高二数学教案

2023-02-27 数学教案

  作为一名无私奉献的老师,通常需要准备好一份教案,教案是教学活动的总的组织纲领和行动方案。那么问题来了,教案应该怎么写?以下是小编收集整理的高二数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

高二数学教案1

  学习目标:

  1、了解本章的学习的内容以及学习思想方法

  2、能叙述随机变量的定义

  3、能说出随机变量与函数的关系,

  4、能够把一个随机试验结果用随机变量表示

  重点:能够把一个随机试验结果用随机变量表示

  难点:随机事件概念的透彻理解及对随机变量引入目的的认识:

  环节一:随机变量的定义

  1.通过生活中的一些随机现象,能够概括出随机变量的定义

  2能叙述随机变量的定义

  3能说出随机变量与函数的区别与联系

  一、阅读课本33页问题提出和分析理解,回答下列问题?

  1、了解一个随机现象的规律具体指的是什么?

  2、分析理解中的两个随机现象的随机试验结果有什么不同?建立了什么样的对应关系?

  总结:

  3、随机变量

  (1)定义:

  这种对应称为一个随机变量。即随机变量是从随机试验每一个可能的结果所组成的

  到的映射。

  (2)表示:随机变量常用大写字母.等表示.

  (3)随机变量与函数的区别与联系

  函数随机变量

  自变量

  因变量

  因变量的范围

  相同点都是映射都是映射

  环节二随机变量的.应用

  1、能正确写出随机现象所有可能出现的结果2、能用随机变量的描述随机事件

  例1:已知在10件产品中有2件不合格品。现从这10件产品中任取3件,其中含有的次品数为随机变量的学案.这是一个随机现象。(1)写成该随机现象所有可能出现的结果;(2)试用随机变量来描述上述结果。

  变式:已知在10件产品中有2件不合格品。从这10件产品中任取3件,这是一个随机现象。若Y表示取出的3件产品中的合格品数,试用随机变量描述上述结果

  例2连续投掷一枚均匀的硬币两次,用X表示这两次正面朝上的次数,则X是一个随机变

  量,分别说明下列集合所代表的随机事件:

  (1){X=0}(2){X=1}

  (3){X<2}(4){x>0}

  变式:连续投掷一枚均匀的硬币三次,用X表示这三次正面朝上的次数,则X是一个随机变量,X的可能取值是?并说明这些值所表示的随机试验的结果.

  练习:写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机变量的结果。

  (1)从学校回家要经过5个红绿灯路口,可能遇到红灯的次数;

  (2)一个袋中装有5只同样大小的球,编号为1,2,3,4,5,现从中随机取出3只球,被取出的球的号码数;

  小结(对标)

高二数学教案2

  一、教材分析

  【教材地位及作用】

  基本不等式又称为均值不等式,选自北京师范大学出版社普通高中课程标准实验教科书数学必修5第3章第3节内容。教学对象为高二学生,本节课为第一课时,重在研究基本不等式的证明及几何意义。本节课是在系统的学习了不等关系和掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续进一步了解不等式的性质及运用,研究最值问题奠定基础。因此基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。

  【教学目标】

  依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:

  知识与技能目标:理解掌握基本不等式,理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;

  过程与方法目标:通过探究基本不等式,使学生体会知识的形成过程,培养分析、解决问题的能力;

  情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

  【教学重难点】

  重点:理解掌握基本不等式,能借助几何图形说明基本不等式的意义。

  难点:利用基本不等式推导不等式.

  关键是对基本不等式的理解掌握.

  二、教法分析

  本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率.

  三、学法指导

  新课改的精神在于以学生的发展为本,把学习的主动权还给学生,倡导积极主动,勇于探索的学习方法,因此,本课主要采取以自主探索与合作交流的学习方式,通过让学生想一想,做一做,用一用,建构起自己的知识,使学生成为学习的主人。

  四、教学过程

  教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。

  具体过程安排如下:

  (一)基本不等式的教学设计创设情景,提出问题

  设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境:

  上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

  [问题1]请观察会标图形,图中有哪些特殊的几何图形?它们在面积上有哪些相等关系和不等关系?(让学生分组讨论)

  (二)探究问题,抽象归纳

  基本不等式的教学设计1.探究图形中的不等关系

  形的角度----(利用多媒体展示会标图形的变化,引导学生发现四个直角三角形的面积之和小于或等于正方形的面积.)

  数的角度

  [问题2]若设直角三角形的两直角边分别为a、b,应怎样表示这种不等关系?

  学生讨论结果:。

  [问题3]大家看,这个图形里还真有点奥妙。我们从图中找到了一个不等式。这里a、b的`取值有没有什么限制条件?不等式中的等号什么时候成立呢?(师生共同探索)

  咱们再看一看图形的变化,(教师演示)

  (学生发现)当a=b四个直角三角形都变成了等腰直角三角形,他们的面积和恰好等于正方形的面积,即.探索结论:我们得到不等式,当且仅当时等号成立。

  设计意图:本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式基本不等式的教学设计。在此基础上,引导学生认识基本不等式。

  2.抽象归纳:

  一般地,对于任意实数a,b,有,当且仅当a=b时,等号成立。

  [问题4]你能给出它的证明吗?

  学生在黑板上板书。

  [问题5]特别地,当时,在不等式中,以、分别代替a、b,得到什么?

  学生归纳得出。

  设计意图:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.

  【归纳总结】

  如果a,b都是非负数,那么,当且仅当a=b时,等号成立。

  我们称此不等式为基本不等式。其中称为a,b的算术平均数,称为a,b的几何平均数。

  3.探究基本不等式证明方法:

  [问题6]如何证明基本不等式?

  设计意图:在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。

  方法一:作差比较或由基本不等式的教学设计展开证明。

  方法二:分析法

  要证

  只要证2

  要证,只要证2

  要证,只要证

  显然,是成立的。当且仅当a=b时,中的等号成立。

  4.理解升华

  1)文字语言叙述:

  两个正数的算术平均数不小于它们的几何平均数。

  2)符号语言叙述:

  若,则有,当且仅当a=b时,。

  [问题7]怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)

  “当且仅当a=b时,等号成立”的含义是:

  当a=b时,取等号,即;

  仅当a=b时,取等号,即。

  3)探究基本不等式的几何意义:

  基本不等式的教学设计借助初中阶段学生熟知的几何图形,引导学生探究不等式的几何解释,通过数形结合,赋予不等式几何直观。进一步领悟不等式中等号成立的条件。

  如图:AB是圆的直径,点C是AB上一点,

  CD⊥AB,AC=a,CB=b,

  [问题8]你能利用这个图形得出基本不等式的几何解释吗?

  (教师演示,学生直观感觉)

  易证RtACDRtDCB,那么CD2=CA·CB

  即CD=.

  这个圆的半径为,显然,它大于或等于CD,即,其中当且仅当点C与圆心重合,即a=b时,等号成立.

  因此:基本不等式几何意义可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高.

  4)联想数列的知识理解基本不等式

  从形的角度来看,基本不等式具有特定的几何意义;从数的角度来看,基本不等式揭示了“和”与“积”这两种结构间的不等关系.

  [问题9]回忆一下你所学的知识中,有哪些地方出现过“和”与“积”的结构?

  归纳得出:

  均值不等式的代数解释为:两个正数的等差中项不小它们的等比中项.

  基本不等式的教学设计(四)体会新知,迁移应用

  例1:(1)设均为正数,证明不等式:基本不等式的教学设计

  (2)如图:AB是圆的直径,点C是AB上一点,设AC=a,CB=b,

  ,过作交于,你能利用这个图形得出这个不等式的一种几何解释吗?

  设计意图:以上例题是根据基本不等式的使用条件中的难点和关键处设置的,目的是利用学生原有的平面几何知识,进一步领悟到不等式成立的条件,及当且仅当时,等号成立。这里完全放手让学生自主探究,老师指导,师生归纳总结。

  (五)演练反馈,巩固深化

  公式应用之一:

  1.试判断与与2的大小关系?

  问题:如果将条件“x>0”去掉,上述结论是否仍然成立?

  2.试判断与7的大小关系?

  公式应用之二:

  设计意图:新颖有趣、简单易懂、贴近生活的问题,不仅极大地增强学生的兴趣,拓宽学生的视野,更重要的是调动学生探究钻研的兴趣,引导学生加强对生活的关注,让学生体会:数学就在我们身边的生活中

  (1)用一个两臂长短有差异的天平称一样物品,有人说只要左右各秤一次,将两次所称重量相加后除以2就可以了.你觉得这种做法比实际重量轻了还是重了?

  (2)甲、乙两商场对单价相同的同类产品进行促销.甲商场采取的促销方式是在原价p折的基础上再打q折;乙商场的促销方式则是两次都打折.对顾客而言,哪种打折方式更合算?(0≠q)

  (五)反思总结,整合新知:

  通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要请教?

  设计意图:通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平.从各种角度对均值不等式进行总结,目的是为了让学生掌握本节课的重点,突破难点

  老师根据情况完善如下:

  知识要点:

  (1)重要不等式和基本不等式的条件及结构特征

  (2)基本不等式在几何、代数及实际应用三方面的意义

  思想方法技巧:

  (1)数形结合思想、“整体与局部”

  (2)归纳与类比思想

  (3)换元法、比较法、分析法

  (七)布置作业,更上一层

  1.阅读作业:预习基本不等式的教学设计

  2.书面作业:已知a,b为正数,证明不等式基本不等式的教学设计

  3.思考题:类比基本不等式,当a,b,c均为正数,猜想会有怎样的不等式?

  设计意图:作业分为三种形式,体现作业的巩固性和发展性原则,同时考虑学生的差异性。阅读作业是后续课堂的铺垫,而思考题不做统一要求,供学有余力的学生课后研究。

  五、评价分析

  1.在建立新知的过程中,教师力求引导、启发,让学生逐步应用所学的知识来分析问题、解决问题,以形成比较系统和完整的知识结构。每个问题在设计时,充分考虑了学生的具体情况,力争提问准确到位,便于学生思考和回答。使思考和提问持续在学生的最近发展区内,学生的思考有价值,对知识的理解和掌握在不断的思考和讨论中完善和加深。

  2.本节的教学中要求学生对基本不等式在数与形两个方面都有比较充分的认识,特别强调数与形的统一,教学过程从形得到数,又从数回到形,意图使学生在比较中对基本不等式得以深刻理解。“数形结合”作为一种重要的数学思想方法,不是教师提一提学生就能够掌握并且会用的,只有学生通过实践,意识到它的好处之后,学生才会在解决问题时去尝试使用,只有通过不断的使用才能促进学生对这种思想方法的再理解,从而达到掌握它的目的。

高二数学教案3

  教学目标

  使学生了解并会作二元一次不等式和不等式组表示的区域.

  重点难点

  了解二元一次不等式表示平面区域.

  教学过程

  【引入新课】

  我们知道一元一次不等式和一元二次不等式的解集都表示直线上的点集,那么在平面坐标系中,二元一次不等式的解集的意义是什么呢?

  【二元一次不等式表示的平面区域】

  1.先分析一个具体的例子

  我们知道,在平面直角坐标系中,以二元一次方程 的解为坐标的点的集合 是经过点(0,1)和(1,0)的一条直线 l (如图)那么,以二元一次不等式(即含有两个未知数,且未知数的最高次数都是1的不等式) 的`解为坐标的点的集合 是什么图形呢?

  在平面直角坐标系中,所有点被直线 l 分三类:①在 l 上;②在 l 的右上方的平面区域;③在 l 的左下方的平面区域(如图)取集合 A 的点(1,1)、(1,2)、(2,2)等,我们发现这些点都在 l 的右上方的平面区域,而点(0,0)、(-1,-1)等等不属于 A ,它们满足不等式 ,这些点却在l的左下方的平面区域.

  由此我们猜想,对直线 l 右上方的任意点 成立;对直线l左下方的任意点 成立,下面我们证明这个事实.

  在直线 上任取一点 ,过点 P 作垂直于 y 轴的直线 ,在此直线上点 P 右侧的任意一点 ,都有 ∴

  于是

  所以

  因为点 ,是 L 上的任意点,所以,对于直线 右上方的任意点 ,

  都成立

  同理,对于直线 左下方的任意点 ,

  都成立

  所以,在平面直角坐标系中,以二元一次不等式 的解为坐标的点的集点.

  是直线 右上方的平面区域(如图)

  类似地,在平面直角坐标系中,以二元一次不等式 的解为坐标的点的集合 是直线 左下方的平面区域.

  2.二元一次不等式 和 表示平面域.

  (1)结论:二元一次不等式 在平面直角坐标系中表示直线 某一侧所有点组成的平面区域.

  把直线画成虚线以表示区域不包括边界直线,若画不等式 就表示的面区域时,此区域包括边界直线,则把边界直线画成实线.

  (2)判断方法:由于对在直线 同一侧的所有点 ,把它的坐标 代入 ,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点 ,以 的正负情况便可判断 表示这一直线哪一侧的平面区域,特殊地,当 时,常把原点作为此特殊点.

  【应用举例】

  例1? 画出不等式 表示的平面区域

  解;先画直线 (画线虚线)取原点(0,0),代入 ,

  ∴ ∴? 原点在不等式 表示的平面区域内,不等式 表示的平面区域如图阴影部分.

  例2? 画出不等式组

  表示的平面区域

  分析:在不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.

  解:不等式 表示直线 上及右上方的平面区域, 表示直线 上及右上方的平面区域, 上及左上方的平面区域,所以原不等式表示的平面区域如图中的阴影部分.

  课堂练习

  作出下列二元一次不等式或不等式组表示的平面区域.

高二数学教案4

  课题:2。1曲线与方程

  课时:01

  课型:新授课

  一、教学目标

  (一)知识教学点

  使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法。

  (二)能力训练点

  通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力。

  (三)学科渗透点

  通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础。

  二、教材分析

  1、重点:求动点的轨迹方程的常用技巧与方法。

  (解决办法:对每种方法用例题加以说明,使学生掌握这种方法。)

  2、难点:作相关点法求动点的轨迹方法。

  (解决办法:先使学生了解相关点法的思路,再用例题进行讲解。)

  教具准备:与教材内容相关的资料。

  教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神。

  三、教学过程

  (一)复习引入

  大家知道,平面解析几何研究的主要问题是:

  (1)根据已知条件,求出表示平面曲线的方程;

  (2)通过方程,研究平面曲线的性质。

  我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析。

  (二)几种常见求轨迹方程的方法

  1、直接法

  由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法。

  例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;

  (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹。

  对(1)分析:

  动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0。

  解:设动点P(x,y),则有|OP|=2R或|OP|=0。

  即x2+y2=4R2或x2+y2=0。

  故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0。

  对(2)分析:

  题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数。由学生演板完成,解答为:

  设弦的中点为M(x,y),连结OM,则OM⊥AM。∵kOM·kAM=—1,

  其轨迹是以OA为直径的圆在圆O内的'一段弧(不含端点)。

  2、定义法

  利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法。这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。

  直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程。

  分析:

  ∵点P在AQ的垂直平分线上,∴|PQ|=|PA|。

  又P在半径OQ上。∴|PO|+|PQ|=R,即|PO|+|PA|=R。

  故P点到两定点距离之和是定值,可用椭圆定义

  写出P点的轨迹方程。

  解:连接PA ∵l⊥PQ,∴|PA|=|PQ|。

  又P在半径OQ上。∴|PO|+|PQ|=2。

  由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆。

  3、相关点法

  若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程。这种方法称为相关点法(或代换法)。

  例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程。

  分析:

  P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系。

  解:设点P(x,y),且设点B(x0,y0)

  ∵BP∶PA=1∶2,且P为线段AB的内分点。

  4、待定系数法

  求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求。

  例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲

  曲线方程。

  分析:

  因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方

  ax2—4b2x+a2b2=0

  ∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2—4b2x+a2b2=0应有等根。

  ∴△=16b4—4a4b2=0,即a2=2b。

  (以下由学生完成)

  由弦长公式得:

  即a2b2=4b2—a2。

  (三)巩固练习

  用十多分钟时间作一个小测验,检查一下教学效果。练习题用一小黑板给出。

  1、△ABC一边的两个端点是B(0,6)和C(0,—6),另两边斜率的

  2、点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形?

  3、求抛物线y2=2px(p>0)上各点与焦点连线的中点的轨迹方程。

  答案:

  义法)

  由中点坐标公式得:

  (四)、教学反思

  求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍。

  四、布置作业

  1、两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程。

  2、动点P到点F1(1,0)的距离比它到F2(3,0)的距离少2,求P点的轨迹。

  3、已知圆x2+y2=4上有定点A(2,0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程。

  作业答案:

  1、以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4。

  2、∵|PF2|—|PF|=2,且|F1F2|∴P点只能在x轴上且x<1,轨迹是一条射线。

高二数学教案5

  教学目标:

  1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

  2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。

  教学重点

  体会直角坐标系的作用。

  教学难点

  能够建立适当的直角坐标系,解决数学问题。

  授课类型:

  新授课

  教学模式:

  启发、诱导发现教学.

  教 具:

  多媒体、实物投影仪

  教学过程:

  一、复习引入:

  情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

  情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

  问题1:如何刻画一个几何图形的位置?

  问题2:如何创建坐标系?

  二、学生活动

  学生回顾

  刻画一个几何图形的位置,需要设定一个参照系

  1、数轴 它使直线上任一点P都可以由惟一的实数x确定

  2、平面直角坐标系

  在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定。

  3、空间直角坐标系

  在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。

  三、讲解新课:

  1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

  任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

  2、确定点的位置就是求出这个点在设定的坐标系中的坐标

  四、数学运用

  例1 选择适当的平面直角坐标系,表示边长为1的`正六边形的顶点。

  变式训练

  如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置

  例2 已知B村位于A村的正西方1公里处,原计划经过B村沿着北偏东60的方向设一条地下管线m.但在A村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W周围100米范围划为禁区.试问:埋设地下管线m的计划需要修改吗?

  变式训练

  1一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B两地相距800米,并且此时的声速为340m/s,求曲线的方程

  2在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程

  例3 已知Q(a,b),分别按下列条件求出P 的坐标

  (1)P是点Q 关于点M(m,n)的对称点

  (2)P是点Q 关于直线l:x-y+4=0的对称点(Q不在直线1上)

  变式训练

  用两种以上的方法证明:三角形的三条高线交于一点。

  思考

  通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

  五、小 结:本节课学习了以下内容:

  1.平面直角坐标系的意义。

  2. 利用平面直角坐标系解决相应的数学问题。

  六、课后作业:

高二数学教案6

  教学目标

  (1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;

  (2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;

  (3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题;

  (4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的 数学 思想,提高学生“建模”和解决实际问题的能力;

  (5)结合教学内容,培养学生 学习 数学 的兴趣和“用 数学 ”的意识,激励学生勇于创新.

  教学建议

  一、知识结构

  教科书首先通过一个具体问题,介绍了二元一次不等式表示平面区域.再通过一个具体实例,介绍了线性规化问题及有关的几个基本概念及一种基本解法-图解法,并利用几道例题说明线性规化在实际中的应用.

  二、重点、难点分析

  本小节的重点是二元一次不等式(组)表示平面的区域.

  对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生、抽象的概念,按高二学生现有的知识和认知水平难以透彻理解,因此 学习 二元一次不等式(组)表示平面的区域分为两个大的层次:

  (1)二元一次不等式表示平面区域.首先通过建立新旧知识的联系,自然地给出概念.明确二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域不包含边界直线(画成虚线).其次再扩大到所表示的平面区域是包含边界直线且要把边界直线画成实线.

  (2)二元一次不等式组表示平面区域.在理解二元一次不等式表示平面区域含义的基础上,画不等式组所表示的平面区域,找出各个不等式所表示的平面区域的公共部分.这是学生对代数问题等价转化为几何问题以及 数学 建模方法解决实际问题的基础.

  难点是把实际问题转化为线性规划问题,并给出解答.

  对许多学生来说,从抽象到的化归并不比从具体到抽象遇到的问题少,学生解 数学 应用题的最常见困难是不会将实际问题提炼成 数学 问题,即不会建模.所以把实际问题转化为线性规划问题作为本节的难点,并紧紧围绕如何引导学生根据实际问题中的已知条件,找出约束条件和目标函数,然后利用图解法求出最优解作为突破这个难点的关键.

  对学生而言解决应用问题的障碍主要有三类:

  ①不能正确理解题意,弄清各元素之间的关系;

  ②不能分清问题的主次关系,因而抓不住问题的本质,无法建立 数学 模型;

  ③孤立地考虑单个的问题情景,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,将本课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在学生面前,以利于理解;分析完题后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题.另外,利用计算机可以较快地帮助学生掌握寻找整点最优解的方法.

  三、教法建议

  (1)对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生的概念,不象二元一次方程表示直线那样已早有所知,为使学生对这一概念的引进不感到突然,应建立新旧知识的联系,以便自然地给出概念

  (2)建议将本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的`是为了分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论.

  (3)要举几个典型例题,特别是似是而非的例子,对理解二元一次不等式(组)表示的平面区域的含义是十分必要的.

  (4)建议通过本节教学着重培养学生掌握“数形结合”的 数学 思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,这对培养学生观察、联想、猜测、归纳等 数学 能力是大有益处的.

  (5)对作业、思考题、研究性题的建议:

  ①作业主要训练学生规范的解题步骤和作图能力;

  ②思考题主要供学有余力的学生课后完成;

  ③研究性题综合性较大,主要用于拓宽学生的思维.

  (6)若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.

  如果可行域中的整点数目很少,采用逐个试验法也可.

  (7)在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.

高二数学教案7

  (1)平面向量基本定理的内容是什么?

  (2)如何定义平面向量基底?

  (3)两向量夹角的定义是什么?如何定义向量的垂直?

  [新知初探]

  1、平面向量基本定理

  条件e1,e2是同一平面内的两个不共线向量

  结论这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2

  基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底

  [点睛]对平面向量基本定理的理解应注意以下三点:①e1,e2是同一平面内的两个不共线向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是的;③基底不,只要是同一平面内的两个不共线向量都可作为基底。

  2、向量的夹角

  条件两个非零向量a和b

  产生过程

  作向量=a,=b,则∠AOB叫做向量a与b的夹角

  范围0°≤θ≤180°

  特殊情况θ=0°a与b同向

  θ=90°a与b垂直,记作a⊥b

  θ=180°a与b反向

  [点睛]当a与b共线同向时,夹角θ为0°,共线反向时,夹角θ为180°,所以两个向量的夹角的范围是0°≤θ≤180°。

  [小试身手]

  1、判断下列命题是否正确。(正确的打“√”,错误的打“×”)

  (1)任意两个向量都可以作为基底。()

  (2)一个平面内有无数对不共线的向量都可作为表示该平面内所有向量的基底。()

  (3)零向量不可以作为基底中的向量。()

  答案:(1)×(2)√(3)√

  2、若向量a,b的夹角为30°,则向量—a,—b的夹角为()

  A、60°B、30°

  C、120°D、150°

  答案:B

  3、设e1,e2是同一平面内两个不共线的向量,以下各组向量中不能作为基底的'是()

  A、e1,e2B、e1+e2,3e1+3e2

  C、e1,5e2D、e1,e1+e2

  答案:B

  4、在等腰Rt△ABC中,∠A=90°,则向量,的夹角为XXXXXX。

  答案:135°

  用基底表示向量

  [典例]如图,在平行四边形ABCD中,设对角线=a,=b,试用基底a,b表示,。

  [解]法一:由题意知,==12=12a,==12=12b。

  所以=+=—=12a—12b,

  =+=12a+12b,

  法二:设=x,=y,则==y,

  又+=,—=,则x+y=a,y—x=b,

  所以x=12a—12b,y=12a+12b,

  即=12a—12b,=12a+12b。

  用基底表示向量的方法

  将两个不共线的向量作为基底表示其他向量,基本方法有两种:一种是运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止;另一种是通过列向量方程或方程组的形式,利用基底表示向量的性求解。

  [活学活用]

  如图,已知梯形ABCD中,AD∥BC,E,F分别是AD,BC边上的中点,且BC=3AD,=a,=b。试以a,b为基底表示。

  解:∵AD∥BC,且AD=13BC,

  ∴=13=13b。

  ∵E为AD的中点,

  ∴==12=16b。

  ∵=12,∴=12b,

  ∴=++

  =—16b—a+12b=13b—a,

  =+=—16b+13b—a=16b—a,

  =+=—(+)

  =—(+)=—16b—a+12b

  =a—23b。

高二数学教案8

  一、教学目标

  【知识与技能】

  能正确概述“二面角”、“二面角的平面角”的概念,会做二面角的平面角。

  【过程与方法】

  利用类比的方法推理二面角的有关概念,提升知识迁移的能力。

  【情感态度与价值观】

  营造和谐、轻松的学习氛围,通过学生之间,师生之间的交流、合作和评价达成共识、共享、共进,实现教学相长和共同发展。

  二、教学重、难点

  【重点】

  “二面角”和“二面角的平面角”的概念。

  【难点】

  “二面角的平面角”概念的形成过程。

  三、教学过程

  (一)创设情境,导入新课

  请学生观察生活中的一些模型,多媒体展示以下一系列动画如:

  1.打开书本的过程;

  2.发射人造地球卫星,要根据需要使卫星的轨道平面与地球的赤道平面成一定的角度;

  3.修筑水坝时,为了使水坝坚固耐久,须使水坝坡面与水平面成适当的角度;

  引导学生说出书本的两个面、水坝面与底面,卫星轨道面与地球赤道面均是呈一定的角度关系,引出课题。

  (二)师生互动,探索新知

  学生阅读教材,同桌互相讨论,教师引导学生对比平面角得出二面角的概念

  平面角:平面角是从平面内一点出发的两条射线(半直线)所组成的图形。

  二面角定义:从一条直线出发的两个半面所组成的图形,叫作二面角。这条直线叫作二面角的棱,这两个半平面叫作二面角的面。(动画演示)

  (2)二面角的表示

  (3)二面角的画法

  (PPT演示)

  教师提问:一般地说,量角器只能测量“平面角”(指两条相交直线所成的角.相应地,我们把异面直线所成的`角,直线与平面所成的角和二面角,均称为空间角)那么,如何去度量二面角的大小呢?我们以往是如何度量某些角的?教师引导学生将空间角化为平面角.

  教师总结:

  (1)二面角的平面角的定义

  定义:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.

  “二面角的平面角”的定义三个主要特征:点在棱上、线在面内、与棱垂直(动画演示)

  大小:二面角的大小可以用它的平面角的大小来表示。

  平面角是直角的二面角叫做直二面角。

  (2)二面角的平面角的作法

  ①点P在棱上—定义法

  ②点P在一个半平面上—三垂线定理法

  ③点P在二面角内—垂面法

  (三)生生互动,巩固提高

  (四)生生互动,巩固提高

  1.判断下列命题的真假:

  (1)两个相交平面组成的图形叫做二面角。( )

  (2)角的两边分别在二面角的两个面内,则这个角是二面角的平面角。( )

  (3)二面角的平面角所在平面垂直于二面角的棱。( )

  2.作出一下面PAC和面ABC的平面角。

  (五)课堂小结,布置作业

  小结:通过本节课的学习,你学到了什么?

  作业:以正方体为模型请找出一个所成角度为四十五度的二面角,并证明。

高二数学教案9

  一、教学目标

  1、了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法、

  (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念、

  (2)能从数和形两个角度熟悉单调性和奇偶性、

  (3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程、

  2、通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想、

  3、通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度、

  二、教学建议

  (一)知识结构

  (1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的`判定方法,函数单调性与函数图像的关系、

  (2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像、

  (二)重点难点分析

  (1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉、教学的难点是领悟函数单调性,奇偶性的本质,把握单调性的证实、

  (2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它、这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫、单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点、

  (三)教法建议

  (1)函数单调性概念引入时,可以先从学生熟悉的一次函数,二次函数、反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢、如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来、在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来、

  (2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律、

  函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来、经历了这样的过程,再得到等式时,就比较轻易体会它代表的是无数多个等式,是个恒等式、关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件、

高二数学教案10

  教学目标

  (1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题.

  (2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念.

  (3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点.

  (4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法.

  (5)进一步理解数形结合的思想方法.

  教学建议

  教材分析

  (1)知识结构

  曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质.曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序.前者回答什么是曲线方程,后者解决如何求出曲线方程.至于用曲线方程研究曲线性质则更在其后,本节不予研究.因此,本节涉及曲线方程概念和求曲线方程两大基本问题.

  (2)重点、难点分析

  ①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想.

  ②本节的难点是曲线方程的概念和求曲线方程的方法.

  教法建议

  (1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系.曲线与方程对应关系的基础是点与坐标的对应关系.注意强调曲线方程的完备性和纯粹性.

  (2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备.

  (3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则.

  (4)从集合与对应的观点可以看得更清楚:

  设表示曲线上适合某种条件的点的集合;

  表示二元方程的解对应的点的坐标的集合.

  可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即

  (5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做。同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得。教学中对课本例2的解法分析很重要。

  这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即文字语言中的几何条件?数学符号语言中的等式数学符号语言中含动点坐标,的代数方程简化了的代数方程。

  由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程。”

  (6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”。

  教学设计示例

  课题:求曲线的'方程(第一课时)

  教学目标:

  (1)了解坐标法和解析几何的意义,了解解析几何的基本问题。

  (2)进一步理解曲线的方程和方程的曲线。

  (3)初步掌握求曲线方程的方法。

  (4)通过本节内容的教学,培养学生分析问题和转化的能力。

  教学重点、难点:求曲线的方程。

  教学用具:计算机。

  教学方法:启发引导法,讨论法。

  教学过程:

  【引入】

  1.提问:什么是曲线的方程和方程的曲线.

  学生思考并回答.教师强调.

  2.坐标法和解析几何的意义、基本问题.

  对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:

  (1)根据已知条件,求出表示平面曲线的方程.

  (2)通过方程,研究平面曲线的性质.

  事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.

  【问题】

  如何根据已知条件,求出曲线的方程.

  【实例分析】

  例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.

  首先由学生分析:根据直线方程的知识,运用点斜式即可解决.

  解法一:易求线段的中点坐标为(1,3),

  由斜率关系可求得l的斜率为

  于是有

  即l的方程为

  ①

  分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?

  (通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).

  证明:(1)曲线上的点的坐标都是这个方程的解.

  设是线段的垂直平分线上任意一点,则

  即

  将上式两边平方,整理得

  这说明点的坐标是方程的解.

  (2)以这个方程的解为坐标的点都是曲线上的点.

  设点的坐标是方程①的任意一解,则

  到、的距离分别为

  所以,即点在直线上.

  综合(1)、(2),①是所求直线的方程.

  至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:

  解法二:设是线段的垂直平分线上任意一点,也就是点属于集合

  由两点间的距离公式,点所适合的条件可表示为

  将上式两边平方,整理得

  果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.

  这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.

  让我们用这个方法试解如下问题:

  例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.

  分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.

  求解过程略.

  【概括总结】通过学生讨论,师生共同总结:

  分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

  首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:

  (1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;

  (2)写出适合条件的点的集合

  ;

  (3)用坐标表示条件,列出方程;

  (4)化方程为最简形式;

  (5)证明以化简后的方程的解为坐标的点都是曲线上的点.

  一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.

  上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.

  下面再看一个问题:

  例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.

  【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.

  解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合

  由距离公式,点适合的条件可表示为

  ①

  将①式移项后再两边平方,得

  化简得

  由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.

  【练习巩固】

  题目:在正三角形内有一动点,已知到三个顶点的距离分别为、 、,且有,求点轨迹方程.

  分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.

  根据条件,代入坐标可得

  化简得

  ①

  由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为

  【小结】师生共同总结:

  (1)解析几何研究研究问题的方法是什么?

  (2)如何求曲线的方程?

  (3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?

  【作业】课本第72页练习1,2,3;

  【板书设计】

  §7.6求曲线的方程

  坐标法:

  解析几何:

  基本问题:

高二数学教案11

  目的要求:

  1.复习巩固求曲线的方程的基本步骤;

  2.通过教学,逐步提高学生求贡线的方程的能力,灵活掌握解法步骤;

  3.渗透“等价转化”、“数形结合”、“整体”思想,培养学生全面分析问题的能力,训练思维的深刻性、广阔性及严密性。

  教学重点、难点:

  方程的求法教学方法:讲练结合、讨论法

  教学过程:

  一、学点聚集:

  1.曲线C的方程是f(x,y)=0(或方程f(x,y)=0的曲线是C)实质是

  ①曲线C上任一点的坐标都是方程f(x,y)=0的解

  ②以方程f(x,y)=0的解为坐标的点都是曲线C上的点

  2.求曲线方程的基本步骤

  ①建系设点;

  ②寻等列式;

  ③代换(坐标化);

  ④化简;

  ⑤证明(若第四步为恒等变形,则这一步骤可省略)

  二、基础训练题:

  221.方程x-y=0的曲线是()

  A.一条直线和一条双曲线B.两个点C.两条直线D.以上都不对

  2.如图,曲线的方程是()

  A.x?y?0 B.x?y?0 C.

  xy?1 D.

  x?1 y3.到原点距离为6的'点的轨迹方程是。

  4.到x轴的距离与其到y轴的距离之比为2的点的轨迹方程是。

  三、例题讲解:

  例1:已知一条曲线在y轴右方,它上面的每一点到A?2,0?的距离减去它到y轴的距离的差都是2,求这条曲线的方程。

  例2:已知P(1,3)过P作两条互相垂直的直线l

  1、l2,它们分别和x轴、y轴交于B、C两点,求线段BC的中点的轨迹方程。

  2例3:已知曲线y=x+1和定点A(3,1),B为曲线上任一点,点P在线段AB上,且有BP∶PA=1∶2,当点B在曲线上运动时,求点P的轨迹方程。

  巩固练习:

  1.长为4的线段AB的两个端点分别在x轴和y轴上滑动,求AB中点M的轨迹方程。

  22.已知△ABC中,B(-2,0),C(2,0)顶点A在抛物线y=x+1移动,求△ABC的重心G的轨迹方程。

  思考题:

  已知B(-3,0),C(3,0)且三角形ABC中BC边上的高为3,求三角形ABC的垂心H的轨迹方程。

  小结:

  1.用直接法求轨迹方程时,所求点满足的条件并不一定直接给出,需要仔细分析才能找到。

  2.用坐标转移法求轨迹方程时要注意所求点和动点之间的联系。

  作业:

  苏大练习第57页例3,教材第72页第3题、第7题。

高二数学教案12

  教学目标

  (1)掌握“两个正数的算术平均数不小于它们的几何平均数”这一重要定理;

  (2)能运用定理证明不等式及求一些函数的最值;

  (3)能够解决一些简单的实际问题;

  (4)通过对不等式的结构的分析及特征的把握掌握重要不等式的联系;

  (5)通过对重要不等式的证明和等号成立的条件的分析,培养学生严谨科学的认识习惯,进一步渗透变量和常量的哲学观;

  教学建议

  1.教材分析

  (1)知识结构

  本节根据不等式的性质推导出一个重要的不等式:,根据这个结论,又得到了一个定理:,并指出了为的算术平均数,为的几何平均数后,随后给出了这个定理的几何解释。

  (2)重点、难点分析

  本节课的重点内容是掌握“两个正数的算术平均数不小于它们的几何平均数”;掌握两个正数的和为定值时积有最大值,积为定值时和有最小值的结论,教学难点是正确理解和使用平均值定理求某些函数的最值.为突破重难点,教师单方面强调是远远不够的,只有让学生通过自己的思考、尝试,注意到平均值定理中等号成立的条件,发现使用定理求最值的三个条件“一正,二定,三相等”缺一不可,才能大大加深学生对正确使用定理的理解,教学中要注意培养学生分析归纳问题的能力,帮助学生形成知识体系,全面深刻地掌握平均值定理求最值和解决实际问题的方法.

  ㈠定理教学的注意事项

  在公式以及算术平均数与几何平均数的定理的教学中,要让学生注意以下两点:

  (1)和成立的条件是不同的:前者只要求都是实数,而后者要求都是正数。

  例如成立,而不成立。

  (2)这两个公式都是带有等号的不等式,因此对其中的“当且仅当……时取‘=’号”这句话的含义要搞清楚。教学时,要提醒学生从以下两个方面来理解这句话的含义:

  当时取等号,其含义就是:

  仅当时取等号,其含义就是:

  综合起来,其含义就是:是的充要条件。

  (二)关于用定理证明不等式

  当用公式,证明不等式时,应该使学生认识到:

  它们本身也是根据不等式的意义、性质或用比较法(将在下一小节学习)证出的。因此,凡是用它们可以获证的不等式,一般也可以直接根据不等式的意义、性质或用比较法证明。

  (三)应用定理求最值的条件

  应用定理时注意以下几个条件:

  (1)两个变量必须是正变量;

  (2)当它们的和为定值时,其积取得最大值;当它们的积是定值时,其和取得最小值;

  (3)当且仅当两个数相等时取最值.

  即必须同时满足“正数”、“定值”、“相等”三个条件,才能求得最值.

  在求某些函数的最值时,还要注意进行恰当的恒等变形、分析变量、配置系数.

  (四)应用定理解决实际问题的分析

  在应用两个正数的算术平均数与几何平均数的定理解决这类实际问题时,要让学生注意;

  (1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;

  (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;

  (3)在定义域内,求出函数的最大值或最小值;

  (4)正确写出答案。

  2.教法建议

  (1)导入新课建议采用学生比较熟悉的问题为背景,这样容易被学生接受,产生兴趣,激发学习动机.使得学生学习本节课知识自然且合理.

  (2)在新授知识过程中,教师应力求引导、启发,让学生逐步回忆所学的知识,并应用它们来分析问题、解决问题,以形成比较系统和完整的知识结构.对有关概念使学生理解准确,尽量以多种形式反映知识结构,使学生在比较中得到深刻理解.

  (3)教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.

  (4)可以设计解法的正误讨论,这样能够使学生尝试失败,并从失败中找到错误原因,加深对正确解法的理解,真正把新知识纳入到原有认知结构中.

  (5)注意培养应用意识.教学中应不失时机地使学生认识到数学源于客观世界并反作用干客观世界.为增强学生的应用意识,在平时教学中就应适当增加解答应用问题的教学,使学生不禁感到“数学有用,要用数学”.

  第一课时

  教学目标:

  1.学会推导并掌握两个正数的算术平均数与几何平均数定理;

  2.理解定理的几何意义;

  3.能够简单应用定理证明不等式.

  教学重点:均值定理证明

  教学难点:等号成立条件

  教学方法:引导式

  教学过程

  一、复习回顾

  上一节,我们完成了对不等式性质的`学习,首先我们来作一下回顾.

  (学生回答)

  由上述性质,我们可以推导出下列重要的不等式.

  二、讲授新课

  1.重要不等式:

  如果

  证明:

  当

  所以,

  即

  由上面的结论,我们又可得到

  2.定理:如果是正数,那么

  证明:∵

  即

  显然,当且仅当

  说明:)我们称的算术平均数,称的几何平均数,因而,此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数.

  )成立的条件是不同的:前者只要求都是实数,而后者要求都是正数.

  )“当且仅当”的含义是充要条件.

  3.均值定理的几何意义是“半径不小于半弦”.

  以长为的线段为直径作圆,在直径 AB 上取点 C . 过点 C 作垂直于直径 AB 的弦DD′,那么

  即

  这个圆的半径为,显然,它不小于 CD ,即,其中当且仅当点 C 与圆心重合;即时,等号成立.

  在定理证明之后,我们来看一下它的具体应用.

  4.例题讲解:

  例1已知都是正数,求证:

  (1)如果积是定值 P, 那么当时,和有最小值

  (2)如果和是定值 S ,那么当时,积有最大值证明:因为都是正数,所以

  (1)积 xy 为定值 P 时,有

  上式当时,取“=”号,因此,当时,和有最小值.

  (2)和为定值 S 时,有

  上式当时取“=”号,因此,当时,积有最大值.

  说明:此例题反映的是利用均值定理求最值的方法,但应注意三个条件:

  (1)函数式中各项必须都是正数;

  (2)函数式中含变数的各项的和或积必须是常数;

  (3)等号成立条件必须存在.

  接下来,我们通过练习来进一步熟悉均值定理的应用.

  三、课堂练习

  课本P 11练习2,3

  要求:学生板演,老师讲评.

  课堂小结:

  通过本节学习,要求大家掌握两个正数的算术平均数不小于它们的几何平均数的定理,并会应用它证明一些不等式,但是在应用时,应注意定理的适用条件.

  课后作业:习题6.2 1,2,3,4

  板书设计:

  §6.2.1 ……

  1.重要不等式说明)4.例题……学生

  ……)……练习

  )……

  2.均值定理3.几何意义

  ……

  ……

  第二课时

  教学目标:

  1.进一步掌握均值不等式定理;

  2.会应用此定理求某些函数的最值;

  3.能够解决一些简单的实际问题.

  教学重点:均值不等式定理的应用

  教学难点:

  解题中的转化技巧

  教学方法:启发式

  教学过程

  一、复习回顾

  上一节,我们一起学习了两个正数的算术平均数与几何平均数的定理,首先我们来回顾一下定理内容及其适用条件.

  (学生回答)

  利用这一定理,可以证明一些不等式,也可求解某些函数的最值,这一节,我们来继续这方面的训练.

  二、讲授新课

  例2已知都是正数,求证:

  分析:此题要求学生注意与均值不等式定理的“形”上发生联系,从而正确运用,同时加强对均值不等式定理的条件的认识.

  证明:由都是正数,得

  即

  例3某工厂要建造一个长方体无盖贮水池,其容积为,深为3m,如果池底每的造价为150元,池壁每的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?

  分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最值,其中用到了均值不等式定理.

  解:设水池底面一边的长度为 x m,水池的总造价为 l 元,根据题意,得

  当

  因此,当水池的底面是边长为40m的正方形时,水池的总造价最低,最低总造价是297600元.

  评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析式的建立,又是不等式性质在求最值中的应用,应注意不等式性质的适用条件.

  为了进一步熟悉均值不等式定理在证明不等式与求函数最值中的应用,我们来进行课堂练习.

  三、课堂练习

  课本P 11练习1,4

  要求:学生板演,老师讲评.

  课堂小结:

  通过本节学习,要求大家进一步掌握利用均值不等式定理证明不等式及求函数的最值,并认识到它在实际问题中的应用.

  课后作业:

  习题6.2 5,6,7

  板书设计:

  均值不等式例2 §6.2.2例3学生

  定理回顾…… ……

  …… …… ……练习

  …… …… ……

高二数学教案13

  教学目标

  巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.

  重点难点

  理解二元一次不等式表示平面区域是教学重点.

  如何扰实际问题转化为线性规划问题,并给出解答是教学难点.

  教学步骤

  【新课引入】

  我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用.

  【线性规划】

  先讨论下面的问题

  设,式中变量x、y满足下列条件

  求z的值和最小值.

  我们先画出不等式组①表示的平面区域,如图中内部且包括边界.点(0,0)不在这个三角形区域内,当时,,点(0,0)在直线上.

  作一组和平等的直线

  可知,当l在的右上方时,直线l上的点满足.

  即,而且l往右平移时,t随之增大,在经过不等式组①表示的三角形区域内的点且平行于l的直线中,以经过点A(5,2)的直线l,所对应的t,以经过点的直线,所对应的t最小,所以

  在上述问题中,不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称线性约束条件.

  是欲达到值或最小值所涉及的变量x、y的'解析式,叫做目标函数,由于又是x、y的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数在线性约束条件①下的值和最小值问题.

  线性约束条件除了用一次不等式表示外,有时也有一次方程表示.

  一般地,求线性目标函数在线性约束条件下的值或最小值的问题,统称为线性规划问题,满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域,在上述问题中,可行域就是阴影部分表示的三角形区域,其中可行解(5,2)和(1,1)分别使目标函数取得值和最小值,它们都叫做这个问题的解.

高二数学教案14

  ●三维目标

  (1)知识与技能:

  掌握归纳推理的技巧,并能运用解决实际问题。

  (2)过程与方法:

  通过“自主、合作与探究”实现“一切以学生为中心”的理念。

  (3)情感、态度与价值观:

  感受数学的'人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。

  ●教学重点

  归纳推理及方法的总结。

  ●教学难点

  归纳推理的含义及其具体应用。

  ●教具准备

  与教材内容相关的资料。

  ●课时安排

  1课时

  ●教学过程

  一.问题情境

  (1)原理初探

  ①引入:“阿基米德曾对国王说,给我一个支点,我将撬起整个地球!”

  ②提问:大家认为可能吗?他为何敢夸下如此海口?理由何在?

  ③探究:他是怎么发现“杠杆原理”的?

  从而引入两则小典故:

  A:一个小孩,为何轻轻松松就能提起一大桶水?

  B:修筑河堤时,奴隶们是怎样搬运巨石的?

高二数学教案15

  一、教学目的

  使学生掌握等腰三角形性质定理(包括推论)及其证明.

  二、教学重点、难点

  重点:等腰三角形的性质.

  难点:文字命题的证明.

  三、教学过程

  复习提问

  什么叫做等腰三角形?什么是等腰三角形的腰、底边、顶点和底角?

  引入新课

  教师演示事先备好的等腰三角形纸片对折,使两腰叠在一起,发现它的两底角重合,从而得到等腰三角形两底角相等的命题,当然此命题的真实性还需推理论证.

  新课

  1.等腰三角形的性质定理等腰三角形的两底角相等(简写成“等边对等角”).

  让学生回忆前面学过的文字命题证明的全过程.引导学生写出已知、求证,并且都要结合图形使之具体化.

  2.推论1等腰三角形顶角平分线平分底边且垂直于底边.

  从性质定理的证明过程可以知道(如图1)BD=DC,∠ADB=∠ADC,所以AD平分BC,且AD⊥BC,即得推论.

  从推论1可以知道,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.

  推论2等边三角形的各角都相等,并且每一个角都等于60°.

  3.等腰三角形性质的应用.等腰三角形的性质有着重要的应用,一般说,利用“等腰三角形两底角相等”的性质证明两角相等;利用“等腰三角形底边上的三条主要线段重合”的.性质,来证明两条线段相等、两个角相等及两条直线互相垂直;利用“等边三角形各角相等,并且每一个角都等于60°”的性质,来证明一个角是60°,或作图中通过作等边三角形,作出一个60°的角.

  例1已知:如图2,房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC、屋椽AB=AC.求顶架上∠B、∠C、∠BAD、∠CAD的度数.

  这是一道几何计算题,要使学生熟悉解计算题的步骤,引导学生写出解题过程.

  小结

  1.叙述等腰三角形的性质(本堂所讲定理及推论)及其应用.

  2.等腰三角形顶角与底角之间的常用关系式:在△ABC中,AB=AC,则

  (1)∠A=180°-2∠B=180°-2∠C;

  3.已知等腰三角形一个角的度数,求其它两个角的度数:(1)若已知角是钝角或直角,则此角一定为顶角,于是由2中(2)可求出两底角;(2)若已知角是锐角,则此角可能是顶角,也可能是底角.若为前者,可按2中(2)求出两底角.若为后者,则可按2中(1)求出顶角.

  练习:略

  作业:略

  四、教学注意问题

  1.等腰三角形的性质在今后解(证)几何题中有着重要的应用,务必引起学生重视.且应反复练习.

  2.几何计算题的一般解题步骤.

【高二数学教案】相关文章:

高二数学教案07-04

人教版高二数学教案08-24

高二数学教案范文03-10

关于高二数学教案12-30

职高数学教案高二范文09-28

高二数学教案(15篇)12-28

高二数学教案15篇12-28

高二数学教案精选总结5篇分享08-27

下学期高二数学教案工作计划06-11