍”

  教师提问:能说4是0.2的倍数吗?为什么?

4、判断

  12是3的倍数 (    )    7是21的约数 (    )

  1是25的约数 (    )    3.6是3的倍数 (    )

  4是约数 (      ) (说明:通过此题,深化倍数、约数相互依存的关系)

四、巩固练习

  思考题:1,3,6,9,12这几个数中谁与谁之间有约数和倍数的关系?

五、课堂小结

  1、数的整除是在自然数范围内讨论的.

  2、两个数之间,一旦具备整除关系,那么这两个数之间必定还具有约数、倍数的关系.所以,整除是前提,倍数、约数是在这个前提下必然产生的一种结果.

六、布置作业

  1、下面的说法对吗?说出理由.

  (1)因为36÷9=4,所以36是倍数,9是约数.

  (2)57是3的倍数.

  (3)1是1、2、3、4、5,……的约数.

  2、一个数是42的约数,同时又是3的倍数.这个数可以是多少?

 

上一篇 下一篇