数学《组合图形的面积》说课稿

2024-12-16 说课稿

  作为一位杰出的教职工,通常会被要求编写说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。优秀的说课稿都具备一些什么特点呢?下面是小编为大家收集的数学《组合图形的面积》说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

  数学《组合图形的面积》说课稿 1

  一、教材分析:

  《组合图形的面积》是人教版五年级上册第五单元的内容。在三年级时,学生已经学习了长方形与正方形的面积计算,在本册又学习了平行四边形、三角形与梯形的面积计算,本课时的组合图形面积的计算是这两方面知识的发展,也是日常生活中经常需要解决的问题。在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。发展学生的空间观念,为下面立体图形的学习做好铺垫。

  二、学生分析

  本课的授课对象是五年级的学生,学生通过之前的学习对于平面图形直观感知和认识上已有了一定的基础,也掌握一些解决基本图形问题的方法。 根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难。尤其是对转化思想的渗透,学生在探索组合图形面积的计算方法时,应该能通过自主探索、合作交流,达到方法的多样化。但是对于方法的交流、借鉴、反思及优化上需要教师的引导,所以,要重视让每个学生都积极地参与到活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。

  三、教学目标

  根据新课标的要求及教材的特点,充分考虑到五年级学生的心智水平,并在对教学效果进行全面预测的基础上,确立如下教学目标

  1、知识与技能

  (1)在自主探索的活动中,理解计算组合图形的多种方法。

  (2)能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  (3)能运用所学的知识,解决生活中有关组合图形面积的实际问题。

  2、过程与方法

  让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。

  3、情感态度与价值观

  结合装修房子的情境,让学生感受学习组合图形面积的必要性,再学生探索、解决的过程中激活学生思维,通过师生互动、生生互动,学生动手操作、合作交流,让学生在活动中得到积极体验数学在生活中的必要性,从而产生积极的数学学习情感。

  四、教学重、难点:

  为了更好的达到目标,考虑到学生掌握新知的能力,从而确定本节课的教学重难点。

  1、教学重点:学生能够通过自己的动手操作,掌握用割补法求组合图形面积的计算

  2、教学难点:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的隐蔽条件,选择最适当的方法求组合图形的面积。

  五、教学理念:

  新课标指出:数学教学应联系现实生活,获得积极情感的体验。培养学生的创新精神和应用意识。本节课,首先采用情境导入法,创情境导思维使学生乐学。拼图游戏,通过拼一拼、画一画、猜一猜、说一说导出组合图形的意义。装修房子激发学生的学习兴趣,提高学习效果。

  在教学中时刻运用引导式教学,在教学中教师要激发学生的学习动机,使之对学习产生浓厚的兴趣,师精导、生巧学,以学论教,扶放结合。由学生小组合作共同探索问题的解决方法时,当学生想出各种不同的方法时,引导学生自己比较方法的异同点,并进行归纳,同时在此基础上懂得根据条件选择合适的方法来解决问题。

  六、教学设计:

  为了能更好的凸显有效教学的教学理念,高效的完成教学目标,特结合普遍学习特点,设计如下环节:

  (一)复习旧知,引出概念

  为了更好的认识组合图形的概念,注重新旧知识的迁移,先复习学生熟悉的几种平面几何图形,进而介绍组合图形的.概念。

  (二)组织动手实践 多维尝试探究

  创设老师家装修遇到困难请同学帮忙的情境,出示计算老师家客厅面积的问题,先让有方法的同学们说说自己的计算方法,在学生们都明白之后,随后就可以组织小组探索有没有其他方法,然后在全班将多种方法进行展示。

  在全班交流时引导学生比较方法,让学生观察哪些方法有相同之处。,引导学生分析、比较各种方法的区别与联系。近而让学生对分割法和添补法进行讨论,让学生明确分割法就是将分割的基本图形进行相加,而添补法就是从大图形中减去添上来的小图形。最后让学生知道计算组合图形的面积有多种方法,只要同学们认真观察,多动脑筋,选择自己喜欢而又简单的方法进行计算就可以了。

  (三)抓住重点环节,理解内容

  学生认知是由浅入深的,通过动手实践,他们已经知道:组合图形的面积可以通过分割、添补成我们所学过的平面图形的方法得到,抓住这个重点,组织学生理解,突破教学重难点,完成了本节课的教学目标,真正做到了有效教学。到此,教学中仍然借助装修房子的情境,给出凉台的平面图,让学生根据已知数据计算面积,这样通过自主探究的学习方式充分调动了学生学习的积极性,让学生真正成为学习的主人。

  (四)分层运用新知,逐步理解内化

  对于新知需要及时组织学生巩固运用,才能得到理解内化效果。本着重基础、验能力、拓思维的原则,延续着本节课的装修房子情境设计层次练习。教师出示天花板的平面图,让通过学生小组合作共同探索总结出多种方法解决问题,在巩固组合图形面积计算方法的同时,学生也获得了成功的喜悦。

  最后,开放练习,把时间留给学生,让他们通过本节课学习的计算组合图形面积的方法来计算出拼图游戏时自己所拼的组合图形的面积!让学生真正做到学以致用!

  设计以上练习可以让学生更深入理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的隐蔽条件,选择最适当的方法求组合图形的面积。真正做到有效练习!

  数学《组合图形的面积》说课稿 2

  教学目标:

  1、让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。

  2、通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

  3、使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

  教学重点:

  掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。

  教学难点:

  应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

  教学准备:

  圆规,环形图片,教学情境图。

  教学过程:

  一、创设情境,引入新知

  1、出示自然界中的一些环形图片。

  (l)观察图片,说说这些图形都是由什么组成的。

  (2)你能举出一些环形的实例吗?

  2、引入:今天这节课我们就一起来研究环形面积的计算方法。

  二、合作交流,探究新知

  1、教学例11。

  (1)出示例11题目,读题。

  (2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。

  (3)小组讨论,理清解题思路。

  (4)集体交流

  ①求出外圆的面积。

  ②求出内圆的面积。

  ③计算圆环的面积。

  (5)学生按步骤独立计算。

  (6)组织交流解题方法,教师板书

  ①求出外圆的面积:3.14102 =314(平方厘米)

  ②求出内圆的面积:3.1462 =113.04(平方厘米)

  ③计算圆环的面积:314-113.04=200.96(平方厘米)

  (7)提问:有更简便的计算方法吗?

  (8)学生回答后,小结:求圆环的面积一般是把外圆的`面积减去内圆的面积

  还可以利用乘法分配率进行简便计并。

  简便计算

  3.14102-3.1462

  =3.14(102-62)

  =3.1464

  = 200.96(平方厘米)

  答:这个铁片的面积是200.96平方厘米。

  2、概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?

  数学《组合图形的面积》说课稿 3

  教学目标:

  知识与技能:结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。

  过程与方法:根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。

  情感、态度与价值观:能运用组合图形的知识,解决生活中组合图形的实际问题。

  教学重点:理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的条件。

  教学难点:根据组合图形的条件,有效地选择汁算组合图形面积的方法。

  教学方法:动手实践、自主探索、合作交流。

  教学准备:师:多媒体、各种平面图形。

  生:七巧板、简单图形学具、少先队中队旗实物。

  教学过程

  一、情境导入

  1、创设情境导入:同学们都玩过七巧板吧,在七巧板里都有哪些图形呢?(长方形、三角形、平行四边形……)

  2、你能用七巧板拼出什么图形来?指几名学生用七巧板拼出图形,并展示。

  通过学生拼出的图形引出组合图形的定义:由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。

  3、这节课我们就一起来学习求组合图形的面积。(板题:组合图形的面积)

  二、互动新授

  l.谈话:在实际生活中,有许多图形都是由几个简单的图形组合而成的。出示教材第99页的各种图形。

  这些组合图形里有哪些是学过的'图形?同学们试着找一找。

  小组合作,尝试找出情境图中的组合图形是哪些图形组成的,并交流汇报。

  2、说一说:在生活中还有哪些地方有组合图形?请同学们说一说。

  学生可能会想到:厨房里的三角架、房子的分布图、桌子等。

  3、引导思考:关于组合图形,你还想研究它的什么知识?

  4、出示教材第99页例4:一间房子侧面墙的形状图。

  引导学生观察图并思考:怎样计算出这个组合图形的面积?

  组织学生小组合作学习,说一说是怎样分的,然后再算一算。集体汇报。

  三、巩固拓展

  1、完成教材第101页“练习二十二”第1题。

  2、完成教材第101页“练习二十二”第2题。

  3、完成教材第101页“练习二十二”第3题。

  四、课堂小结

  师:这节课你学会了什么?有哪些收获?

  板书设计:

  组合图形的面积

  由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。

  5×5+5×2÷2 (5+5+2)×(5÷2)÷2×2

  =25+5 =12×2.5÷2×2

  =30(2) =30 (2)

  教学反思:

  数学《组合图形的面积》说课稿 4

  教学目标:

  1.在自主探索的活动中,理解计算组合图形面积的多种方法。

  2.能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3.能运用所学的知识,解决生活中组合图形的实际问题。:教学重点:能根据条件求组合图形的面积。

  教学难点:

  理解分解图形时简单图形的差。

  教具学具:

  多媒体课件和长方体、正方体、平行四边形、梯形、三角形纸片。

  教学方法:

  先学后教,当堂训练

  教学过程:

  教师指导与教学过程学生学习活动过程设计意图

  一、在拼图活动中认识组合图

  1、同学们,我们已经认识了长方形、正方形、平等四边形以及三角形,下面请同学们拿出长方形、正方形,请你用这些图形拼一个复杂的图形,并说一说像什么。

  2、请学生将拼出的各式各样的`图形,介绍给大家:你拼的图形什么?

  二、在探索活动中寻找计算方法。

  1、教师出示图形

  学生拿出课前准备的图形,进行拼图操作活动。

  学生拼出各种各样的图形,选出贴在黑板上。

  指名回答:我拼的图形像我家楼梯的台阶,像一张方桌、客厅地面……

  学生观察老师出示的图形,这幅图形象一张客厅的平面图。

  学生讨论怎样算买多少平方米的地板?

  通过这一操作活动,使学生从中体会到组合图形的组成特点。

  让学生认识组合图形的形成以及特点。

  让学生感受计算组合图形的必要性,并让探索的基础上,讨论得出计算组合图形

  请大家看一看,老师也准备了一个图形。对,像一张客厅的平面图,现在要在上面铺地板。

  2、提出问题

  你们知道应该买多少平方米的地板吗?

  只要求主面积,就知道买多少平方米的地板了。那么能直接算出来吗?

  3、请同学们想一想,为什么要将图形进行分割,图形割后,可以转化为我们学过的图形进行计算。

  学生动手算一算,想一想,不能直接算怎么办,动手画图,怎样他割。

  学生介绍自己探索中采用的分割方法。

  学生分别按照黑板上的方法计算主客厅的地板的面积。

  学生发独立观察图并且解决问题,然后,集体汇报、订正。

  面积的基本方法。从中体会到组合图形的特点。

  让学生认识组合图形的形成以及特点。

  让学生感受计算组合图形的必要性。并让学生自主探索的基础上,讨论得出计算组合面积的基本方法。

  从中体会到组合图形的特点。

  板书设计:

  五、图形的面积

  组合图形面积

  2.成长的脚印

  数学《组合图形的面积》说课稿 5

  教学内容:

  教科书第90页的例题,完成例题下面的”做一做“和练习二十一的题目。

  教学目的:

  使学生初步了解组合图形面积的计算方法,会计算一些比较简单的组合图形的面积。

  教具准备:

  将复习中的图画在小黑板上,再将教学例题时所用的图也画在小黑板上。

  教学过程:

  一、复习

  问:第一个图形是什么形?它的面积怎样计算?(学生回答,教师在长方形下面板书:S=ab,其他图形,学生分别回答后,教师在每个图的下面写出相应的计算面积的公式。)

  二、新授。

  1、教学例题。

  教师:组合图形就是由我们已学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。在实际生活中有进需要计算这些组合图形的面积。例如有些房子侧面墙的.形状是这样的:(出示小黑板)

  问:这个图形的面积我们过去学过吗?(让学生仔细观察一下)

  我们虽然没有学过计算这个图形面积的计算公式,可是能不能把这个图形分成几个我们已经学过的图形呢?怎样分?(指名学生到黑板前画一画,教师标出相关尺寸。)

  现在把这个图形分成了一个三角形和一个正方形,它的面积怎样计算?(学生看教科书第90页上的例题,把书上的算式填完整。)

  :在实际生活中我们见到的物体表面,有很多图形是由我们已经学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。计算这些图形的面积,一般是先把它们分成已学过的简单图形,分别计算出各个简单图形的面积,然后再把它们合起来,便可以求整个组合图形的面积。)

  2、做例题下面”做一做“中的题目。

  先让学生读题。

  问:“这块菜地可以看成是由哪些图形组合而成?”

  让每个学生在练习本上列式计算。做完后集体核对。

  三、巩固练习。

  做练习二十一中的题目。

  第3题,投影片出示一面少先队的中队旗。

  问:要计算这面中队旗的面积,怎样分成几个我们已经学过的图形呢?你是怎样做的?(让几个学生说一说自己的想法。

  第4题,先让学生读题,再问:

  “这个机器零件的横截面图的面积怎样计算?”(让几个学生说一说自己的想法)

  “根据题目中标出的长度,怎样计算比较简便?”(用长方形的面积减去梯形缺口的面积。)

  学生在练习本上列式计算,再集体订正。

  四、作业。

  练习二十一的第1题和第2题。

  数学《组合图形的面积》说课稿 6

  教学内容:

  北师大版教科书第九册第75~76页的内容

  教学目标:

  1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中组合图形的实际问题。

  4、在有效的情境中激发学生学习的'兴趣的主动性,培养热爱数学的思想感情。

  重点、难点

  重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个小图形所需的条件。

  难点:如何选择有效的计算方法解决问题。

  教具准备:

  多媒体课件和组合图形图片。

  教学过程:

  一、引出概念,揭示主题。

  1.你能看出以下图形是由那些基本图形组成的吗?

  2.像这样由两个或两个以上基本图形组合而成的图形我们把它称为组合图形(板书“组合图形”)画一画,分一分。

  二、新授。

  这是我家的客厅平面图!(课件出示客厅的平面图。)

  1、估计地板的面积

  师:请同学们先估一估这个地板的面积有多大呢?

  2、探索不同方法。

  师:同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证。请同学们观察这个图形,咱们学过怎样求它的面积?(停顿)那我们该怎么办?请把你的想法用虚线在图中表示出来。

  生动手画图。

  教师有选择的展示方法。

  3.师总结分割法和添补法。

  其实不管是用分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成以学过的平面图形。

  4.计算:

  现在你会计算这个组合图形的面积吗?

  要算每个小图形的面积分别需要哪些条件?请找一找,并标出来。

  生独立计算。

  5.汇报计算方法及结果。

  6.辨析及总结。

  (1)同学们为什么不选择分割五个或十个小图形的方法来计算面积呢?

  分成的图形越少,计算面积时就越简便,所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。

  (2)刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。

  三、巩固练习。

  1.根据条件算一算引入中两个图形的面积。2.动手做。根据你的方法测量你需要的数据进行计算。

  四、小结:谈谈你的收获!

  五、板书:

  组合图形面积

  图11.转化

  图22.找条件

  图33.计算图

  数学《组合图形的面积》说课稿 7

  教学内容:

  92和93页练习十八

  教学目标:

  明确组合图形的意义;

  知道求组合图形的面积就是求几个图形面积的和(或差);

  能正确地进行组合图形面积计算,并能灵活思考解决实际问题。

  教学过程:

  一、复习。

  “第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:S=ab

  “第二个图形呢?”

  ......

  学生分别口答后,教师在每个图的下面写出相应的计算面积的公式、

  教师:计算这些图形的面积我们已经学会了,可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。

  二、认识组合图形

  1、让学生指出92页页的四幅图有哪些图形?

  2、引导学生把下面的图形,组合成多边形(展示台上拼)

  对学生的拼出的图形,有选择地出示其中的几个。(如下所示)

  分别说出这些图形是由哪几个简单的图形组合而成。

  师:怎样计算这些组合图形的面积呢?(板题)

  二、组合图形面积的计算。

  1、讨论计算上面拼成的组合图形的面积。(生板演其余每组完成一图)

  订正,讨论第一图的.两种方法。

  5×5+5×6÷2[5+(5+6)]×5÷2

  =25+15=16×5÷2

  =40(平方厘米)=40(平方厘米)

  2、在实际生活中,有些图形也是由几个简单的图形组合而成的(出示例1题目及图)。

  图表示的是一间房子侧面墙的形状。

  它的面积是多少平方米?

  如果不分割能直接算出这个图形的面积吗?(引讨横虚线的作用)怎样计算这个组合图形的面积呢?(讨论方法后,再打开书计算,同时指名板演)

  5×5+5×2÷2

  还能用其他的划分方法求出它的面积吗?(分组讨论)

  汇报讨论结果。可能有下面情况。

  [5+(2+5)]×(5÷2)÷2×2

  小结:一个组合图形,可以用多种方法划分成几个已经学过的简单图形,再分别计算出这些图形的面积,求出组合图形的面积,但要注意分割图形时,应当考虑计算的方便,特别要有计算面积所必需的数据。(比如--图示,能容易找出所需的数据吗?)

  三、巩固初步

  1、做一做/书93页

  2、练习十八/第1题

  3、练习十八/第2题

  (1)由中队旗引入

  (2)算出它的面积。(单位:厘米)--可能有下面几种情况

  S总=S梯×2S总=S长-S三

  5、练习十八/第3、4题

  四、拓展练习

  练习十八8*

  课后记:

  数学《组合图形的面积》说课稿 8

  教学目标:

  ⑴使同学认识圆环,掌握圆环的特征,掌握计算圆环的面积的方法。

  ⑵通过操作、探索、发现、交流等活动,初步培养同学合作意识和创新意识,进一步发展同学的空间观念和交流能力。

  ⑶通过学习,提高同学对数学的好奇心和求知欲,学会从数学角度认识世界、解释生活,感受数学的魅力。

  教学流程:

  一、说圆环。

  ⑴剪圆环活动。

  出示一个同心圆环;

  让同学用一张白纸剪出同样的一个圆环。

  ⑵说剪圆环的.过程。

  让同学介绍剪出圆环的过程,体验大圆中剪掉一个小圆的过程,感受圆环的大小就是大圆面积减小圆面积。

  二、算圆环。

  1、教学例10

  出示例10和图。

  师问:从题中你获得哪些信息?要计算它的面积,你有什么好的方法?在小组中说说你的想法。

  同学汇报和交流方法。

  同学自主尝试练习。

  交流解答过程。

  同学交流(同学作品放在视频投影仪上向全班介绍):圆环面积的计算方法,大圆面积-小圆面积;圆环面积的计算步骤,可先算大圆面积,再算小圆面积,最后用减法算圆环面积;全班介绍,教师板书解答的全过程。

  2、教学“试一试”

  出示题目和图形,理解题意。

  同学独立计算。

  交流解题方法,注意提醒同学半圆的面积必需把整圆的面积除以2。

  3、教学“练一练”

  考虑:

  (1)求涂色局部的面积,需要计算哪些基本图形的面积?

  (2)计算这些基本图形的面积分别需要哪些条件?

  (3)第一个图形,两个基本图形有什么练习?第二个图形呢?

  (4)同学独立完成,并全班交流。 反馈时,注意加法求组合图形面积和减法求组合图形的不同。

  三、巩固练习。

  1、完成练习十九第6题。

  先说说每个组合需要丈量途中哪些线段的长度?再让同学独立完成。

  完成后展示同学作业 ,并交流方法。

  2、完成练习十九第7题。

  同学根据图形作出直观的判断,并说说直观判断的方法。

  师追问:你是怎样想到的?

  同学通过计算检验所作出的判读。

  3、完成练习十九第8题。

  (1)观察图,理解题意。

  (2)指导分析。

  4、完成练习十九第9题。

  师问:你能估计出每种花卉分别所占图形面积的几分之几吗?指导用画出辅导线的方法,来估计每种花卉所占圆形面积的几分之几。

  同学独立计算每种花卉的种植面积。

  完成后交方法。

  四、阅读“你知道吗?,并算一算。

  五、课堂总结

  师:通过今天的学习,你有什么收获?说说缓刑的面积可以怎样求?在计算组合图形的面积时需要注意什么?

  六、作业

  练习十九第6题、第8题.

  数学《组合图形的面积》说课稿 9

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙谈话揭题

  1、谈话。

  (1)我们学过哪些平面图形?你知道它们的周长、面积的计算公式吗?

  预设

  生1:我们学过三角形、长方形、正方形、平行四边形、梯形、圆和环形等平面图形。

  生2:三角形的面积计算公式是“底×高÷2”。

  ……

  (2)你们学过哪些立体图形?你们知道它们的表面积、体积的计算公式吗?

  预设

  生1:我们学过长方体、正方体、圆柱、圆锥。

  生2:长方体的表面积……

  2、揭题。

  我们曾经学过的这些图形,一般称为基本图形或规则图形,这节课我们来复习组合图形、不规则图形的相关知识。

  ⊙回顾与整理

  1、提问:如何求组合图形、不规则图形的周长或面积?

  (一般通过“割补”“平移”“旋转”等方法,将它们转化成求基本图形周长或面积的和、差等)

  2、提问:如何计算立体组合图形的表面积或体积?

  (1)学生分组讨论。

  (2)指名汇报。(学生自由回答,合理即可)

  (3)教师小结。

  在计算立体组合图形的表面积时,可以把每个面的面积进行累加,也可以借助视图来求表面积。

  在计算立体组合图形的体积时,有的要把几个物体的体积相加来求体积,有的要从一个物体的体积里减去另一个物体的体积,这要根据具体情况而定。

  无论是分割还是添补,都是把复杂的图形转化成简单的图形。

  ⊙典型例题解析

  1、课件出示典型例题1。

  (1)求阴影部分的面积。(单位:cm)

  分析 本题考查学生求组合图形面积的能力。

  因为阴影部分是不规则图形,所以可以采用阴影部分的面积=长方形的面积-大三角形的面积-小三角形的面积的方法来求面积。

  解答 20×16-12×20÷2-8×16÷2=136(cm2)

  (2)下面是两个完全相同的直角三角形,其中一部分重叠在一起,求阴影部分的面积。(单位:cm)

  分析 从图中可以看出,阴影部分是一个梯形,但梯形的上、下底和高都不知道,所以无法直接求出它的面积。

  观察图形可以看出:阴影部分的面积加上三角形EFC的面积等于大三角形DEG的.面积,而梯形ABEF的面积加上三角形EFC的面积等于大三角形ABC的面积,且两个大三角形的面积相等,所以阴影部分的面积与梯形ABEF的面积相等,只要求出梯形ABEF的面积就可以求出阴影部分的面积。

  解答 (8-3+8)×6÷2=39(cm2)

  2、课件出示典型例题2。

  将高都是1 m,底面半径分别是5 m、3 m和1 m的三个圆柱组成一个物体,求这个物体的表面积。

  分析 本题考查的是求立体组合图形表面积的能力。

  如图,这个物体由三个圆柱组成,仔细观察可以发现:向上的露在外面的三个面的面积之和(两个圆环和一个圆)正好等于大圆柱一个底面的面积(或者说相当于大圆柱上底面的面积)。

  物体的表面积=大圆柱的表面积+中圆柱的侧面积+小圆柱的侧面积

  解答 2×3.14×52+2×3.14×5×1+2×3.14×3×1+2×3.14×1×1

  =157+31.4+18.84+6.28

  =213.52(m2)

  数学《组合图形的面积》说课稿 10

  教学内容:

  小学数学第十二册第126页

  教学目标:

  1、使学生进一步掌握求平面组合图形面积的计算方法,并能合理地把平面组合图形转化为简单图形,再进行面积的计算。

  2、培养学生分析、判断能力,并发挥学生的主体作用,积极探索解决新问题,培养学生的创新意识。

  教学重点:

  进一步培养学生学会观察。

  教学难点:

  进一步学会找隐蔽条件。

  教学过程:

  一、复习基本知识

  1、我们已学过哪些平面图形?(请生回答,并出示图形)。

  2、请生回答这些平面图形的面积怎样计算?用字母公式表示。

  3、基本练习:求各图形面积。(单位:厘米)开火车

  4、导入:今天我们继续复习图形的面积――组合图形的面积(板书)

  二、变化练习

  1、小组讨论:从刚才的简单图形中挑选两个图形组成一个新的图形,你会计算他们的面积吗?你们有几种情况?(让生拼一拼,摆一摆。)

  2、学生汇报:(边出示,边板书)

  (1)三角形面积+正方形面积列式:4×4÷2+4×4(图略)

  (2)正方形面积-角形面积列式:4×4-4×4÷2

  (3)半圆的面积+梯形面积列式:3.14×22÷2+(3+5)×4÷2

  (4)梯形面积-半圆的面积列式:(3+5)×4÷2-3.14×22÷2

  (5)长方形面积+半圆的面积列式:3.14×22÷2+4×2

  (6)长方形面积-半圆的面积列式:4×2-3.14×22÷2

  3、,并回答以下问题:

  (1)由几个简单图形组成的图形叫做()。

  (2)在你拼摆的过程中,你发现图形的组合一般有几种情况?

  (3)求组合图形的面积时,解答的步骤是什么?关键是什么?

  三、强化练习

  1、如图:阴影部分平行四边行的面积是36平方厘米,求出三角形的'面积。(单位:厘米)

  6(1)先让学生独立思考,然后再请生回答。

  (2)你有几种解法?并在大屏幕出示。

  9

  2、求下列各个阴影部分的面积。(单位:厘米)

  (1)(2)

  6

  6d=6

  A:先让学生做在自己的本子上。

  B:并让学生说一说你是怎样解答的?

  C:核对,并在大屏幕演示。

  D:如果组合图形不能直接拆成几个简单图形,那该怎么办呢?

  3、计算阴影部分的面积。(单位:厘米)(图略,书本第127页练一练2中的第3小题)

  先让学生思考,说一说应该怎么办?然后借助多媒体演示,请生列式。并说一说有几种方法。

  4、:通过图形的平移、翻转,可以使它成为两个或两个以上的简单图形。

  四、发散练习

  如图:两个正方形摆放在一起,(大正方形边长为8厘米,小正方形边长为5厘米),图中有7个点,任意连接其中3个点,可以形成一个三角形,求三角形的面积?

  (5分钟内看谁做得最多,方法最巧妙)

  五、板书设计

  平面组合图形的面积

  (1)三角形面积+正方形面积(2)正方形面积-角形面积

  列式:4×4÷2+4×4列式:4×4-4×4÷2

  (3)半圆的面积+梯形面积(4)梯形面积-半圆的面积

  列式:3.14×22÷2+(3+5×4÷2列式:(3+5)×4÷2-3.14×22÷2

  (5)长方形面积+半圆的面积(6)长方形面积-半圆的面积

  列式:3.14×22÷2+4×2列式:4×2-3.14×22÷2

  数学《组合图形的面积》说课稿 11

  教学目标:

  1、在自主探索活动中,理解计算组合图形面积的多种方法。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中组合图形的实际问题。

  教学重点:

  能正确计算组合图形的面积。

  教学难点:

  能根据各种组合图形的条件,正确选择计算方法并解答。

  教学准备:

  A4纸 基本图形 作业练习

  教学过程:

  一、 谈话激趣,揭示课题

  师:老师第一次来到黄村小学,见到同学们我非常高兴,初次再面老师给每个同学都带来了一份礼物,快打开来看看是什么:

  1、 给学生发礼物

  2、 复习各个平面图形的面积公式

  (这里有长方形,正方形,三角形等,你们能说说这些平面图形的面积公式吗?)

  3、 拼成自已喜欢的组合图形

  请选择两个或两个以上的图形拼成你喜欢的图形。

  4、 学生展示并说一说由哪些基本图形组成的。

  (师:如果要求这个图形的面积你认为该怎样计算呢?谁来说一说?)

  5、 教师总结:像这样由我们学过的一些基本图形组合而成的.图形我们把它叫做组合图形,像这样的组合图形的面积要怎样求得呢?这节课我们就一起来探讨组合图形面积的计算方法。

  二、 探索交流,解决问题

  1、 出示教材第88页的情境图

  师:这是智慧老人家客厅的平面图,他准备给客厅铺上地板。

  2、 想一想,估一估

  先让我们来估一估这个客厅的面积有多大呢?(师引导:根据这个客厅形状的特点,我们可以用学过的哪个图形的面积去估计它的大小呢?)

  (若学生估不出来)师再引导:是否可以用长为7米,宽为6米的长方形的面积去估计客厅的面积,如果可以,则客厅的面积是6*7=42平方米,所以客厅的面积不到42平方米,若看成是边长为6米的正方形的面积去做计客厅的面积,那么客厅的面积大约为36平方米。

  师:刚才我们在估算客厅面积时是把它看成我们学过的长方形或正方形,那么我们是不是也可以把这个客厅的平面图形转化成我们已经学过的图形去计算它的面积呢?

  3、 自主探索,计算面积

  师:请同学们拿出老师给大家准备的练习纸,动笔画一画,算一算。

  (师巡视,若发现学生不会再引导)刚才我们用简单的图形拼成组合图形,你能不能将这个组合图形分割成我们学过的基本图形,进而将组合图形的面积转化成已学过的图形的面积的计算。

  (1)学生动手画一画,师提示:(加一条辅助线。并将分割后的图形加上编号,再对图形1、2进行计算。)

  4、展示学生的作品,并由学生说说理由。(怎样计算的?)

  5、(展示四种已计算的分法)再对前四种进行分类

  (师:

  分割法:

  添补法:

  割补法:

  (师:图形分割后我们要看一看分割后计算每个图形面积所要的数据有没有?)

  板书:

  1、先转化成已学过的基本图形。

  2、分割后的图形是否可以计算。

  3、分割后的图形是否比较简单易算。

  师:组合图形面积的计算我们先将这个图形转化成已学过的平面图形,再找出计算每个图形所需要的条件再进行计算。

  三、 理解运用,巩固练习

  师:通过解决智慧老人客厅的面积计算的问题,我们学习了组合图形面积的计算方法,在计算时我们一定要根据图形的实际特点,选用恰当的方法。

  老师出两题考考大家,敢接受挑战吗?

  1、 出示练习,学生做在练习纸上。

  2、 讲评完第一题后,操作第二题。

  四、 学生畅谈收获

  通过这节课的学习,你在什么收获?

  数学《组合图形的面积》说课稿 12

  教学内容:

  课本第92页到第93页的教学内容

  教学目标:

  1、认识组合图形、会把组合图形分解成已学过的平面图形。

  2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

  3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。

  4、通过拼组图形,使学生感受教学与现实生活的密切关系,体会数学带给大家的生活美。

  重、难点与关键

  1.探索并掌握组合图形的面积计算方法。

  2.理解并掌握组合图形的组合及分解方法。

  教具准备

  教学用三角尺或教学挂图、PPT课件。

  教学过程

  一、复习导入

  1.复习。

  你们已经学会了计算哪些平面图形的面积?说一说这些图形的面积计算公式?

  长方形的面积=长×宽;正方形的面积=边长×边长

  平行四边形的面积=底×高;三角形的面积=底×高÷2

  梯形的'面积=(上底+下底)×高÷2

  2.导入。

  3.大家学会的知识可真多。为了奖励你们,老师请你们去欣赏一些美丽的图案,请同学们欣赏时认真想想:你们发现了什么?

  二、新授课

  1.认识组合图形。

  出示课本第92页的四幅图。

  认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开课本第92页,先找一找,然后在四人小组内互相讨论。比比看哪一个小组的分法最简单?

  (1)四人小组讨论。

  (2)小组各自展示各种分法。

  (3)让学生举例说说生活中的组合图形。

  同学们,开动脑筋想象:生活中哪些地方还有组合图形

  2.探索组合图形面积的计算方法。

  教师引导:大家真了不起,知道生活中存在着这么多的美丽组合图形,那如果我们想知道这些组合图形有多大,实际上是求什么?现在我们就来探讨组合图形的面积计算方法。

  板书课题:组合图形的面积

  (1)出示例题4(电子教材)

  (2)学生独立解答。

  学生解答时,让他们思考还有其他解法吗?如果有困难,可以在小组内互相帮助。

  (3)学生汇报。

  解法一:5×5+5×2÷2

  解法二:(5+7)×2.5÷2×2

  =25+5 =12×2.5÷2×2

  =30(m2) = 30(m2)

  学生在汇报时,教师提问:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

  师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同,所以请同学们想想。求组合图形面积时关键是做什么?(图形分解)

  三、巩固练习

  完成课本第93页的“做一做”。

  问:这块地是由哪些简单的图形组成的?

  1.学生独立计算。

  2.学生汇报,展示思路。

  四、课堂小结

  通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的?有哪些不明白的地方?

  在小结过程中,不仅让学生小结这节课学到的知识,而且让学生学会评价,学会评价自己和他人。

  五、布置作业

  这是我们学校将要开辟的一块草坪,如下图。你能算出它的面积吗?现在有两家公司联系,A公司说种一平方米草要5元,B公司说种同样的草一共需要2500元。如果让你决定,你会选择哪家公司?

【数学《组合图形的面积》说课稿】相关文章:

小学数学《组合图形面积》说课稿06-26

组合图形面积说课稿09-21

《组合图形的面积》说课稿08-21

组合图形的面积说课稿09-24

《组合图形的面积》说课稿07-02

小学数学《组合图形面积》说课稿范文07-06

《组合图形的面积》的说课稿范文11-07

组合图形的面积计算说课稿08-28

组合图形的面积说课稿9篇08-14

《组合图形面积》说课稿(精选5篇)09-09