数学组合图形的面积教案

2023-02-11 数学教案

  作为一名无私奉献的老师,常常要写一份优秀的教案,教案是备课向课堂教学转化的关节点。教案应该怎么写呢?以下是小编帮大家整理的数学组合图形的面积教案,欢迎阅读,希望大家能够喜欢。

数学组合图形的面积教案1

  教学内容:92和93页练习十八

  教学目标:明确组合图形的意义;

  知道求组合图形的面积就是求几个图形面积的和(或差);

  能正确地进行组合图形面积计算,并能灵活思考解决实际问题。

  教学过程:

  一、复习。

  “第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:S=ab

  “第二个图形呢?”

  ......

  学生分别口答后,教师在每个图的下面写出相应的计算面积的公式.

  教师:计算这些图形的面积我们已经学会了,可是在实际生活中,有些图形是由几个简单的图形组合而成的.,这就是我们今天要学习的内容,板书:组合图形面积的计算。

  二、认识组合图形

  1、让学生指出92页页的四幅图有哪些图形?

  2、引导学生把下面的图形,组合成多边形(展示台上拼)

  对学生的拼出的图形,有选择地出示其中的几个。(如下所示)

  分别说出这些图形是由哪几个简单的图形组合而成。

  师:怎样计算这些组合图形的面积呢?(板题)

  二、组合图形面积的计算。

  1.讨论计算上面拼成的组合图形的面积。(生板演其余每组完成一图)

  订正,讨论第一图的两种方法。

  5×5+5×6÷2[5+(5+6)]×5÷2

  =25+15=16×5÷2

  =40(平方厘米)=40(平方厘米)

  2.在实际生活中,有些图形也是由几个简单的图形组合而成的(出示例1题目及图)。

  图表示的是一间房子侧面墙的形状。

  它的面积是多少平方米?

  如果不分割能直接算出这个图形的面积吗?(引讨横虚线的作用)怎样计算这个组合图形的面积呢?(讨论方法后,再打开书计算,同时指名板演)

  5×5+5×2÷2

  还能用其他的划分方法求出它的面积吗?(分组讨论)

  汇报讨论结果。可能有下面情况。

  [5+(2+5)]×(5÷2)÷2×2

  小结:一个组合图形,可以用多种方法划分成几个已经学过的简单图形,再分别计算出这些图形的面积,求出组合图形的面积,但要注意分割图形时,应当考虑计算的方便,特别要有计算面积所必需的数据。(比如--图示,能容易找出所需的数据吗?)

  三、巩固初步

  1.做一做/书93页

  2.练习十八/第1题

  3.练习十八/第2题

  (1)由中队旗引入

  (2)算出它的面积。(单位:厘米)--可能有下面几种情况

  S总=S梯×2S总=S长-S三

  5.练习十八/第3、4题

  四、拓展练习

  练习十八8*

  课后记:

数学组合图形的面积教案2

  教学目标:

  知识与能力

  1、结合生活实际认识组合图形,初步掌握用分解发和割补法计算组合图形的面积。

  2、能综合运用平面图性积计算的知识,培养分析。综合的能力,发展学生的空间观念。

  过程与方法

  1、通过拼一拼。找一找的过程,体会各种图案之间的内在联系,知道生活中各种物体的组合规律。

  2、培养动手操作能力,合作交流能力和空间想象能力。

  情感态度与价值观

  通过学习,体验生活中美丽图案的组合规律,激发主动学习的兴趣,培养审美观念和热爱学习数学的思想情。

  教学重难点:

  初步掌握组合图形面积的计算方法。正确、灵活地把组合图形转化为所学过的基本图形,并能根据各种组合图形的条件,有效地选择计算方法。

  教学准备:

  多媒体课件、练习题卡片。

  教学过程:

  一、复习导入,巩固基础

  1、我们已经学习了哪些基本的平面图形?

  2、他们的面积计算公式分别是什么?(请学生说一说)

  3、计算下面各图形的面积。(出示所学过的图形)

  师:这些单个的图形称之为简单的基本图形。

  师:在我门的生活中,有许多物体的表面是由这些简单的图形组合而成的,我们称之为组合图形。同学们,仔细观擦一下我们的教室,看一看哪些地方有组合图形。

  二、阅读质疑,自主探究

  师:同学们,我们刚才观察了教室内的组合图形,在我们的课本上也有几副美丽的图案,我们一起来看一看。

  1、同学们阅读课本。

  2、同桌交流图案的'组成。

  3、小组和作,拼一拼,讲一讲所拼图形的组成。

  4、用自己的话说一说什么是组和图形?

  三、合作探究

  1、出示例题4的图。

  师:这是一间房子侧面墙的形状,它是什么图形?怎样求它的面积?先独立想一想再小组交流。 提示。

  (1)这个图形有哪些简单的图形组合而成的?

  (2)求它的面积就是求哪几个图形的面积?

  (3)要求它们的面积需要什么条件?

  (4)教师给出条件,试求出它的面积。 小组讨论,教师巡视指导。

  2、汇报结果。

  (1)把组合图形分成一个三角形和一个正方形。分别算出它们的面积,再想加。

  (2)把组合图形分成两个完全一样的梯形,先算出一个梯形的面积,再乘以2。

  (3)仔细阅读课本,补充完整。

  (4)引导学生,总结方法 。 教师:想一想我们刚才是怎样求这个组和图形的面积的? 你认为那种方法简单呢?

  总结:在计算组合图形的面积时,先把组合图形分成易学过的简单徒刑,然后分别求出他们的面积在相加。

  四、练习巩固

  1、练习二十二第一、二题。

  教师出示相关的图形,请同学说说她是由那几种图形组成的。 (学生独立列式,并计算,教师巡回指导并讲解)

  2、发放练习卡片给学生做一做。

  说方法:长方形的面积—正方形的面积=阴影部分的面积请学生上黑板演示计算过程。 教师小结:通过刚才的练习,可见求组合图形的面积可以用相加的方法,也可以用相减的方法。

  3、你能用几种方法计算下图的面积。

  五、课堂小结

  1、通过这一节课的学习,同学们有什么收获?

  2、教师总结:组合图形在我们的生活中处处可见,应用广泛。只要我们细心观察,多动脑筋,就会掌握方法。

  板书设计:

  组合图形的面积

  几个简单图形组合而成

  (根据已知条件相加或相减)

  方法:分割法或添补法

数学组合图形的面积教案3

  【教学内容】

  北师大教材五年级上册第一单元第一课时《组合图形面积》

  【学校及学生状况分析】

  我校是白银市白银区的一所城区中心小校,多媒体设施比较齐全,可以进行课件演示及实物投影多媒体辅助教学,而且是北师大版五年级教材的使用学校。

  组合图形面积是由直观走向抽象的一节内容,重在方法的挖掘。在教学中,不能以教师为中心来死搬硬套教材,应合理地利用了教材资源。使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力,然后逐步展开有层次的思维训练,开阔学生的思维空间,鼓励学生积极探索。

  【教材分析】

  组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生算法多样化。

  【本课教学目标】

  1、知识与技能

  (1)、在自主探索的'活动中,理解计算组合图形面积的多种方法。

  (2)、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  (3)、能运用所学的知识,解决生活中组合图形的实际问题。

  2、过程与方法:

  让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。

  3、情感态度与价值观:

  (1)、结合具体题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。

  (2)、渗透转化的数学思想和方法。

  【教学重难点及关键】

  1、重点:掌握组合图形面积的计算方法。

  2、难点:理解计算组合图形面积的多种方法。

  3、关键:学会运用“分割”与“添补”的方法计算组合图形的面积。

  【课前准备】

  基本图形卡片、七巧板以及多媒体课件

  【教学课时】

  一课时

  【教学设计】

  (一)观察动画,复习旧知,引出新知

  1、观察动画,分析引入

  (媒体出示由基本图形拼成的太阳、狗、房子、小鸡、花草树木等)

  师:观察这幅图画,你发现了什么?

  生:很多的基本图形,组成了很多的图形)[板书:基本图形]

  师:这些由基本图形组合而成的图形,就叫做组合图形。[板书:组合图形]

  2、复习基本图形面积公式

  师:还记得我们都学过哪些基本图形吗?

  (随着学生回答,按学习的顺序贴各个基本图形)

  问:那谁还记得这些基本图形的面积公式?

  (随着学生回答,在各个基本图形后面写公式)

  师:真不错,看来同学们对面积公式知识的掌握相当扎实。那像这些组合图形,怎么求面积呢?有同学已经有想法了。今天这节课,我们一起来探索组合图形面积的计算方法?(板书:在组合图形后面增加“面积”)

  (设计意图:通过拼图游戏,激发学生学习的兴趣,学生兴趣浓厚的动手操作,在操作过程中理解了组合图形的意义。使课堂一开始就进入了一种轻松的学习氛围。)

  (二)动手拼图,初探方法

  1、自拼图形,分析要素

  师:拿出你的学具袋和做题纸。请一位同学来给大家读读要求吧。

  请你从学具中任选两个基本图形,拼出一个组合图形,粘在答题纸的方框内。

  边做边思考:

  师:你拼的组合图形由什么基本图形组成的?这些基本图形的要素是什么?

  师:现在,就请你挑出你喜欢的基本图形,来拼一个组合图形,并和小组内的同学讨论一下,怎么求你这个组合图形的面积呢?

  (学生活动,教师巡视,指导画高。)

  2、展示图形,分析条件

  (学生分别介绍所拼的组合图形后,教师选择其中的一个作重点分析。)

  师:现在,我们来看右面的组合图形(见右下图),它是由一个三角形和一个长方形组成的。有一条边既做三角形的底又做长方形的长,是公共边。

  (强调公共边:既做长方形的长,又作三角形的底。)

  3、打开思路,探索面积

  师:怎样求一个组合图形的面积?

  生:分另计算三角形与长方形的面积,然后相加。

数学组合图形的面积教案4

  教学内容:

  北师大版教科书第九册第75~76页的内容

  教学目标:

  1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中组合图形的实际问题。

  4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。

  重点、难点

  重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个小图形所需的条件。

  难点:如何选择有效的计算方法解决问题。

  教具准备:

  多媒体课件和组合图形图片。

  教学过程:

  一.引出概念,揭示主题。

  1.你能看出以下图形是由那些基本图形组成的吗?

  2.像这样由两个或两个以上基本图形组合而成的图形我们把它称为组合图形(板书“组合图形”)画一画,分一分。

  二.新授。

  这是我家的`客厅平面图!(课件出示客厅的平面图。)

  1、估计地板的面积

  师:请同学们先估一估这个地板的面积有多大呢?

  2、探索不同方法。

  师:同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证。请同学们观察这个图形,咱们学过怎样求它的面积?(停顿)那我们该怎么办?请把你的想法用虚线在图中表示出来。

  生动手画图。

  教师有选择的展示方法。

  3.师总结分割法和添补法。

  其实不管是用分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成以学过的平面图形。

  4.计算:

  现在你会计算这个组合图形的面积吗?

  要算每个小图形的面积分别需要哪些条件?请找一找,并标出来。

  生独立计算。

  5.汇报计算方法及结果。

  6.辨析及总结。

  (1)同学们为什么不选择分割五个或十个小图形的方法来计算面积呢?

  分成的图形越少,计算面积时就越简便,所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。

  (2)刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。

  三.巩固练习。

  1.根据条件算一算引入中两个图形的面积。2.动手做。根据你的方法测量你需要的数据进行计算。

  四.小结:谈谈你的收获!

  五.板书:

  组合图形面积

  图11.转化

  图22.找条件

  图33.计算图

数学组合图形的面积教案5

  教学目标

  1.明白组合图形是由几个简单图形组合而成的,求组合图形的面积,就是求几个简单图形面积的和或差的计算。

  2.能正确的分解图形,一般分为三角形、长方形、正方形、平行四边形、梯形等,并能正确地求组合图形的面积。

  教学重点

  能根据条件求组合图形的面积。

  教学难点

  理解分解图形时简单图形的差较难分解。

  教具、学具

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、试一试

  教师引导学生读题,理解题意。

  二、练一练第1题

  1、请学生任意分割,后说说分割的是什么已经学过的图形

  2、老师要求再分割

  3、想一想出了分割还有没有其他方法。

  这个图形是在一个长方形的纸板上剪下四个小正方形,所以要用长方形的面积减四个小正方形的面积。

  学生自己进行分割,

  再分割为最少的.学过的图形,比一比谁分的最少,而且还是我们学过的图形。

  适当地添上相关的条件进行分割,要求分割的合理,能够计算。

  培养学生的空间分析能力。

  通过三个层次的分割,使学生明白在组合图形的分割中,学要根据所给的条件进行合理的分割和添补。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  三、练一练第3题

  学生看书上的图。教师读题,

  要求学生想一想,并观察教室里的门,如果学生能发现要油漆门的两侧,教师要加以鼓励,还要注意些什么?

  四、作业

  完成练一练的第2题。

  理解题意后自己尝试计算,说说想法:要把门上的玻璃部分减掉,通过老师的提醒学生要明白要油漆门的两侧。

  除此以外还要注意第二问给出的平方米单位经过计算得到的单位是米,而图中给出的数据单位是分米,在计算面积时要把单位先统一。

  独立完成练习。

  学生能正确进行组合图形的实际运用。

  再进行组合图形的面积。

  书设计: 图形的面积

数学组合图形的面积教案6

  教学内容:

  教科书P75-76页的内容

  教学目标:

  1、知识与技能:

  (1)明确组合图形是由几个简单图形组合而成,求组合图形的面积就是求几个简单图形的面积的和或差的计算;

  (2)能正确地分析图形,并能正确地求组合图形的面积。

  2、能力目标:

  (1)通过实践操作、练习,提高观察、分析能力和解题的灵活性;

  (2)培养学生的自主探索、合作学习的能力。

  3、情感与态度:

  (1)培养学生积极参与数学学习活动的习惯;

  (2)在学习过程中让学生体验到成功的乐趣,增强学习数学的信心。

  教学重点:

  学生能够通过自己的动手操作,掌握用割补法求组合图形面积的计算方法。

  教学难点:

  理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的隐蔽条件,选择最适当的'方法求组合图形的面积。

  教学过程:

  一、创设情境,激趣导入

  1、欣赏图片媒体出示:

  师:数学真是无处不在呀!瞧!在很久很久以前,我国新疆地区有一座神秘的楼兰古国,那时人们安居乐业,看!(一座座美丽的房子)你们发现了什么?

  师让学生说出有哪些基本图形组成并认识组合图形,感受“数学图形之美”

  板书:组合图形

  3、复习平面图形面积计算。

  二、自主学习,探究新知

  1、出示(一座房子的侧墙的图)

  师:考古学家们在楼兰古国的遗址发现了其中的一堵保存比较好的墙,想知道

  它的面积有多大?你有办法计算吗?

  2、师:考古学家们要计算组合图形的面积来解决问题。其实,我们的生活中也有很多需要计算组合图形的面积的问题呢!瞧!淘气的好朋友小华家买新房,计划在客厅铺地板(出示客厅图)

  (1)师:请你估一估,小华家的客厅面积大约是多少?

  想一想,找同学来回答

  展示学生的做法,并请他说说思考过程。

  (2)师请生小组合作,讨论:计算小华家的客厅的实际面积是多少?

  方法有哪些?

  师:如果要你求这个组合图形的面积,你可以怎样求?

  (3)生汇报:先把它分割成长方形和梯形,然后把它们的面积加起来……

  师:用剪刀剪的方法有的时候不太方便操作,我们可以用加辅助线的方法来把组合图形进行分割。(辅助线用虚线来画)

  师:还有其他方法吗?

  (生如果没有得出用补的方法)师拿出剪下的三角形问:这个组合图形,刚才是怎么得到的?能给你启发吗?(得出用长方形面积减去三角形的面积)

  板书:贴+写

  师小结:同学们真能干,有的把组合图形分割成我们学过的几个基本图形,再把它们的面积加起来,有的补上一个我们学过的基本图形,然后面积相减,用了很多种方法,但有一点是相同的,你能看出来是什么吗?(求出来的面积是一样的。)(依据学生回答,教师适时板书:合理割补、分块求积、加减组合)

  2、基本练习

  老师遇到了一个生活中的实际问题,想请同学们两人一组帮忙解答,看看哪个小组的方法最多?

  (汇报)

  在以后求组合图形面积的时候,你可以选择你认为最简单的方法来求。

  学生自学例题及补充题,然后交流各题的解题策略,并引导比较异同。

  三、实践活动

  师:其实,在我们的身边很多物体的面都是组合图形,你能找出来吗?

  出示队旗:其实,我们的中队旗就是一个组合图形。

  (1)估一估:请你估一估,我们中队旗的面积大约是多少?想一想,找同学来回答

  (2)议一议:如果要你求它的面积,你会用什么办法计算?用你的方法计算需要测量哪些边的长度呢?

  (3)算一算:为了节省时间,有些数据我已经帮你们量过了(出示带有数据的中队旗)

  用你认为简单的方法进行计算。先做好的小组上来板书。

  反馈:你们是怎么思考的?

  师:跟你们估计的结果比较一下,看谁估计的最正确,掌声送给他!

  四通过这节课的学习,你有什么收获?

  希望同学们把我们所学的知识充分的利用到我们的生活当中,去解决生活中出现的有关问题。

  五、巩固练习,深化理解

  1、展示学生课前做的七巧板拼图作品。

  2、你能计算你的作品的面积吗?

  小组合作、测量所需条件并计算面积。

  指名交流计算方法,媒体随机出示学生解题策略。

数学组合图形的面积教案7

  教学目标:

  1.在自主探索的活动中,理解计算组合图形面积的多种方法。

  2.能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3.能运用所学的知识,解决生活中组合图形的实际问题。:教学重点:能根据条件求组合图形的面积。

  教学难点:

  理解分解图形时简单图形的差。

  教具学具:

  多媒体课件和长方体、正方体、平行四边形、梯形、三角形纸片。

  教学方法:

  先学后教,当堂训练

  教学过程:

  教师指导与教学过程学生学习活动过程设计意图

  一、在拼图活动中认识组合图

  1、同学们,我们已经认识了长方形、正方形、平等四边形以及三角形,下面请同学们拿出长方形、正方形,请你用这些图形拼一个复杂的图形,并说一说像什么。

  2、请学生将拼出的各式各样的图形,介绍给大家:你拼的图形什么?二、在探索活动中寻找计算方法。

  1、教师出示图形

  学生拿出课前准备的图形,进行拼图操作活动。

  学生拼出各种各样的图形,选出贴在黑板上。

  指名回答:我拼的图形像我家楼梯的台阶,像一张方桌、客厅地面……

  学生观察老师出示的图形,这幅图形象一张客厅的平面图。

  学生讨论怎样算买多少平方米的地板?

  通过这一操作活动,使学生从中体会到组合图形的组成特点。

  让学生认识组合图形的形成以及特点。

  让学生感受计算组合图形的必要性,并让探索的基础上,讨论得出计算组合图形

  请大家看一看,老师也准备了一个图形。对,像一张客厅的平面图,现在要在上面铺地板。

  2、提出问题

  你们知道应该买多少平方米的地板吗?

  只要求主面积,就知道买多少平方米的地板了。那么能直接算出来吗?

  3、请同学们想一想,为什么要将图形进行分割,图形割后,可以转化为我们学过的图形进行计算。

  学生动手算一算,想一想,不能直接算怎么办,动手画图,怎样他割。

  学生介绍自己探索中采用的分割方法。

  学生分别按照黑板上的方法计算主客厅的地板的.面积。

  学生发独立观察图并且解决问题,然后,集体汇报、订正。

  面积的基本方法。从中体会到组合图形的特点。

  让学生认识组合图形的形成以及特点。

  让学生感受计算组合图形的必要性。并让学生自主探索的基础上,讨论得出计算组合面积的基本方法。

  从中体会到组合图形的特点。

  板书设计:

  五、图形的面积

  组合图形面积

  2.成长的脚印

数学组合图形的面积教案8

  教学内容:

  课本第21页。

  教学目标:

  1、使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积

  2、能运用所学知识解决生活中组合图形的实际问题。

  3、自主探索,合作交流。培养学生认真思考,团结协作的能力。

  4、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

  教学重点:

  探索并掌握组合图形的面积计算方法。

  教学难点:

  理解并掌握组合图形的组合及分解方法。

  教学准备:

  课件

  教学过程:

  一、创设情境,激趣导入。

  1、同学们,我们已经学习了哪些多平面图形?

  导学要点:

  请同学们看大屏幕,认识组合图形。像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。

  2、感知:组合图形在我们生活中的应用很广泛(生举例),今天,我们就结合一个生活中的例子来学习组合图形的.面积。

  板书:组合图形的面积

  二、小组合作探究

  1、出示前置性作业小组交流

  复习

  (1)说说你学过哪些平面图形?

  (2)说说这些图形的面积计算公式?

  2、自学21页的例10

  (1)导学单

  1)小组合作将组合图形分成我们学习过的图形。说说你的分法,你是怎样想的?

  2)尝试计算每个图形的面积。

  3)思考:组合图形的面积是怎样计算出来的?

  导学要点:

  (1)分割法:将整体分成几个基本图形,求出它们的面积和。

  (2)添补法:用一个大图形减去一个小图形求出组合图形的面积。

  师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

  (2)小组交流

  1)从例题中我们可以看出,同一个组合图形,我们可以运用怎样的方法来解决?

  2)由于方法不同,我们计算组合图形的方法有什么不同?

  3)求组合图形面积时关键是做什么?

  导学要点:

  (1)要根据原来图形的特点进行思考。

  (2)要便于利用已知条件计算简单图形的面积。

  (3)可以用不同的方法进行割补。

  (3)全班交流

  1)学生举例并解答(前置作业我的例子)

  2)结合学生自己举的例子解答讲解。

  三、应用新知,解决问题

  1、课本第21页练一练

  (1)生独立计算。

  (2)生展示思路。

  点拨:

  计算组合图形的面积的基本策略:把原来的图形先分割成几个基本图形,再求这几个基本图形的面积只和;或者先把原来的图形拼补一个基本图形,再求相关基本图形面积之差。

  2、课本第23页练习四第1题前两题。

  点拨:

  (1)引导说说第一个图形梯形的上下底和高各是多少?是怎样看出来的?

  (2)引导说说第二个图形三角形的底是多少厘米?是怎样看出来的?

  3、课本第23页练习四第二题

  点拨:

  引导说说组合图形面积的计算方法。

  四、课堂总结

  通过这节课的学习,你学到了什么知识呢?

  教学反思:

数学组合图形的面积教案9

  一、教材内容:

  九年义务教育六年制小学教科书第九册第三单元第五节《组合图形面积的计算》。即P90---91页的例题和练习题。

  教学要求:

  使学生初步了解组合图形面积的计算方法,会计算一些较简单的组合图形的面积。

  使学生掌握组合图形常用的割补方法。

  教学重点、难点:

  教学重点:利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。

  教学难点

  根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。

  教学过程:

  以寻标追源为教学模式,以目标教学为基本教学形式,以尝试法为主要教学手段。

  前置回顾,展示目标;

  在发散思维中探究新知,精讲点拨,完成目标;

  概括总结,反馈矫正。

  ㈠、引标:创设情境,引导探索

  ⒈旧知辅垫,诱发注意

  电脑显示单车、榨栏、阶梯组合图,标出几种已学过的三角形、平行四边形、长方形、梯形,让学生说出名称和面积计算字母公式。

  (这里通过实物感知,了解各平面图形的特征,说出面积公式,加深对旧知识的复习,沟通新旧知识的联系,为学习新知识做好铺垫。)

  设景感知,激活思考

  电脑显示一幅美丽的画面,一位小天使对一面墙提出问题:你能计算这幢房的侧面墙的面积吗?从而揭示课题《组合图形面积的计算》。

  (这样通过直观并带有趣味的引导,使学生产生好奇心,引起学习动机,迫切试一试的愿望。从而吸引了学生的注意力,激发了学生的求知欲,从这里打开学生通道,促使学生想方设法去找组合图形面积的计算方法。)

  (二)寻标:提出问题,寻找目标

  叫学生齐读课题后,问:读了课题,你们想知道组合图形的什么知识?(组合图形面积如何计算)好,请同学们看书P90---91页,能否自己解决这些知识,看看它对这些知识是怎样讲的。

  (在这里老师先不做讲解,让学生带着求知欲看书,这是根据尝试原则,让学生在自我评价中获取新知识,它是教学的一种有效尝试。)

  (三)探标:追源问底,引导发现

  提出问题:为了求组合图形的面积,书上是如何讲的?、除了书上的分割方法外,你还有别的分割方法来求这个组合图形的面积吗?从而引发学生的发散思维。

  电脑显示学生可能想到的分割方法:

  ①分成一个三角形和一个长方形;

  ②分成两个梯形;

  ③分成三个三角形。

  其它方法给予口头定正正误。

  2.展示各种想法,得出组合图形面积的'求法。

  ⒊发散引导,找出新的解法:

  让学生观察分的方法后,提出问题:刚才所讲的都是把组合图形分成几个已学过的平面图形,那还有除了分以外的别的方法吗?

  电脑显示补的方法,并指出平面组合图形求面积的方法,常用的方法就是分、补两种方法。

  (这里有目的运用迁移规律,启发引导学生,教给学生获取知识的方法,以旧探新,引导学生看书、讨论、进行观察比较、概括,找到解决问题的方法,培养学生的探索精神。也有利于发挥学生的主体作用,同时使学生在探索规律的过程中发展思维能力。)

数学组合图形的面积教案10

  教学目标:

  1、在自主探索活动中,理解计算组合图形面积的多种方法。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中组合图形的实际问题。

  教学重点:能正确计算组合图形的面积。

  教学难点:能根据各种组合图形的条件,正确选择计算方法并解答。

  教学准备: A4纸 基本图形 作业练习

  教学过程:

  一、 谈话激趣,揭示课题

  师:老师第一次来到黄村小学,见到同学们我非常高兴,初次再面老师给每个同学都带来了一份礼物,快打开来看看是什么:

  1、 给学生发礼物

  2、 复习各个平面图形的面积公式

  (这里有长方形,正方形,三角形等,你们能说说这些平面图形的面积公式吗?)

  3、 拼成自已喜欢的组合图形

  请选择两个或两个以上的图形拼成你喜欢的图形。

  4、 学生展示并说一说由哪些基本图形组成的。

  (师:如果要求这个图形的面积你认为该怎样计算呢?谁来说一说?)

  5、 教师总结:像这样由我们学过的一些基本图形组合而成的图形我们把它叫做组合图形,像这样的组合图形的面积要怎样求得呢?这节课我们就一起来探讨组合图形面积的计算方法。

  二、 探索交流,解决问题

  1、 出示教材第88页的情境图

  师:这是智慧老人家客厅的平面图,他准备给客厅铺上地板。

  2、 想一想,估一估

  先让我们来估一估这个客厅的面积有多大呢?(师引导:根据这个客厅形状的特点,我们可以用学过的哪个图形的面积去估计它的大小呢?)

  (若学生估不出来)师再引导:是否可以用长为7米,宽为6米的长方形的面积去估计客厅的面积,如果可以,则客厅的面积是6*7=42平方米,所以客厅的面积不到42平方米,若看成是边长为6米的正方形的面积去做计客厅的面积,那么客厅的面积大约为36平方米。

  师:刚才我们在估算客厅面积时是把它看成我们学过的长方形或正方形,那么我们是不是也可以把这个客厅的平面图形转化成我们已经学过的图形去计算它的面积呢?

  3、 自主探索,计算面积

  师:请同学们拿出老师给大家准备的练习纸,动笔画一画,算一算。

  (师巡视,若发现学生不会再引导)刚才我们用简单的图形拼成组合图形,你能不能将这个组合图形分割成我们学过的基本图形,进而将组合图形的面积转化成已学过的图形的面积的计算。

  (1)学生动手画一画,师提示:(加一条辅助线。并将分割后的图形加上编号,再对图形1、2进行计算。)

  4、展示学生的作品,并由学生说说理由。(怎样计算的'?)

  5、(展示四种已计算的分法)再对前四种进行分类

  (师:

  分割法:

  添补法:

  割补法:

  (师:图形分割后我们要看一看分割后计算每个图形面积所要的数据有没有?)

  板书:

  1、先转化成已学过的基本图形。

  2、分割后的图形是否可以计算。

  3、分割后的图形是否比较简单易算。

  师:组合图形面积的计算我们先将这个图形转化成已学过的平面图形,再找出计算每个图形所需要的条件再进行计算。

  三、 理解运用,巩固练习

  师:通过解决智慧老人客厅的面积计算的问题,我们学习了组合图形面积的计算方法,在计算时我们一定要根据图形的实际特点,选用恰当的方法。

  老师出两题考考大家,敢接受挑战吗?

  1、 出示练习,学生做在练习纸上。

  2、 讲评完第一题后,操作第二题。

  四、 学生畅谈收获

  通过这节课的学习,你在什么收获?

数学组合图形的面积教案11

  教学目标:

  1、在自由探索的活动中,理解计算组合图形面积的各种方法。

  2、能根据各种组合图形的条件,有效地选择计算方法并正确解答。

  3、能运用所学的知识,解决生活中组合图形的实际问题。

  教学重点:能根据各种组合图形的条件,有效地选择计算方法,并进行正确的解答。

  教学难点:如何选择有效的计算方法解决问题。

  教学准备:图形卡片、题卡

  教学过程:

  一、激趣导入。

  1、师:老师这里有一个神秘宝盒,你们想知道这里面藏着什么吗?请同学们来摸一摸。

  生摸出图形,老师贴在黑板上,指名说说怎样计算这些图形的面积。

  2、师:老师也为你们准备了礼物,快拿出来拼一拼,粘在白纸上,看谁拼的图案最漂亮。

  生拿基本图形拼。

  指名展示所拼图案,说说拼的是什么,是由什么图形拼成的。

  3、揭示课题。

  这些图形都是由两个或两个以上基本图形拼成的图形,叫做组合图形,这节课我们一起来探索组合图形的面积(板书课题:组合图形的面积)。

  4、屏幕出示图形,这些分别是什么图形,这里面有你认识这些图形吗,你是怎样看出来的?

  二、探究新知。

  1、出示例题。

  老师最近正在装修房子,可是遇到了困难,你愿意帮忙吗?

  你老师打算在客厅铺上地板,地面的平面图如图,请同学们帮老师做一下预算,估计至少要买多大面积的地板,再实际算一算,并与同学们交流。

  生先说估计值,并说出依据,教师在黑板右上角板书。

  2、小组探索。

  刚才我们只是估计一下,但实际在买的时候,买多了浪费,买少了还要去买,太麻烦,以我们必须求出实际的`面积。我们没有学过这种图形的面积,怎么办呢?

  生:我们可以把它转化成我们学过的图形再求面积。

  小组合作探索,组长拿出工作表,小组同学分别说一说自己的想法,并在图中画出来,看看你们小组能想出几种简便易行的方法。

  教师巡视指导。

  3、全班汇报交流。

  小组汇报,在投影上展示自己小组的做法,分别说说为什么这样分割,怎样求面积。其他小组长把和他一样的方法做上标记。

  教师强调:为了和原线段区分开,后添加的线段要画虚线,这条虚线是为了辅助完成这道题的,所以叫做辅助线。

  生共同探索所说的方法是否能求出面积,不合适的说出为什么。

  把以上方法汇总,说说哪种方法最简单,为什么?

  师:分割或添补的越简单,计算起来就会越简便。

  4、教师贴出学生选出的

  4种简便方法,用卡纸贴在黑板上。

  生观察着几种方法,把它们分类。

  师相应板书:分割法添补法

  这两种方法在计算时有什么不同吗?

  6、选择一种你最喜欢的方法,计算出图形的面积。

  指名板演。检查订正,写出答语。

  把实际结果与估计结果比较,看看谁估计的比较准。

  师:只要选择了简便易行的方法,我们求组合图形的面积才会又快又准确。

  三、实际应用。

  1、这里有两个鱼缸,请你选择最简便的方法把它们转化成我们学过的图形。

  2、学校要粉刷教室,粉刷一面墙每平方米需用

  0.15千克涂料,一共需要用多少千克涂料?

  生在题卡上答题,师巡视指导。指名展示自己的方法,生判断哪种方法最简便。

  3、学校要油漆

  60扇教室的门的外面,(单位:米)。

  (1)需要油漆的面积一共是多少?

  (2)如果油漆每平方米需要花费

  5元,那么学校共要花费多少元?

  指名读题,说说完成这道题要注意什么?

  生独立完成。汇报。

  四、全课总结。

  你说说这节课你有什么收获。

  师:在我们的生活中,数学无处不在,运用我们学过的数学知识来解决身边的难题,那是多么快乐的一件事呀!让我们一起学好数学吧!

  五、课外练习。

  在你身边找出一到两处组合图形,先估计一下它们的面积,再选择你认为最简便或最适合自己的方法,实际算一算。

数学组合图形的面积教案12

  教学目标:

  ⑴使同学认识圆环,掌握圆环的特征,掌握计算圆环的面积的方法。

  ⑵通过操作、探索、发现、交流等活动,初步培养同学合作意识和创新意识,进一步发展同学的空间观念和交流能力。

  ⑶通过学习,提高同学对数学的好奇心和求知欲,学会从数学角度认识世界、解释生活,感受数学的魅力。

  教学流程:

  一、说圆环。

  ⑴剪圆环活动。

  出示一个同心圆环;

  让同学用一张白纸剪出同样的一个圆环。

  ⑵说剪圆环的过程。

  让同学介绍剪出圆环的过程,体验大圆中剪掉一个小圆的过程,感受圆环的大小就是大圆面积减小圆面积。

  二、算圆环。

  1、教学例10

  出示例10和图。

  师问:从题中你获得哪些信息?要计算它的面积,你有什么好的方法?在小组中说说你的想法。

  同学汇报和交流方法。

  同学自主尝试练习。

  交流解答过程。

  同学交流(同学作品放在视频投影仪上向全班介绍):圆环面积的计算方法,大圆面积-小圆面积;圆环面积的计算步骤,可先算大圆面积,再算小圆面积,最后用减法算圆环面积;全班介绍,教师板书解答的全过程。

  2、教学“试一试”

  出示题目和图形,理解题意。

  同学独立计算。

  交流解题方法,注意提醒同学半圆的`面积必需把整圆的面积除以2。

  3、教学“练一练”

  考虑:

  (1)求涂色局部的面积,需要计算哪些基本图形的面积?

  (2)计算这些基本图形的面积分别需要哪些条件?

  (3)第一个图形,两个基本图形有什么练习?第二个图形呢?

  (4)同学独立完成,并全班交流。 反馈时,注意加法求组合图形面积和减法求组合图形的不同。

  三、巩固练习。

  1、完成练习十九第6题。

  先说说每个组合需要丈量途中哪些线段的长度?再让同学独立完成。

  完成后展示同学作业 ,并交流方法。

  2、完成练习十九第7题。

  同学根据图形作出直观的判断,并说说直观判断的方法。

  师追问:你是怎样想到的?

  同学通过计算检验所作出的判读。

  3、完成练习十九第8题。

  (1)观察图,理解题意。

  (2)指导分析。

  4、完成练习十九第9题。

  师问:你能估计出每种花卉分别所占图形面积的几分之几吗?指导用画出辅导线的方法,来估计每种花卉所占圆形面积的几分之几。

  同学独立计算每种花卉的种植面积。

  完成后交方法。

  四、阅读“你知道吗?,并算一算。

  五、课堂总结

  师:通过今天的学习,你有什么收获?说说缓刑的面积可以怎样求?在计算组合图形的面积时需要注意什么?

  六、作业

  练习十九第6题、第8题.

数学组合图形的面积教案13

  教学内容:

  课本第92页到第93页的教学内容

  教学目标:

  1、认识组合图形、会把组合图形分解成已学过的平面图形。

  2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

  3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。

  4、通过拼组图形,使学生感受教学与现实生活的密切关系,体会数学带给大家的生活美。

  重、难点与关键

  1.探索并掌握组合图形的面积计算方法。

  2.理解并掌握组合图形的组合及分解方法。

  教具准备

  教学用三角尺或教学挂图、PPT课件。

  教学过程

  一、复习导入

  1.复习。

  你们已经学会了计算哪些平面图形的面积?说一说这些图形的面积计算公式?

  长方形的面积=长×宽;正方形的面积=边长×边长

  平行四边形的面积=底×高;三角形的面积=底×高÷2

  梯形的面积=(上底+下底)×高÷2

  2.导入。

  3.大家学会的知识可真多。为了奖励你们,老师请你们去欣赏一些美丽的图案,请同学们欣赏时认真想想:你们发现了什么?

  二、新授课

  1.认识组合图形。

  出示课本第92页的四幅图。

  认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开课本第92页,先找一找,然后在四人小组内互相讨论。比比看哪一个小组的分法最简单?

  (1)四人小组讨论。

  (2)小组各自展示各种分法。

  (3)让学生举例说说生活中的组合图形。

  同学们,开动脑筋想象:生活中哪些地方还有组合图形

  2.探索组合图形面积的计算方法。

  教师引导:大家真了不起,知道生活中存在着这么多的'美丽组合图形,那如果我们想知道这些组合图形有多大,实际上是求什么?现在我们就来探讨组合图形的面积计算方法。

  板书课题:组合图形的面积

  (1)出示例题4(电子教材)

  (2)学生独立解答。

  学生解答时,让他们思考还有其他解法吗?如果有困难,可以在小组内互相帮助。

  (3)学生汇报。

  解法一:5×5+5×2÷2

  解法二:(5+7)×2.5÷2×2

  =25+5 =12×2.5÷2×2

  =30(m2) = 30(m2)

  学生在汇报时,教师提问:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

  师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同,所以请同学们想想。求组合图形面积时关键是做什么?(图形分解)

  三、巩固练习

  完成课本第93页的“做一做”。

  问:这块地是由哪些简单的图形组成的?

  1.学生独立计算。

  2.学生汇报,展示思路。

  四、课堂小结

  通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的?有哪些不明白的地方?

  在小结过程中,不仅让学生小结这节课学到的知识,而且让学生学会评价,学会评价自己和他人。

  五、布置作业

  这是我们学校将要开辟的一块草坪,如下图。你能算出它的面积吗?现在有两家公司联系,A公司说种一平方米草要5元,B公司说种同样的草一共需要2500元。如果让你决定,你会选择哪家公司?

数学组合图形的面积教案14

  教学内容:教材第68—69页含有圆的组合图形的面积。

  教学目标:

  1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。

  2、通过自主合作,培养学生独立思考、合作探究的意识。

  3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。

  教学重难点:组合图形的认识及面积计算、图形分析。

  教具学具准备:多媒体课件、各种基本图形纸片。

  教学设计:

  ⊙创设情境,认识圆环

  1.师:我们来欣赏一组美丽的图片。

  课件出示圆形花坛、圆形水池外的圆形甬路、奥运五环标志、光盘……

  2.同学们,你们从图中发现了什么?(它们都是环形的)

  3.教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。

  你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的变化?

  (学生结合生活实际谈谈已经知道的环形物体以及它给我们的生活带来的乐趣)

  4.导入新课:这节课我们一起来探讨环形的知识。(板书课题:圆环的面积)

  设计意图:从学生掌握的常识和熟悉的事物入手,使其感受到数学就在我们身边,学生从直观上也感受到了环形的特点,为后面学习环形的面积奠定基础。

  ⊙探索交流,解决问题

  1.画一画,剪一剪,发现环形特点。

  (1)画一画。

  让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的'圆。

  (学生按照要求画圆)

  (2)剪一剪。

  指导学生先剪下所画的大圆,再剪下所画的小圆。

  问:剩下的部分是什么图形?(环形)

  师:我们也称它为圆环。

  (3)教师手拿学生剪的圆环提问:这个圆环是怎样得到的?

  生明确:圆环是从外圆中去掉一个内圆得到的。

  (4)借助图示认识圆环的各部分名称。

  你知道圆环各部分的名称吗?(出示图示引导学生明确相关内容并板书)

  ①外圆:又名大圆,它的半径用R表示。

  ②内圆:又名小圆,它的半径用r表示。

  ③环宽:指外圆半径和内圆半径相差的宽度。

  2.探究圆环面积的计算方法。

  (1)小组讨论,怎样求圆环的面积?

  (2)汇报讨论结果。

  (3)小结:环形的面积=外圆面积-内圆面积。

  设计意图:以学生的亲身实践贯穿始终,同时在这一过程中渗透一些方法,如动手操作、合作交流、观察、分析等,使学生在学习中运用、在运用中掌握,学生通过自己动手操作,把环形从一般图形中分离出来,快速地抓住了环形的本质特征,形成环形的概念,并顺利推导出圆环面积的计算公式,发展了学生的空间观念。

  3.课件出示例2。

  光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少?

  (1)学生读题。

  观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的面积?

  (2)学生试做,指生板演。

  (3)交流算法,学生将列式板书:

  解法一

  外圆的面积:πR2=3。14×62

  =3。14×36

  =113。04(cm2)

  内圆的面积:πr2=3。14×22

  =3。14×4

  =12。56(cm2)

  圆环的面积:πR2-πr2=113。04-12。56

  =100。48(cm2)

  解法二

  π×(R2-r2)=3。14×(62-22)=100。48(cm2)

  答:圆环的面积是100。48cm2。

  (4)比较两种算法的不同。

  (5)小结:圆环的面积计算公式:S=πR2-πr2或

  S=π×(R2-r2)(板书公式)

  (6)讨论。

  知道什么条件可以计算圆环的面积?怎样计算?(给学生充分的思考时间,引导学生结合图示多角度解答)

  ①知道内、外圆的面积,可以计算圆环的面积。

  S环=S外圆-S内圆

  ②知道内、外圆的半径,可以计算圆环的面积。

  S环=πR2-πr2或S环=π×(R2-r2)

  ③知道内、外圆的直径,可以计算圆环的面积。

  ④知道内、外圆的周长,也可以计算圆环的面积。

  S环=π×(C外÷π÷2)2-π×(C内÷π÷2)2

  或S环=π×[(C外÷π÷2)2-(C内÷π÷2)2]

  ⑤知道内、外圆的直径或半径及环宽,也可以计算圆环的面积。

  S环=π×[(r+环宽)2-r2]

  或S环=π×[R2-(R-环宽)2]

  ……

  设计意图:联系生活,进一步认识圆环;结合图示理解圆环面积的计算公式。例题主要由学生自己完成,最后老师引导学生列出综合算式,使学生领会两种方法间的区别,好中选优,展现学生的创新精神。在合作讨论中进一步弄清求圆环面积所需要的条件,培养学生多角度思考的习惯。

  ⊙巩固练习,拓展提高

  1.完成教材68页1题。

  学生独立完成,然后在班内说一说解题思路。

  2.一个环形铁片,外圆直径是20dm,内圆半径是7dm,这个环形铁片的面积是多少?

  3.已知阴影部分的面积是75cm2,求圆环的面积。

  [引导学生理解阴影部分的面积为R2-r2=75(cm2),圆环的面积=π(R2-r2)=3。14×75=235。5(cm2)]

  设计意图:练习设计突出重点,由浅入深,由易到难。通过练习不仅巩固了所学知识,又让学生把获得的知识应用于实际生活,提高了学生应用知识解决实际问题的能力,增强了学生的数学应用意识。

  ⊙反思体验,总结提高

  这节课我们学习了什么?你有哪些收获?还有什么问题?

  ⊙布置作业,巩固应用

  1.完成教材72页8题。

  2.找一些关于环形的资料读一读。

  板书设计

  圆环的面积

  圆环面积=外圆面积-内圆面积

  S环=πR2-πr2或S环=π×(R2-r2)

数学组合图形的面积教案15

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙谈话揭题

  1.谈话。

  (1)我们学过哪些平面图形?你知道它们的周长、面积的计算公式吗?

  预设

  生1:我们学过三角形、长方形、正方形、平行四边形、梯形、圆和环形等平面图形。

  生2:三角形的面积计算公式是“底×高÷2”。

  ……

  (2)你们学过哪些立体图形?你们知道它们的表面积、体积的计算公式吗?

  预设

  生1:我们学过长方体、正方体、圆柱、圆锥。

  生2:长方体的表面积……

  2.揭题。

  我们曾经学过的这些图形,一般称为基本图形或规则图形,这节课我们来复习组合图形、不规则图形的相关知识。

  ⊙回顾与整理

  1.提问:如何求组合图形、不规则图形的周长或面积?

  (一般通过“割补”“平移”“旋转”等方法,将它们转化成求基本图形周长或面积的和、差等)

  2.提问:如何计算立体组合图形的表面积或体积?

  (1)学生分组讨论。

  (2)指名汇报。(学生自由回答,合理即可)

  (3)教师小结。

  在计算立体组合图形的表面积时,可以把每个面的面积进行累加,也可以借助视图来求表面积。

  在计算立体组合图形的体积时,有的要把几个物体的体积相加来求体积,有的要从一个物体的体积里减去另一个物体的体积,这要根据具体情况而定。

  无论是分割还是添补,都是把复杂的图形转化成简单的图形。

  ⊙典型例题解析

  1.课件出示典型例题1。

  (1)求阴影部分的面积。(单位:cm)

  分析 本题考查学生求组合图形面积的能力。

  因为阴影部分是不规则图形,所以可以采用阴影部分的面积=长方形的面积-大三角形的面积-小三角形的面积的方法来求面积。

  解答 20×16-12×20÷2-8×16÷2=136(cm2)

  (2)下面是两个完全相同的直角三角形,其中一部分重叠在一起,求阴影部分的面积。(单位:cm)

  分析 从图中可以看出,阴影部分是一个梯形,但梯形的上、下底和高都不知道,所以无法直接求出它的面积。

  观察图形可以看出:阴影部分的面积加上三角形EFC的面积等于大三角形DEG的`面积,而梯形ABEF的面积加上三角形EFC的面积等于大三角形ABC的面积,且两个大三角形的面积相等,所以阴影部分的面积与梯形ABEF的面积相等,只要求出梯形ABEF的面积就可以求出阴影部分的面积。

  解答 (8-3+8)×6÷2=39(cm2)

  2.课件出示典型例题2。

  将高都是1 m,底面半径分别是5 m、3 m和1 m的三个圆柱组成一个物体,求这个物体的表面积。

  分析 本题考查的是求立体组合图形表面积的能力。

  如图,这个物体由三个圆柱组成,仔细观察可以发现:向上的露在外面的三个面的面积之和(两个圆环和一个圆)正好等于大圆柱一个底面的面积(或者说相当于大圆柱上底面的面积)。

  物体的表面积=大圆柱的表面积+中圆柱的侧面积+小圆柱的侧面积

  解答 2×3.14×52+2×3.14×5×1+2×3.14×3×1+2×3.14×1×1

  =157+31.4+18.84+6.28

  =213.52(m2)

【数学组合图形的面积教案】相关文章:

数学《组合图形的面积》说课稿06-15

数学《组合图形的面积》说课稿11-29

组合图形的面积08-27

组合图形的面积优秀教案06-16

《组合图形的面积及体积》教案06-25

《组合图形的面积及体积》教案09-17

《组合图形面积的计算》教案01-06

《组合图形的面积》数学教案(精选5篇)11-29

小学数学《组合图形面积》说课稿10-23