作为一名为他人授业解惑的教育工作者,就难以避免地要准备教案,借助教案可以提高教学质量,收到预期的教学效果。我们应该怎么写教案呢?下面是小编为大家收集的小学数学教案8篇,欢迎大家借鉴与参考,希望对大家有所帮助。
小学数学教案 篇1
从前、后、左、右等不同位置观察同一个物体,指出各个位置看到的物体形状。
认识物体的正面、侧面和上面;从正面、侧面和上面观察长方体或正方体形状的物体;从正面、侧面和上面观察3个相同的正方体摆成的物体,初步进行物体与其正视图、侧视图、俯视图间的相互转换。
从正面、侧面和上面观察4个相同的正方体摆成的物体,简单描述看到的形状。比较几个物体的正视图(侧视图或上视图)。
本单元教材安排一道例题和一次想想做做,都是观察4个相同的正方体摆成的物体。一道思考题里观察的物体要复杂得多。
在三年级(上册),学生已经观察了由3个相同的正方体摆的物体,初步学习从正面、侧面和上面进行观察,并用图形描述物体各个面的形状,这些都是继续教学本单元内容的基础。
从3个小正方体的拼摆至4个小正方体的拼摆,数量上仅多了1个小正方体,但拼摆时的变化却多得多。各种拼摆组成的物体形状各不相同,它们的视图有时相同,有时不同。如果学生理解这一点,他们的空间观念和观察物体时数学思考的水平都能得到一次发展。例题出示三个都是由4个相同的正方体摆成的物体,由大卡通引导学生先从正面看这三个物体,比比看到的形状是否相同,再从侧面和上面看,也分别比比形状,这些活动能有效地帮助学生达到教学要求。
用4个相同的正方体摆成的物体不只例题中的三个,还有许多。因此,想想做做第1题让学生继续摆一摆、看一看、比一比并且画一画。这些要求既与例题自然衔接,又比例题适当提高。摆一摆让学生整体感知物体的特征,先摆再看便于学生理解物体某个方向的形状。例题和各道想想做做都有先摆一摆的要求,教学时要想办法为学生创造摆的物质条件,绝不能图省事以看教材里的实物图代替看摆出的实物。把看到的图形画出来,是表达观察、思考结果的一种方式。对学生画图的要求不宜过高,能画出草图并基本正确就可以了。
想想做做第3题要求依据视图摆出物体,其中第(1)题的摆法各只有一种,第(2)、(3)题的答案是开放的。要鼓励学生摆出既符合视图要求,形状又不相同的各个物体。引导他们经历研究视图的结构想一想应该怎样搭动手拼搭验证搭成的物体是否符合要求的过程,这个过程既能发展空间观念,也能培养良好的学习方法与习惯。在进行第(2)、(3)题的拼摆时,可以分步进行。如先拿2个或3个正方体放成一排,再把其余的正方体放到适当的位置上去,想想有几种放法并检查摆出的各个物体的视图是否符合题意。第5题是第6题的铺垫,每个楼房模型都只要4个正方体就能搭出。学生在搭的时候,会自觉体会其中某个正方体被遮着,不容易看到甚至看不到,能理解那个看不到的正方体事实存在,也是空间观念的反映。第6题左边物体中的各个小正方体都能清楚地看到;中间物体中的个别小正方体不容易看到;右边物体中有个别小正方体被遮着,不能直接看到。说出三个物体各由几个小正方体摆成的难度不同,要让学生说说自己是怎样数、怎样想的。
思考题是从前、后、左、右分别观察由6个正方体摆成的物体,供教学选用。要注意的是,本单元的教学内容是观察由4个正方体摆成的物体。
小学数学教案 篇2
教学目标
1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
2.能正确地计算圆柱的表面积。
3会解决简单的实际问题。
4.初步培养学生抽象的逻辑思维能力。
教学重点
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
教学难点
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
教学过程
一复习旧知。
1计算下面圆柱的侧面积。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
2求出下面长方体、正方体的表面积。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二新课导入。
1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)
2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)
4教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三新课教学。
1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)
2学生尝试练习,教师巡回检查、指导。
3反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)
(2)底面积:3.14×2×2=12.56(平方分米)
(3)表面积:56.52+12.56=81.64(平方分米)
答:它的表面积是81.64平方分米。
4学生质疑。
5教师强调答题过程的清楚完整和计算的正确。
6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四反馈练习:试一试。
1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)
2学生交流练习结果(注意计算结果的要求)。
3教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五拓展练习
1教师发给学生教具,学生分组进行数据测量。
2学生自行计算所需的材料。
3计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六巩固练习。
1计算下面图形的表面积(单位:厘米)(略)
2计算下面各圆柱的表面积。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)
小学数学教案 篇3
【教学内容】
教科书第90页例1及91页课堂活动。
【教学目标】
1.经历简单的统计过程,初步学习收集、整理数据的方法。
2.在统计过程中能积极思考,选择适宜的方法整理数据,发展统计观念。
3.在整理数据的过程中,增强与他人合作的意识和学习数学的积极情感。
【教学重点】
经历简单的统计过程。
【教学难点】
选择简便科学的统计方法。
【课前准备】
多媒体课件、小鱼、小鸟、小兔卡片若干张。为学生准备学具盒6个,每个盒子里放三角形、正方形、圆形卡片共15张。
【教学过程】
一、创设情境,回顾旧知
教师出示杂乱地贴在黑板上的学具卡片。
谈话:今天有一些小动物想和小朋友们一起来学习,大家高兴吗?看一看都有谁呀?
学生看图把小动物分成小鱼、小鸟、小兔。
教师:谁来告诉我们大家,小鱼的卡片有几张?
学生1:看不清楚,太乱了。
学生2:数不准。
教师:你有什么好办法能很清楚地看出小鱼、小鸟、小兔的卡片各有多少张吗?
(指名学生说一说。)
教师:哪位小朋友愿意上来分一分,排一排?
(找一个学生上来分一分,排一排。)
教师:现在你能说出它们各有多少张了吗?学生纷纷举手,争先恐后地回答。
教师:像这样分一分、再数一数的方法是我们学习过的统计。这节课我们继续学习统计。(出示课题)
二、统计图形,探索统计方法
1.设置问题,激发兴趣
(1)教师:每个小组的桌子上有一个盒子,里面有什么呢?教师引导学生从盒子里摸出一个来看一看,并告诉大家盒子里有许多这样的图形卡片。(有正方形、三角形、圆形)
教师:咱们每个小组的小朋友都来看一看盒子里的这些卡片,你有什么想法?
学生1:太乱了,我没看到圆形卡片。
学生2:我想知道三角形的卡片有几张,就是数不准。
学生3:我想知道正方形的卡片有几张,但看不出来。
教师:我也想知道你们小组里圆形卡片有几张,我们该怎么办呢?
学生1:我们把卡片拿出来在课桌上摆一摆,再数一数就行了。
<<<12>>>
学生2:我认为不行,如果课桌太小了,放不下怎么办?
2.参与活动,探索方法
(1)教师:我有一个办法,你们愿意听一听吗?
(2)老师对学生提出要求:以小组为单位,一个同学说图形名称,其他同学用自己喜欢的方法记录。哪个小组完成得好,黑板上的小动物卡片就送给那个小组做奖品。
(3)学生活动,整理卡片。
(4)小组汇报,教师按照学生回答的顺序分别将记录的结果编号,可能会出现以下几种情况:
①△□○○△
②△△△△△△△△□□△□□□□○△○□○○○○○○
③△丨丨丨丨丨丨
④△□丨丨丨丨□?○丨丨丨丨丨○
⑤△正一□○正
(5)比较择优,掌握方法。
让学生面对整理的结思,说一说感受。
学生1:现在比原来清楚多了。
学生2:我感觉比原来好数了。
学生3:我很快就找到了问题的答案。
(学生踊跃发表自己的看法。)
教师:刚才每个小组都汇报了自己统计的方法和想法。我们想很快知道每种图形卡片有几张,哪种方法比较好?
学生1:我认为第4种方法比较好,简便好数。
学生2:我认为第5种方法比较好。我发现这种方法每1画代表1张卡片,一个“正”字正好有5画,只要数出有几个“正”字,乘5就可以了。
教师:如果我们需要统计的物品有很多很多,哪种方法会更方便呢?
学生一致认为用画“正”字的方法,更简便,更科学。
(6)教师小结。
把黑板上的小动物卡片奖给学生,让学生获得成功的体验。
三、组织练习,巩固方法
1.课堂活动第1题
多媒体课件出示四种体育活动。
让每个学生选出自己最喜欢的一种,并让学生用画“?”或画“正”字的方法记录下来。组织全班交流。
让学生想一想,根据统计的结果,你知道了什么?
2.课堂活动第2题
让学生独立整理,并根据整理的结果说一说每种动物各有多少只。
四、课堂小结
在日常生活中,涉及统计的内容有很多,有兴趣的小朋友课后还可以选择一些内容进行统计。
小学数学教案 篇4
教材简析:
能应用乘法分配律进行简便计算的式题主要有两种情况:一种是一个数乘两个数的和(或可以转化成一个数乘两个数的和),可以直接应用乘法分配律算出结果;另一种是求两积之和的算式里有一个乘数相同,可以逆向应用乘法分配律算出结果。
教学目标:
1、让学生掌握能用乘法分配律进行简便运算的式题的特点,学会应用乘法分配律进行简便计算。
2、让学生学习应用估算的方法判断计算结果的合理性。
3、让学生联系现实问题主动运用规律解决问题,感受数学规律的普遍使用性,进一步体会数学与生活的联系,获得运用数学规律提高计算效率的愉悦感和成功感,增加学习的兴趣和自信。
教学过程:
一、讲解学生作业错得较多的题目
1、99×37+37=37×(□○□)
指名说说这题是如何思考的:乘法分配律其实就是合起来乘可变成分别乘或是分别乘变成合起来乘。在这个算式中,只有一个乘,那就要把后面的“37”改装成乘“37×1”,然后就可以看出是在分别乘37,应该等于合起来乘37,括号里应该填写的是“99+1”
2、把左右两边相等的算式用线连起来
11×58+49×11 12×77+8×77
(12+8)×77 36×25+4×25
(58+12)×14 27×21+27×29
27×(21+29) 11×(58+49)
(36×4)×25 58×14+12
先让学生说说哪几组是肯定能连线的,还有哪几组有问题?说说为什么不能连线?
(1)(58+12)×14应该等于分别乘14,但“58×14+12”中的12没有乘14,所以是不相等的。
(2)(36×4)×25,乘法分配律要有乘有加,这里只有乘,不符合乘法分配律的特点,它只能用乘法结合律进行简便计算。所以不能和36×25+4×25连线。
二、学习例题
1、出示例题图
说说例题的信息和问题,说说相关的数量关系式。
2、列式并估算等:32×102≈3200(元)
说说估算的方法:把102看成100,32乘100等于3200,32×102的积应该略大于3200。
还可以怎么算?(用竖式算)
3、3200元其实是几件衣服的价钱?那要算102件,还要怎么办?
(加上2件),这2件是多少元呢?总共是多少元?
怎么把这个过程完整地用算式表达出来呢?
板书:32×102
=32×(100+2)
=32×100+32×2
=3200+64
=3264(元)
指出:利用乘法分配律,我们可以把这类题目进行简便计算。
学生完成书上的例题剩下部分。
4、完成试一试:用简便方法计算46×12+54×12
观察算式特点,并完成简便计算。交流:=(46+54)×12
=100×12
=1200
比较两题,说说在利用乘法分配律进行简便计算的时候有什么要注意的?
(有的时候是合起来乘容易,有的时候是分别乘更容易。要根据具体的题目来选择。)
三、完成想想做做
1、在□里填上合适的数,在○里填上运算符号(题略)
学生独立完成,再校对。
2、口算下面各题,并说说是怎样应用乘法分配律的(第3题)
学生说出口算的过程,体会也是运用了乘法分配律。
3、读第5、6题,观察数据的特点,说说怎么算才更简便?
四、探索思考题
99×99+199○100×100
观察算式,说说它们之间有怎样的大小关系呢?说说是怎么想到的?
在交流过程中完成板书
99×99+199
=99×99+99×1+100
=99×(99+1)+100
=99×100+100×1
=100×(99+1)
=100×100
学生自己尝试完成算式:999×999+1999的探索过程
发现规律,直接完成算式:9999×9999+19999=( )×( )
五、布置作业
p.57第2、4、5、6题
小学数学教案 篇5
教学内容:
小数点移动引起小数大小的变化P43P45
教学目标:
1、理解并掌握小数点位置移动引起小数大小的变化规律。
2、能运用小数点移动引起小数大小变化规律进行计算,解决简单的实际问题。
3、通过总结规律的过程,培养观察比较、概括的能力。
教学重点:
发现并掌握小数点移动引起小数大小的变化的规律。
教学难点:
理解小数点位置的移动为什么会引起小数大小的变化。
教学准备:
多媒体课件。
教学过程:
一、导入新授
1、复习旧知。
出示题目:比较大小:0.26和0.260 1.500和1.5 1.42和14.2 50.2和5.02。
学生完成后,引导学生进行总结。
在一个小数的末尾添上或去掉O,不改变数的大小,其原因在于没有移动小数点的位置。而后两题,因为小数点的位置发生了移动,所以数的大小也发生了改变。
2、导入新课。
小数点的位置移动了,小数的大小到底发生了怎样的变化?
今天我们就来研究小数点移动带来的小数的大小变化。
板书课题:小数点移动引起小数大小的变化。
二、探索发现
第一环节 探究规律
教学例1。
1、课件出示教材第43页情境图,让学生根据连环画的内容,讲一讲这个故事。
指名回答,老师板书:0.009m、0.09m、0.9m、9m。
引导学生思考:小数点移动与金箍棒的长短有什么关系?
2、小数点移动后引起小数怎样的变化?
把0.009m的小数点向右移动一位、两位、三位小数的大小有什么变化?
(1)0.009m等于多少毫米?(板书:0.009m= 9mm)
(2)移动0.009m的小数点。
向右移动一位,变为多少毫米?大小发生了怎样的变化?
(板书:0. 09m= 90mm,扩大到原来的10倍)
向右移动两位,原来变为多少?是多少毫米?大小有什么变化?
(板书:0. 9m= 900mm,扩大到原来的100倍)
小学数学教案 篇6
[教学内容]
[教材简析]
教材先通过主题图,让学生分类数一数1~5五个数,接着用算珠表示数量1~5,对应着出示数1~5,让学生认识并写数。用算珠直观表示出1添上1是2,2添上1是3……可以使学生感知1~5的联系,体会这五个数的数序排列。通过数数、画画、写写等活动,加深学生对1~5各数实际意义的认识,提高写数、能力。、
[教学目标]
1、经历从生活情境中抽象出1~5各数的过程,认识1~5,会读、写1~5各数。
2、培养学习兴趣,能按顺序用数描述物体的个数并进行、交流。、
3、会用5以内的数描述生活中物体的个数,体会数存在于日常生活中,初步建立数感。
[教学过程]
一、激情引趣
谈话:小朋友们喜欢小动物吗、我们一起到动物园游一游。(屏幕出示:猴子5只、斑马3匹、熊猫1只、鸵鸟2只、孔雀、4只),这么多可爱的动物中,你喜欢哪一种、
数清你所喜欢的动物的个数,用相同个数的小圆片表示、出来。、(学生动手摆圆片)
与组内的小朋友说说:你喜欢的动物是什么、你是用几个圆片来表示这种动物的只数的、(学生小组内讨论)
哪个小组的同学愿意说说你喜欢的动物有几只、(学生在实物展台上摆出相应的圆片,学生边说边摆,全班进行简单的评价。)
小结:小朋友们所摆出的圆片都在1~5之间,今天我们一起认识1~5。
[评:教师根据小朋友喜爱小动物的特点引入,创设了儿童喜欢的问题情境,激发起学生参与学习的兴趣,同时在操作中巩固了用圆片可以表示物体的个数。]
二、动手操作,合作探究
1、摆一摆。
提问:你能根据所摆圆片的个数,从你的学具卡片里找出相应的数字卡片吗、找一找,看谁找得对、(学生活动,教师巡视学生操作情况) 组内同学相互评价摆得是否正确,请每组的一名代表上台摆出圆片和数字卡片,全班交流。
2、拨一拨。
讲述:小朋友们摆得很正确,下面老师给小朋友们带来了一个新的学习伙伴——计数器。(教师在计数器上拨上1个珠子)
提问:我在计数器上拨了几个珠子、(1个)又添了几个、(1个)现在是几、2添上1是几、3添上1是几、4添上1是几、
下面请大家在自己的计数器上依次从1拨到5,再从5拨到1,好吗、(学生拨珠,边拨边说)
如果任意给你一张数字卡片,你能用计数器上的珠子表示吗、、、
(教师出示数字卡片3、5、2、4、1,学生一起操作)
谈话:像老师一样,一个小朋友出示卡片,组内的其他小朋友来拨一拨。(学生组内进行拨数活动)
3、写一写。
谈话:刚才我们认识了1~5,你们愿意写一写吗、自己先来试一试,把这些数写在自己的本子上,从1写到5。看谁写得、最好。、
写完后,小组内的小朋友相互评价,最后教师评价。
教师示范书写1~5,重点指导写5,第2笔,在斜竖靠上的地方写横,注意要平。学生练习书写。(学生重点练习书写数字5,教师巡视,个别指导)
4、说一说。
提问:生活中哪些地方你见到过1~5这几个数、
随着学生想到的事物,屏幕出现实物图。
场景图:看,那是几路公共汽车、(2路)
丁丁家住几号楼几单元、(4号楼3单元)
[评:教师通过让学生自己操作,初步感知1~5这几个数,每拨一次,珠子的个数就增加1个,实际渗透了1~5各数是由几个一组成的。在写一写的教学中,教师在学生已有的写数水平上,先让学生自己尝试写数,然后再重点讲解,充分了解学生的知识水平,针对性强。同时,教师给了学生自主交流的空间,调动学生的生活经验,让学生感受生活与数学的联系。]
三、巩固新知
1、小朋友知道教师节是几月几日吗、
教师节这天,小朋友把教室打扮得漂漂亮亮。看!(屏幕出现庆祝教师节图)
提问:仔细观察,与小组的同学说说你看到了什么、(学生小组讨论后,全班交流)
哪位同学能用数说说你所看到的事物、(1个男孩拉琴,3个女孩跳舞,4个不同颜色的气球……)
根据学生的回答,教师在学生所指的事物旁,依次出现数1、2、3、4、5……
2、抢答:看图说数。
出示图:3根黄瓜,5个西红柿,2段藕,4个萝卜,1棵、白菜、。(随着实物图的不断出现,学生站起来说数,比比谁说得又对又快)
3、猜数游戏。
(1)2后面的数是几、
(2)3和5之间的数是几、
(3)4前面的数是几、
你们也可以与同桌互相玩一玩猜谜的游戏。
4、你们爱吃水果吗、
屏幕出现水果图:1个西瓜,2个菠萝,3个梨,4个草莓,5个香蕉。 这些水果分别有几个、
5、出示花瓶图。
在这幅图中,每个花瓶里都缺少几朵花,用水彩笔画出花瓶里缺少的花。(画完后,用实物投影将图画展示给全班学生看)
[评:练习设计形式新颖,层次清楚。特别是第3题猜数的游戏,实际是对今天所学知识的巩固,学生练习时思维活跃,兴趣、浓厚。]、
[总评]
本节课的设计重视学生通过学具操作主动参与学习的过程。教学中,教师为学生主动参与创设了良好的氛围,大量的动手操作为学生提供了观察、交流、合作的时间和空间。归纳起来有以下、几点:、
1、面向全体,激发学生的学习兴趣。
在引入新课的过程中,教师用学生喜爱的小动物,激发了学生的参与意识,符合低年级儿童的心理特点。整个教学过程中,为学生设计的动手操作、看谁写得最好、猜数游戏、找找生活中1~5各数等一系列活动,充分调动了学生参与学习的积极性,激发起学生学习的兴趣。
2、让学生在操作、交流中自主学习。
教师在这节课中为学生提供动手操作的机会很多,体现了儿童“智慧长在手指尖上”的特点。在拨一拨的过程中,学生充分认识了1~5各数以及它们的顺序,实际也渗透了这几个数是由几个一组成的,学生对这五个数的认识是深刻的。通过“同桌交流”、“小组合作”等形式,不仅巩固了今天所学的知识,更重要的是人人参与了学习的过程,真正体现了学生的自主学习。如练习中的猜数游戏,创设了开放的学习环境,互相提问、互相解答,学生在交流的过程中增进了积极参与学习的意识。
3、结合生活实际,体现数学与生活的密切联系。
数学知识于生活,应用于生活。在学习完1~5各数之后,教师让学生找找生活中1~5各数的应用,学生充分运用已有的经验,举出各种实例。此时,教师又将与1~5有联系的生活中常见的几楼几单元等实例呈现给学生,打开学生的思路,学生体会到原来生活中与这五个数有联系的事物还有很多,感受到数学与生活的密切联系。培养学生喜爱数学的`情感,促进了学生的发展。
小学数学教案 篇7
认识形体
长方体、正方体的面、棱、顶点,结构与特征。(例 1、例2)
长方体、正方体表面的展开图(例3)
表面积
表面积的意义和计算方法(例4)
表面积的实际应用(例5)
体积
体积的意义、容积的意义(例6、例7)
常用的体积单位和容积单位(例8)
长方体、正方体的体积计算公式(例9、例10)
体积单位的进率及简单换算(例11)
整理与练习实践活动
第一, 有一条合理的编排线索。先教学长方体、正方体的特征,再教学它们的表面积,然后教学体积,是一条符合知识间的发展关系,有利于学生认知的线索。把形体的特征安排为第一块内容,能为后面的表面积、体积的教学打下扎实的基础。如果不理解长方体的6个面都是长方形,且相对的面完全相同,就不可能形成长方体表面积的计算方法。如果不建立长方体的长、宽、高的概念,体积公式就是无本之木、无源之水。把表面积安排在体积之前教学,是因为学生已经有了面积的概念,掌握了常用的面积单位,会计算长方形、正方形的面积,教学表面积的条件比体积充分。而且通过表面积的教学,更深一层掌握长方体、正方体的特征,对教学体积是有益的。在体积这部分知识里,先教学体积的意义和常用单位,这些都是重要的基础知识。建立了体积概念和体积单位概念,才能探索体积计算公式。把体积单位的进率安排在体积公式之后教学,就能通过计算获得进率。这样,体积单位的进率就是意义建构的,而不是机械接受的。
第二,加强了空间观念。教学长方体和正方体,历来都很重视发展空间观念。本单元不仅在传统的基础知识的教学时加强培养,还充实了长方体、正方体表面展开的内容。过去教材里讲长方体的表面展开是为了教学它的表面积及计算,现在教学表面的展开,更是为了发展空间的观念。《数学课程标准(实验稿)》把几何体与其展开图之间的转化作为空间观念的一个内容,把能进行这些转化作为空间观念的一种表现。教材一方面把正方体、长方体纸盒展开,在展开图里找到原来形体的每个面;另一方面又提供一些图形,把它们折叠围成立体,感受图形的各部分在立体上的位置,让学生的空间观念在这些活动中实实在在地获得发展。另外,设计的五道思考题和实践活动《表面积的变化》,加大了空间想像的力度,都以发展空间观念为主要目的。
第三,注重知识的实际应用。本单元教学的知识与学生的日常生活有密切的联系。在现实的问题情境中能发现和认识数学知识,习得的概念和方法能应用于解决实际问题。教材尽力从数学的角度提出问题、解释问题,引导学生综合应用数学知识、技能解决问题,处处能看到数学与生活的有机结合。如认识长方体、正方体的特征以后,收集这样的实物并量出长、宽、高或棱长;在做纸盒和鱼缸的实际问题中教学表面积的计算和应用;用初步建立的体积(容积)概念比较物体的大小;用学到的体积单位计量常见物体的体积、常见容器的容量;灵活应用体积公式计算沙坑里沙的厚度、塑胶跑道的用料问题
一、 观察、整理认识长方体、正方体的特征。
例1教学长方体和正方体的特征,把主要精力放在长方体上。这是由于长方体比正方体复杂,发现长方体的特征需要开展许多活动。而且,研究长方体的学习活动经验可以迁移到认识正方体中去。例题呈现一些图片,如长方体或正方体包装盒、家用电器等,在图片的启发下说说生活中哪些物体的形状是长方体,哪些物体的形状是正方体。在现实的情境中引出本单元的研究对象。
观察实物,整理特点是认识长方体、正方体的主要教学活动。例1的教学过程安排成三步。
1. 观察物体,理解直观图,认识面、棱和顶点。
三年级(上册)通过观察长方体和正方体,已经知道在不同位置看到的面的个数不同。有时只能看到一个面,有时能同时看到两个面,最多能同时看到三个面。例题以这些经验为教学起点,在观察物体的基础上理解长方体、正方体的直观图,认识它们的面、棱和顶点。
把立体的样子画在纸上,从长方体、正方体实物到它们的直观图,是空间观念的一次发展。在实物上只能看到一部分面,在直观图上实线围出了能看到的面,用虚线勾画不能直接看到的面。把立体与其直观图有机联系,感受直观图真实表达了立体的形状,并在看到直观图时,能想到相应的立体,这是空间观念的表现。直观图是教学难点,从有利于学生理解出发,可以分两步出现。先画出能够看到的面,再勾出不能看到的面。
面、棱和顶点是长方体、正方体结构的要素,是三个最基本的概念,还是研究长方体、正方体特征的出发点。按面棱顶点的次序教学,有利于建构它们的意义。物体有面是已有认识,只要在立体上摸摸面,在直观图上指出面,就体会了长方体、正方体的面,不必作过多的解释。两个面相交的线叫做棱,是对棱的数学解释。要通过观察和在实物上的演示,直观感受两个面相交的含义,清楚地看到相交处是线。要强调这条线不能叫做长方体、正方体的边,应称作棱。三条棱相交的点叫做顶点,要通过在实物上摸一摸、在直观图上指一指等活动,看到每一个顶点都是三条棱的交点,这是认识顶点的关键。
2. 观察物体,由量到质认识长方体的特征。
第11页认识长方体的特征,鼓励主动探索,重视合作交流,遵循逐渐认识的规律。首先数出长方体、正方体有几个面、几条棱和几个顶点,并把结果填在教材预设的表格里,从量的角度认识长方体、正方体的特征。填表能起三个作用:一是及时记录获得的信息,防止流失,有利于特征的整体性;二是通过写出有关的数量,加深印象,有利于记忆;三是显示出长方体、正方体都有6个面、12条棱和8个顶点,有利于感受长方体与正方体的联系。接着深入研究长方体的特征,教材提示了可进行的活动是看、量、比;研究的对象是长方体面的形状与大小,棱的长度与相互关系;研究的目的是发现长方体的特征。在学生充分活动的基础上组织交流,概括出长方体的特征。教学时要注意四点:① 学生对长方体特征的认识很难一步到位,总是由表及里、由浅入深地发展的。认识长方体的特征既让学生自主探索,又要教师引导点拨。如发现6个面都是长方形比较容易,而相对的面完全相同往往需要教师引导学生去关注、去比较。至于长方体的3组棱及每组4条棱长度相等,可能更需要教师给予点拨。再如学生的发现往往是局部的、点滴的,表达往往是不严密的,这就需要教师汇集生成的资源,提升语言水平,帮助抽象概括。② 例题里观察的是一般的长方体,目的是紧扣长方体的本质特征教学。把较特殊的长方体安排在练习三第1、2题里出现,学生不会因为它有两个面是正方形,对它是长方体产生怀疑。这样安排也符合正方体从属于长方体的关系。③ 学生间的学习方式总是多样的,部分学生喜欢探索发现,也有部分学生需要有意义的接受,合作交流能满足学生的不同需要。要让独立探索有困难的学生共享成果,在听懂同伴发言的基础上,给他们亲自验证、亲身感受的机会。④ 教学长、宽、高是继续认识长方体,要在顶点与棱的概念的基础上进行。必须清楚相交于一个顶点的三条棱分别是长方体三组棱中的一条,把它们分别叫做长方体的长、宽、高。不但要在立体上指出,还要在直观图上看出。如果适量地把长方体横放、竖放、侧放,根据不同的摆放位置,让学生说说它的长、宽、高,可以防止死记硬背,发展空间观念。
3. 观察物体,独立发现正方体的特征。
由于正方体比长方体简单,又有认识长方体特征的经验,所以正方体特征的教学会比较轻松。教材先提出正方体的面和棱各有什么特征这个研究课题,让学生在独立探索以后,小组交流自己的发现。尽管正方体的特征比较简单、容易得出,教学也不能过于仓促。仍要让学生指指相对的面、相对的棱,说说得出结论的过程与方法,想想6个面是完全相同的正方形与12条棱长度相等之间有什么必然联系使形象思维与抽象思维,以及数学活动的能力都得到发展。
二、 展、折,想像认识长方体、正方体的展开图。
第12页教学正方体、长方体的展开图,这部分内容的教育价值和教学要求,在前面介绍本单元教材编排特点时已经阐述,不再重复。这里主要分析教材,提出教学建议。
1. 初步知道展开图的含义,加强对正方体的认识。
例3先教学正方体的展开图,原因仍然是正方体的特征比较简单。例题详细展示了把正方体纸盒展开的步骤,用红线标出每步剪开的棱,最后还把剪开后的纸盒摊平。引导学生首次经历立体到展开图的转化过程,从中明白展开图是平面图形,清楚地看到展开图由6个相同的正方形组成。教学这道例题要注意反思,即得到正方体展开图以后,要回忆是怎样展开的,思考为什么展开图里有6个同样的正方形,正方形的边与正方体的棱有什么联系通过反思,既加强对展开图的认识,又加强对正方体特征的认识,更通过立体与展开图关系的思辨发展空间观念。
除了依照例题设计的剪法展开,还可以沿其他的棱剪。大象卡通提出的要求,是让学生再次进行展开正方体的活动,体会沿着不同位置的棱剪,得到的展开图形状不同。但是,展开图由6个相同的正方形组成,每个正方形的边都是正方体的棱是相同的。从而理解正方体展开图既有多样性,又有确定性。多样性是剪法不同的结果,确定性是正方体的特点决定的。
2. 自主研究长方体的展开图,加强对长方体的认识。
长方体的展开图安排在试一试里让学生剪纸盒得到,学习正方体展开图的经验和体会能支持他们主动地操作、交流。沿着哪几条棱剪?在教材里没有规定,可以自主选择。因此,得到的展开图也是多样的,在每个展开图里都可以看到6个长方形,从而体验了长方体展开图形状的多样性和组成的确定性。卡通提出的从展开图中找到3组相对的面是富有思维含量的问题,能引发学生细致地研究展开图,并把展开图与立体联系起来思考。要鼓励学生进行展开图长方体展开图长方体的折、展活动,反复地看展开图里的每一个长方形,想它在长方体的位置;看长方体的面,想它在展开图里的位置。在体验立体与展开图相互转化的过程中发展空间观念。
另外,在展开图上想长方体的长、宽、高,并把长、宽、高转换成展开图中各个长方形的长与宽,也有益于空间观念的发展,还能为表面积的教学作铺垫。
3. 判断哪些图形折叠后能围成正方体或长方体,加强对体的认识。
第12页练一练第2题提供的每个图形都由6个相同的正方形组成,判断这些图形中哪些折叠后能围成正方体。第14页第5题的每个图形都由6个长方形组成,判断哪几个图形能折叠后围成长方体。其中部分图形围不成正方体或长方体的原因是,折叠的时候部分正方形或长方形重叠,构不成有6个面的立体。因此,这两道题一方面加强了展开图与立体的转化,另一方面加强了对长方体、正方体都有6个面的认识。
学生进行这些判断会有困难,为此提出两点教学建议: 第一,在例3和试一试里要把沿不同的棱剪纸盒得到的各个展开图充分进行展示和交流。先认识图中所示的标准状态的展开图,再体会展开图还有其他形状,并在各个展开图上指出立体的相对的面。第二,允许学生灵活地先想后围或者先围后想。如果看到的图形是标准的或接近标准状态的,可以先判断它能否围成立体,想想围成的立体是什么样子,然后折叠验证判断和想像。如果看到的图形不是标准状态的,能不能围成立体难以判断,可以先动手操作,从中体会为什么能围成或围不成立体。
三、 分解,组合有意义地建构表面积的知识。
教学表面积知识编排的两道例题都是关于长方体的,正方体的表面积通过试一试在练习中教学,这是因为长方体表面积的概念和计算方法能迁移到正方体上去。表面积的教学分两步进行,先是例4与试一试,把表面积的意义和算法结合在一起。然后是例5,着重于表面积知识的应用,灵活地解决与长方体、正方体表面积有关的实际问题。
1. 联系已有知识经验,探索表面积的知识。
例4的问题情境是做一个长方体纸盒至少要用多少硬纸板,在掌握长方体特征的基础上,学生会想到这个问题与长方体各个面的面积有关,并出现不同的计算方法。猴子卡通和兔子卡通的算法是比较典型的两种方法,它们有相同的思路:求出纸盒各个面面积的总和,但算法不同: 把3组相对的面的面积相加,把每组相对面中各个面的面积和乘2。前一种算法得益于第13页第3题的铺垫,后一种算法受到了(长+宽)2=长方形面积的启发。两种算法都是计算长方体表面积的较好方法,相同的思路和乘法分配律沟通了两种算法的内在联系,教材鼓励学生选用自己喜欢的方法算出结果。
学生求至少要用多少硬纸板所想到的各种算法,都应用了分解组合的思想方法,即先把一个较复杂的新颖问题分解成若干个简单问题,再把这些简单问题组合起来。反思并体验这种思想方法,就能很好地理解表面积的意义,也不需要机械地记忆表面积的算法。学生对正方体有完全相同的6个正方形已经有深刻的认识,试一试求做正方体纸盒至少用多少硬纸板,一般都会把一面的面积乘6。得出的长方体(或正方体)6个面的总面积,叫做它的表面积,既形成了表面积的概念,也总结了计算表面积的方法。
2. 联系生活经验,灵活解决实际问题。
例5制作上面没有玻璃的鱼缸,利用长方体表面积的知识解决实际问题。通过实物图帮助理解这个实际问题的特点,让学生明白所用玻璃的面积是长方体5个面的面积和,从而主动想出算法。小鸟卡通和兔子卡通仍然应用了分解组合的思想方法,把实际问题抽象成求前、后、左、右和下面5个面的面积和的数学问题,或者抽象成从表面积(6个面的总面积)里去掉一个面的面积的数学问题。两条思路各有特点,前一条突出的是空间想像,要找准并正确计算有关的各个面的面积。后一条的思路负荷轻、思考难度小,能减少错误的发生。还有其他方法吗主要反映在按小鸟卡通的思路,可以列出5个面的面积连加的式子,也可以列出前、后两个面的面积加左、右两个面的面积,再加下面面积的式子。要注意的是,这道例题鼓励解决问题的策略与方法多样,并不要求学生能够一题多解。教材仍然让学生选择一种算法。
练一练和练习四里还有只计算长方体的前、后、左、右4个面面积和的实际问题,缺少左侧面的长方体的问题等。教材为部分习题配了示意图,便于学生直观感受实际问题是求哪些面的面积之和。部分习题没有配置实物图,可以在现实的生活空间里思考。如粉刷平顶教室的顶面和四周墙壁,只要看看自己的教室,就能把题目里的长、宽、高落到实处。又如台阶的问题,可以找个台阶看看,理解什么是它的占地面积以及地砖铺在哪些面上。计算长方体火柴盒的内盒和外盒所有的材料,综合应用了长方体特征和表面积知识,再次体验实际问题是多变的,要灵活应用知识才能正确解答。
四、 实验、领悟初步建立体积概念。
例6和例7分别教学体积的意义和容积的意义,容积的意义要建立在体积概念上,因而例6是这部分教材的重点。学生形成体积概念也是教学的难点,这两道例题的教学只能初步感受体积的含义,在后面教学常用的体积单位,以及长方体、正方体的体积计算时,还要通过测量和描述,进一步理解体积的意义。
1. 在有限的空间里领悟体积。
物体所占空间的大小叫做体积。空间物体占有空间所占空间的大小都是体积概念的内涵,是建立体积概念必须解决的子概念。例6利用杯子的空间,把感悟体积的过程设计成三步。第一步是初步体会空间和物体占空间。两个同样的玻璃杯,左边的盛满水,右边的放一个桃,把左边杯里的水倒向右杯,会剩下一些水。杯中有一部分空间被桃占去了这句话解释了现象、回答了原因,引出了空间这个词,让学生在现实的背景下感知空间的含义。这一步要把生活常识引向数学认识,看着放了桃的杯子,仔细领悟杯中有一部分空间被桃占去了的意思,是十分重要的教学活动。若有需要,还可以在一只透明空杯的上口放一本书,让学生看着杯子的里面体会杯子的空间。再把桃放入杯里,仍然用书盖住上口,看着杯里的桃,体会它占有杯子的一部分空间。第二步是感受不同的物体占的空间有大、有小。两个同样的杯子,一个杯里放1个桃,另一个杯里放1个荔枝,桃比荔枝大,分别往两个杯里倒水,显然前一个杯里可以倒入的水比后一个杯少。让学生回答为什么,不能简单地用桃大荔枝小来解释。要像兔子卡通那样想和说,用桃占的空间大,荔枝占的空间小来回答问题。理解桃大是指它占的空间大,荔枝小是指它占的空间小,从而获得不同物体占的空间大小不同的体验。第三步继续体会每个物体都占有一定的空间。观察图片里的番茄、荔枝和桃,先思考哪一个占的空间大,再想想这三个水果分别放在三个杯里,往杯中倒水,哪个杯里水占的空间大。这是两个连续的关于物体占有空间的问题,可从前一问题的答案推理得出后一问题的答案。由于苹果占的空间大,杯子盛水的空间就小;番茄占的空间小,杯子盛水的空间就大,这就感受了每个物体都占有一定大小的空间,由此得出体积的意义:物体所占空间的大小叫做物体的体积。
举例比比两个物体体积的大小是为了巩固体积概念,应该对学生提出两点要求:一是用好体积这个词,二是联系实物解释什么是它的体积。如电冰箱的体积是它占有空间的大小,电冰箱的体积比电视机的体积大。
练习五第1、3题进一步领悟体积的意义。把同样的盒装饼干堆成3堆,各堆的形状不同、体积相同。理解体积是物体占有空间的大小,与物体的形状无关。用小正方体摆出较大的正方体或长方体,理解体积大的物体占的空间大,体积相等的物体占的空间大小相等。
2. 从体积引出容积,初步建立容积概念。
容积与体积是两个既有联系,又有区别的概念,教学容积能进一步理解体积。
例7教学容积的意义,以体积概念为生长点。图画里有两盒书,一盒是《四大名著》,另一盒是《成语故事》。先在直观情境里比较哪盒书的体积大些,再从左边盒子里书的体积大引出左边盒子的容积大。书的体积是旧知,盒的容积是新知,教学既要以旧引新,也要体现容积与体积的不同意义。教材中比较书的体积,是看着两盒书进行的。而容积是指着两个书盒子讲的,从而凸现容积的属性,以及它与体积的区别。
为了有利于建立容积概念,教学时应该补充一些实例,让学生懂得容器,体会每个容器能容纳的体积是有限的、确定的。在充分感知的基础上,得出容器所能容纳物体的体积,叫做这个容器的容积。
试一试的教学要注意两点: 一是让学生解释玻璃杯容积的含义,理解每个杯的容积是指它能容纳多少水;二是通过实验比出哪个杯的容积大。如在一个杯里装满水,再往另一个杯里倒,看能不能装满另一个杯子,会不会有剩下的水。学生应该是实验设计、操作和结论得出的主体。
练一练第2题两个盒子里装的杯子的数量不同,练习五第4题两个盒子外面同样大,里面装的仪器数量不等,这些直观情境能帮助学生正确理解容积的意义,体会容器的体积与容积是不同的概念。
五、 认识,应用初步掌握常用的体积单位。
本单元教学的体积单位有立方厘米、立方分米、立方米。有了体积单位,就能测量、表达物体的体积,也能进一步体会体积的意义。
1. 认识体积单位包括两方面内容。
例8教学常用的体积单位,首先是测量、计量体积需要体积单位,然后是各个体积单位的具体含义。
观察图中的长方体和正方体,很难直接判断哪一个体积大。把它们切成同样大的正方体,就能比出体积的大小。这段教材让学生明白,有了体积单位就能准确计量物体的体积。图中的长方体是9个小正方体那么大,大正方体是8个小正方体那么大,长方体的体积比正方体大。还要让学生感受用于测量物体体积的单位,应该是确定的小正方体,由此导出常用的三个体积单位。把长方体和正方体切成同样的小正方体,最好是学生自主想到的方法。如果有困难,也可以看书或由教师告诉他们。但是,必须理解这个方法,体会其合理性,激发学习体积单位的愿望。
教学体积单位的具体含义,要准确地表达1立方厘米、1立方分米、1立方米各是多大的正方体。教材在文字描述这些体积单位的意义的同时,还选择一些辅助方法,让学生体会体积单位。棱长1厘米的正方体,体积是1立方厘米。教材里画出了1立方厘米的示意图,配合语言描述,让学生了解1立方厘米。受版面限制,教材里画出1立方分米、1立方米的直观图有困难。因此,在1立方分米的示意图的旁边,画一个体积接近1立方分米的粉笔盒,利用熟悉的物体,感知1立方分米是多大。用3根1米长的木条,在墙角搭一个1立方米的空间,在现实情境中体会1立方米。
寻找体积接近1立方厘米、1立方分米的物体,是带着体积单位的初步表象观察周围的事物,进一步体验这些单位。教材举的手指头的体积大约1立方厘米这个实例,能引起观察手指头的兴趣,加强1立方厘米的表象,再通过自主寻找实例,对1立方厘米的认识就深刻了。
2. 掌握体积单位有两方面的要求。
掌握体积单位,要能应用体积单位计量物体的体积。在这部分教材里,一是说出由1立方厘米小正方体摆成的物体的体积,二是为常见的物体选择合适的体积单位。
第21页说出用4个或6个棱长1厘米的正方体摆成的长方体的体积,第一次量化描述物体的体积。两个长方体的结构都很直观,分别说出它们的体积非常容易。教学不能满足于答案,要让学生说出怎样想的,进一步理解体积的意义和体积单位的用途。第24页第6题里的三个物体都是1立方厘米的正方体摆成的,其中两个物体的结构不是很直观。说出它们的体积,要数出各是几个正方体摆成的,尤其是想到那些不能直接看到的正方体,能发展空间观念。第8题根据三视图摆出物体,说出体积。摆出物体是解决问题的关键,是发展空间观念的机会。这个物体不复杂,多数学生能够摆出来。教学时不必补充这样的练习,更不要增加摆出物体的难度。
第24页第7题为物体选择合适的体积单位。能不能填出合适的单位,一般决定于三个因素:一是对物体的熟悉程度,二是具有体积单位的表象,三是能开展正确而有效的思考。如学生都熟悉西瓜,知道1个西瓜大致是多大,如果体积是8立方厘米或8立方米,显然都不符合实际。反之,为不熟悉的物体选择体积单位,只能是脱离实际地乱猜,这是毫无意义的。教材里的橡皮、集装箱、水桶等都是多数学生比较熟悉的物体。教学时如果补充类似的练习,一定要注意这点。
3. 进一步教学升与毫升。
四年级(下册)曾经教学升与毫升,初步知道它们都是计量液体的单位,也是容器的容量单位。对1升、1毫升液体是多少有了初步的认识。现在教学升和毫升,主要有两个内容: 第一,升和毫升都是体积单位,用于计量液体的体积,也用于计量容器的容积。把升与毫升纳入体积单位的范畴,建立新的知识结构,是已有认识的深化和提高。第二,1升等于1立方分米,1毫升等于1立方厘米,利用1立方分米、1立方厘米的表象理解1升与1毫升的实际大小,使原有认识更清晰、更牢固。
六、 操作,发现探索长方体、正方体的体积公式。
例9和例10教学长方体的体积计算公式,并推导出正方体体积计算公式。在初步掌握两个体积公式以后,还把它们统一起来。
1. 让学生探索求积公式。
长方体、正方体体积公式的教育价值,不能局限于知道公式和应用公式。况且,记忆和照公式列式计算的思维含量较低。得出体积公式能加强对体积意义、体积单位的理解;能发展解决问题的策略,积累数学活动经验;能培养创新精神和实践能力,有利于形成积极的情感态度。因此,教材十分重视探索体积公式的过程,设计、安排了认知线索和主要的探索活动。
例9和例10是两个层次的活动,不仅操作内容、要求有区别,而且思维程度有差异。例9用1立方厘米的正方体摆出4个不同的长方体,从已有的知识和能力开始教学新知识。没有规定长方体的大小,学生可以按自己的意愿去摆,既调动积极性,又为合作学习营造了氛围。在教材预设的表格里填写每个长方体的长、宽、高,所用正方体个数以及体积,可以获得两点感受:一是沿着长、宽、高各摆几个正方体,长方体的长、宽、高就分别是几厘米;二是长方体里有多少个正方体,体积就是多少立方厘米,体积应该与长、宽、高有关。这两点感受能使学生明白:探索长方体的体积计算公式,要研究体积与长、宽、高的关系。教学例9不要急于得出体积公式,而要在摆长方体与填表的基础上,着力引导学生获得上述两点感受,形成继续研究的心向。即使有学生从例9已经看出了体积公式,也要引导他们通过例10进一步验证公式,理解体积与长、宽、高之间的必然联系,感受数学的严谨及结论的确定性。
例10根据图示的长、宽、高,用1立方厘米的正方体摆出三个长方体。活动的本质是用体积单位测量物体的体积。对学习的要求是先想怎样摆、需要几个正方体,再按想法摆,验证想的是否可行、是否正确。三个长方体是精心设计的。左起第一个长方体的宽与高都是1厘米,只要把4个正方体摆成一行,能够体会长方体长的数量与沿着长摆的体积单位个数之间有必然联系。第二个长方体的高1厘米,只要把正方体摆成一层。体会长方体宽的数量是几,沿着宽应该摆出几行体积单位。而长与宽的乘积,就是一层里体积单位的个数。第三个长方体高2厘米,要把正方体摆成2层,体会长方体高的数量与摆的体积单位的层数是一致的。教材在各个长方体里预设的教学内涵,规划了各次实物操作时的思维重点,有助于学生逐渐建构数学认识。摆各个长方体获得的体会,就是对长方体的体积与它的长、宽、高关系的理解。教材让学生说说在两道例题中的发现,是引导他们回顾、反思例题的学习,进一步清楚这些体会,并把这些体会有条理地组织起来,得出长方体的体积公式。
抓住正方体12条棱长度相等的特点,能从长方体的体积公式推导出正方体的体积公式。教材要求学生主动经历推导过程,在独立思考之后小组交流。推导的思维方法是多样的,从正方体具有长方体的所有特征出发,演绎推理能完成推导,从再现测量体积活动出发,
类比推理能完成推导: 用体积单位测量正方体的体积,每行摆的个数、摆的行数、摆的层数都与正方体的棱长相等。因此,正方体的体积=棱长棱长棱长。
写正方体体积的字母公式时,根据字母表示数的书写规则,如果把乘号简写为,那么V=aaa;如果乘号省去不写,要写成V=a3。一般采用后一种写法,a3以及它表示的意思都是新知识。第26页练一练第2题,算几个整数或小数的立方的得数,巩固对立方的认识。解决正方体体积的实际问题,经常会列出和计算这样的算式。其中13、103和0.13要提醒学生特别注意,防止算错。
2. 深入理解体积公式。
长方体与正方体的体积公式,除了有一般与特殊的关系(正方体是特殊的长方体,正方体的体积公式是长方体体积公式的特例),还有相同的内容。认识它们的相同,能简化知识结构。第27页教学这个内容,分三步进行: 第一步认识长方体和正方体的底面。教材在长方体、正方体的直观图上,用涂颜色和文字标注等办法呈现它们的底面,让学生看到底面一般指长方体、正方体的下面(认识长方体时曾指过上、下、前、后、左、右三组相对的面)。第二步认识底面积。长方体或正方体的底面,都是表面的一部分。教材指出,长方体和正方体底面的面积,叫做它们的底面积,帮助学生建立底面积的概念,要求学生研究计算底面积的方法,联系求表面积的经验,得出长方体的底面积=长宽,正方体的底面积=棱长棱长,进一步加强对底面的认识。第三步演变原来的体积公式。在长方体的体积=长宽高里,如果把长宽看成先算底面积,那么体积公式可以演变成底面积高。在正方体的体积=棱长棱长棱长里,如果把棱长棱长看作先算底面积,那么体积公式也演变成底面积高。由于长方体、正方体的体积公式都能演变成底面积高,因而获得了统一。
把长方体和正方体的体积公式统一成底面积高,有两点教学意义: 第一是深入理解原有的两个体积公式。长、宽、高或棱长都是立体的棱的长度,决定立体的大小。长宽或棱长棱长得到长方体或正方体的底面积,底面积高得到的是体积。这里面蕴含了长度、面积、体积之间的联系。第二是重组知识结构。把两个体积公式合并成一个公式,其本身是一次认知简化。而且,底面积高还是计算所有直柱体体积的方法。无论底面是直线图形的柱体,还是曲线图形的柱体,体积公式都是V=Sh。前一点意义,在现在的教学中就能实现;后一点意义,在以后的教学中会逐渐体现出来。
练习六第5题已知一根长方体木料的长与横截面的边长,横截面是第一次出现的概念,教材利用示意图帮助学生理解横截面的含义。先算出横截面的面积,再算木料的体积,有两点意图:一是通过计算横截面的面积,进一步认识这个面;二是体会长方体、正方体的体积公式还能演变成长横截面面积、横截面面积棱长,从而对体积公式有更充实、更丰富的体验。
七、 计算,迁移理解体积单位的进率。
在初步掌握长方体、正方体的体积公式以后,教学体积单位的进率,采用让学生经过计算发现和理解的教学方法。教材第30~32页,先教学相邻体积单位间的进率,再教学简单的换算。
1. 求两个同样大小的正方体的体积,发现和理解进率。
例11的图里有两个正方体,一个棱长1分米,另一个棱长10厘米。从1分米=10厘米,知道两个正方体的棱长相等,进而判断它们的体积相等。这两个正方体的体积分别是1立方分米与1000立方厘米,从它们体积相等,推理得出1立方分米=1000立方厘米,这就是立方分米与立方厘米的进率。
用同样的方法,通过棱长1米和棱长10分米的正方体,可以得到立方米和立方分米间的进率。
在教学进率的过程中,作出两个正方体体积相等的判断是关键。因为1立方分米=1000立方厘米、1立方米=1000立方分米,首先表达的是两个棱长相等的正方体的体积相等,然后才本质地表达出相邻两个体积单位的进率。后者是这部分教材的重点所在。
练习七第1题的表格里已经填了米、分米、厘米三个长度单位以及一个面积单位与一个体积单位,要求学生继续写出其他面积单位和体积单位,还要写出表格里相邻的长度、面积、体积单位的进率。这道题对长度、面积、体积三类计量单位从名称和进率两个方面进行初步的整理。填表能引起学生对这些单位概念的回忆,如边长1米的正方形面积是1平方米,棱长1米的正方体体积是1立方米。从而体验米、平方米、立方米是不同的概念,也是有对应关系的单位。有了这些体验,在测量或计量长度、面积、体积时,就能正确应用单位名称。通过填表能发现规律,如米、分米、厘米这三个长度单位,相邻单位间的进率是10;平方米、平方分米、平方厘米这三个面积单位,相邻单位间的进率是100(1010);立方米、立方分米、立方厘米这三个体积单位,相邻单位间的进率是1000(101010)。理解这些规律,有助于记忆进率。
2. 应用进率进行简单的换算。
对使用不同单位的体积进行换算,是应用进率的活动。本单元里的单位换算是比较简单的,只在两个相邻单位间进行,而且都是单名数的换算。
练一练是体积单位的换算,先把较大单位的数量换算成较小单位的数量,再把较小单位的数量换算成较大单位的数量。类似的这些换算在长度单位、面积单位、质量单位里都进行过,学生有换算的经验,知道可以利用小数点向右或向左移动位置的办法解决。完成这里的练一练,可以把已有经验迁移过来,着重思考把小数点向哪边移动几位,并对这样做的原因作出解释。
练习七第2题把面积单位的换算与体积单位的换算对比着进行,目的是体会它们在换算时的相同与不同。无论哪类计量单位,只要是较大单位的数量换算成较小单位,都把小数点向右移动;只要是较小单位的数量换算成较大单位,都把小数点向左移动,这是规律,是共性。而小数点移动的位数是由进率决定的,进率分别是10、100、1000,小数点分别移动一位、两位、三位。获得这些体会的价值,已经远远超出知识与技能的范畴,更是数学思考、解决问题方面的发展。第4题里升与毫升的换算,四年级(下册)教材里曾经进行过。现在进行这些换算,不限于整数范围内实施,对问题及其解决方法的理解也比过去深刻。把升为单位的数量改写成立方分米为单位,把毫升为单位的数量改写成立方厘米为单位,能加强1升等于1立方分米、1毫升等于1立方厘米的认识,更好地把体积单位组织起来,便于记忆和应用。
八、 拼拼,想想体验表面积的变化。
实践活动《表面积的变化》专题研究几个相同的正方体(或长方体)拼起来,得到的立体与原来几个正方体(长方体)表面积之和的关系,发现并理解其中的变化规律,发展空间观念。
拼拼算算这个栏目,先研究用正方体拼的情况,再研究用长方体拼的情况,后一类情况比前一类复杂。研究正方体拼成长方体,从两个正方体开始。选用体积1立方厘米的正方体,它的每个面的面积都是1平方厘米,有利于体会到表面积的变化。
用两个相同的正方体拼出长方体,可以上、下两个面拼,也可以左、右两个面拼,还可以前、后两个面拼。从现象看,似乎拼法不同。其实,各种拼法没有实质性的差别。首先是拼成的长方体的体积是2个正方体体积的和,每个正方体的体积是1立方厘米,长方体的体积是2立方厘米。其次是每种拼法都减少原来的2个面,这是正方体拼成长方体时发生的变化,也是这次实践活动的研究内容。在两个正方体拼成长方体的图示中,可以体会减少的2个面分别在两个正方体上。拼的时候,这两个面相重叠。
用3个、4个甚至更多个相同的正方体摆成一行,拼成长方体,表面积比原来减少几个正方形面的面积?教材让学生边操作、边观察,边思考、边填表。发现的规律要帮助学生分两个层次归纳和交流:一是关于拼的步骤。2个正方体一步就能拼成长方体,3个正方体要分两步拼,4个正方体要分三步拼二是关于减少的面积。2个正方体拼,比原来减少2个(一对)正方形面的面积;3个正方体拼,比原来减少4个(两对)正方形面的面积;4个正方体拼,比原来减少6个(三对)正方形面的面积
用两个相同的长方体拼,情况比较复杂。由于长方体三组面的形状、大小不同,只有把完全相同的两个面重叠,才能拼出较大的长方体。因此,一般有三种不同的拼法。教材让学生通过操作,了解三种拼法。再看着各种拼法的示意图,思考每种拼法减少的面积。在体会三种拼法减少的面积不同之后,找出拼成的大长方体中,哪个表面积最大,哪个最小。
第37页的示意图中,左边拼法的两个长方体把54的面重叠,拼成的大长方体的表面积比原来减少两个54;中间拼法的两个长方体把53的面重叠,表面积减少2个53;右边拼法的表面积减少2个43。这些都是学生在操作与看图中能够理解的,也是交流的主要内容。指出表面积最大和最小的大长方体,要进行这样的推理:拼的时候减少的面积最少,拼成的大长方体的表面积最大。反之,减少的面积最多,拼成的大长方体的表面积最小。只要教师稍加引领或点拨,学生都能像这样想。而且计算三个大长方体的表面积比原来减少多少,都有捷径可走。
拼拼说说栏目里变化了拼法,不但把正方体拼成一行,还拼成两行。仔细地体会拼的活动和研究教材里的示意图,左图可看作有7次正方体的两两相拼(如图),每次减少面积2平方厘米,大长方体的表面积比原来减少7个2平方厘米。右图中可看作有5次正方体的两两相拼(如图),大长方体的表面积比原来减少5个2平方厘米。所以,右边的长方体表面积比左边长方体大4平方厘米。
为10盒火柴设计一个最节省的包装方案,是应用前面拼正方体或长方体的经验:重叠的面越大,表面积减少越多;两两相拼的次数多,减少的面积也多。这两条经验要灵活地、综合地应用,才能得到理想的方案。这对空间观念和思维能力是很好的锻炼。
小学数学教案 篇8
教学目标:
1、理解、掌握商不变的性质。会用商不变的性质进行一些简单的应用。
2、经历提出猜测,验证猜测,得出结论的探究过程,发展学生探究与解决问题的能力。
3、感受知识的发现与应用的过程,体验成功的快乐。
教学重点:探究发现并应用商不变的性质
教学过程
一、情境导入
1、齐天大圣孙悟空有一项很厉害的变化本领,叫 ?(变)但他不管怎么变,他还是?(不变)数学中也有许多变与不变的规律,同学们想不想知道?
2、故事感悟
花果山上有许多小猴子,其中有一只叫桃桃,特别爱吃桃子,一次孙悟空分桃子,分给桃子6只,要他平均3天吃完。可桃桃觉得分到的桃子太少了,就对孙悟空说:“大王,你分给我的桃子太少了,能不能多给一些?”孙悟空想:桃桃真贪吃,我得治治他,孙悟空眼睛一转说:“好吧!那我就给你12只桃子,但要分6天吃完,你同意吗?”桃桃还觉得太少,又说“再多点,再多点。”孙悟空马上说:“那就给你36只桃子,但要分18天吃完,怎么样?”桃桃一听能拿到这么多的桃子,便高高兴兴地走了。这时孙悟空却哈哈大笑。
孙悟空在笑谁?
板书:6÷3=2(只)
12÷6=2(只)
36÷18=2(只)
3、你想知道孙悟空的话中间包含了怎样的知识吗?
4、观察算式。这里面有没有包含着变与不变的知识呢?(商不变,被除数除数同时在变 )
二、猜测、探究
1、观察讨论,商不变的原因是什么?(小组讨论)
2、交流并板书:1、扩大相同的倍数2、缩小相同的倍数3、加上相同的数4、减去相同的数。
3、出示作业纸,同桌合作探究
4、交流汇报:猜测1、2是正确的,3、4是错误的。
用自己的话说说商不变的原因。(板书)
(随便写一个算式验证)同时乘以或除以时,哪个数不能选择?(0除外)
5、我们一起看看书上是怎么说的?
(1)书上为什么加上了“在除法里”?
(2)书上给这条规律起了什么名字?(完善课题)
(3)你认为这条规律中哪几个字是最关键的?
6、尝试
1、判断 350÷50=(350÷10)÷(50÷10) ( )
75÷25=(75×4)÷(25×4) ( )
900÷18=(900÷9)÷18 ( )
480÷120=(480×3)÷(120×3) ( )
180÷15=(180÷3)÷(15÷5) ( )
56×8=(56÷4)×(8÷4) ( )
2、填一填
÷40=(×4)÷(40×□)
=(○□)÷(40÷5)
=(×7)÷(□○□)
=□÷80
=□÷□
三、应用
1、示24000÷6000,你有什么新想法?(竖式上怎么表示?)(板书)
100个0 100个0
2、与计算机比速度:36000…000÷6000…000=
3、赛一赛
4800÷600○48÷6 35000÷5000
700÷90000 4500÷50
4、挑战
0÷125
四 :今天我们一起探讨了什么知识?你最大的收获是什么?
【【精华】小学数学教案模板汇编八篇】相关文章:
【精华】小学数学教案模板7篇05-07
【精华】小学数学教案汇编六篇05-13
【精华】小学数学教案汇编5篇05-07
小学数学教案模板汇编六篇05-12
【精华】小学数学教案4篇05-14
【精华】小学数学教案合集10篇05-13
【精华】小学数学教案范文五篇05-12
【精华】小学数学教案合集六篇05-09
小学数学教案汇编五篇05-08
【精品】小学数学教案模板五篇05-16