《完全平方公式》的说课稿

2023-06-17 说课稿

  作为一名优秀的教育工作者,通常会被要求编写说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。我们应该怎么写说课稿呢?下面是小编为大家收集的《完全平方公式》的说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

  《完全平方公式》的说课稿 1

  一)、教材分析

  说课内容:

  《整式的乘除与因式分解》的《完全平方公式》。

  教材的地位和作用:

  完全平方公式是初中数学中的重要公式,在整个中学数学中有着广泛的应用,重要的数学方法“配方法”的基础也是依据完全平方公式的。而且它在整式乘法,因式分解,分式运算及其它代数式的变形中起作十分重要的作用。

  本节内容共安排两个课时,这次说课是其中第一个课时。完全平方公式这一教学内容是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,教材从具体到抽象,由直观图形引导学生观察、实验、猜测、进而论证,最后建立数学模型,逐步培养学生的逻辑推理能力和建模思想。

  教学目标和要求:

  由课标要求以及学生的情况我将三维目标定义为以下三点:

  知识与技能目标:了解公式的几何背景,理解并掌握公式的结构特征,能利用公式进行计算。

  过程与方法目标:在学习的过程中使学生体会数、形结合的优势,进一步发展符号感和推理能力,培养学生数学建模的思想。

  情感与态度目标:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立自信心。

  教学的重点与难点:

  根据对学生学习过程分析及课标要求我把重点定为:完全平方公式的结构特点及公式的直接运用。而难点应为完全平方公式的应用以及对公式中字母a、b的广泛含义的理解与正确应用。在教学过程中多处留有空白点以供学生独立研究思考。

  二)、教法与学法

  (1)多媒体辅助教学,将知识形象化、生动化,激发学生的`兴趣。

  (2)教学中逐步设置疑问,引导学生动手、动脑、动口,积极参与知识全过程。

  (3)由易到难安排例题、练习,符合八年级学生的认知结构特点。

  (4)课堂中,对学生激励为主,表扬为辅,树立其学习的自信心。

  三)、教学过程

  一、创设情景,推导公式

  计算

  1、想一想(电脑演示)

  一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种。

  ⑴、分别写出每块实验田的面积;

  ⑵、用不同的形式表示实验田的总面积,并进行比较,你发现了什么?

  2、算一算

  ①、你能用多项式乘法法则说明理由吗?(引导学生说理)

  3、做一做

  你能利用面积知识,仿照课本以及演示的动画,自己给出的示意图吗?

  二、自主探究,合作交流

  板书公式:

  ①这两个公式有何相同点与不同点?

  ②你能用自己的语言叙述这两个公式吗?

  《完全平方公式》的说课稿 2

  一、 教材分析

  1、教材的地位和作用

  本节教材是初中数学七年级下册第一章第八节的内容,是初中数学的重要内容之一。一方面,这是在学习了整式的加、减、乘、除及平方差公式的基础上,对多项式乘法的进一步深入和拓展;另一方面,又为学习《因式分解》《配方法》等知识奠定了基础,是进一步研究《一元二次方程》《二次函数》 的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

  2、学情分析

  从心理特征来说,初中阶段的学生逻辑思维能力有待培养,从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  从认知状况来说,学生在此之前已经学习了多项式乘法法则、平方差公式的探索过程,对“完全平方公式”已经有了初步的认识,为顺利完成本节课的教学任务打下了基础,但对于“完全平方公式” 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的.要求,我将本节课的重点确定为:

  对公式(a+b) 2=a2+2ab+b2的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释。

  难点确定为:从广泛意义上理解完全平方公式的符号含义,培养学生有条理的思考和语言表达能力。

  二、 教学目标分析

  新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感与态度目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。借此,我将三维目标进行整合,确定本节课的教学目标为:

  1. 经历探索完全平方公式的过程,进一步发展符号感和推理能力。会推导完全平方公式,并能运用公式进行简单的运算。

  2.在探索讨论、归结总结中,培养学生语言表达能力、逻辑思维能力。

  3. 通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生积极参与对数学问题的讨论并敢于表达自己的观点。

  三、 教学方法分析

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  四、教学过程分析

  新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1) 复习旧知,温故知新

  设计意图:建构注意主张教学应从学生已有的知识体系出发, 是本节课深入研究 的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2) 创设情境,提出问题

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘

  通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

  (3) 发现问题,探求新知

  设计意图:现代数学教学论指出, 的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳 。

  (4) 分析思考,加深理解

  设计意图:数学教学论指出, 数学概念(定理等) 要明确其内涵和外延(条件、结论、应用范围等) ,通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入下一 环节。

  (5) 强化训练,巩固双基

  设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

  (6) 小结归纳,拓展深化

  我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的知识、方法、体验等几个方面进行归纳,我设计了这么三个问题:

  《完全平方公式》的说课稿 3

  一、教材分析:

  1、 地位与作用:

  分解因式与数系中分解质因数类似,是代数中一种重要的恒等变形,它是在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。在后面的学习过程中应用广泛,如:将分式通分和约分,二次根式的计算与化简,以及解方程都将以它为基础。因此分解因式这一章在整个教材中起到了承上启下的作用。同时,在因式分解中体现了数学的众多思想,如:“化归”思想、“类比”思想、“整体”思想等。因此,因式分解的学习是数学学习的重要内容。

  根据《课标》的要求,本章介绍了最基本的两种分解因式的方法:提公因式法和运用公式法(平方差、完全平方公式)。运用完全平方公式分解因式不仅是现阶段的学习重点,而且为学生以后分解二次三项式奠定了一定的基础。

  2、 教学目标:

  ①知识与技能:会运用公式法(直接运用公式不超过两次)分解因式。

  ②过程与方法:经历通过整式乘法的完全平方公式逆向得出用公式法分解因式的方法的过程,发展学生的逆向思维和思考问题的.能力,总结因式分解的一般分解的方向。

  ③情感态度与价值观:培养学生灵活地运用知识的能力和积极思考的良好习惯,体会因式分解在数学学科中的地位与价值,感受数学的简谐美。

  3、 重点、难点:

  ①重点:掌握公式法中的完全平方公式进行分解因式。

  ②难点:灵活地运用公式法或以学过的提公因式法进行分解因式,正确地判断因式分解的彻底性问题。

  二、学法与教法分析:

  1、学法分析:

  ①注意分解因式与整式乘法的关系,两者是互逆的。

  ②注意完全平方公式的特点。

  2、教法分析:

  根据《课标》的要求,结合本班学生的知识水平,本堂课采用对比,探究,讲练结合的方法完成教学目标。对比学习平方差公式的方法指导学生探究分解因式的完全平方公式。在教学过程中,所选例题保证基本的运算技能,避免复杂的题型,直接用公式不超过两次。采用观察、类比、分析的方法,引导学生把握因式分解的基本思路,灵活地运用“换元”和“化归”思想把问题中的多项式转化成适当的公式形式。

  三、教学过程:

  根据学生的认知规律和认知水平,我准备按照复习旧知→探究新知→例题精讲→训练反馈→小节→作业六个环节来完成本堂课的教学目标。

  1、复习与回顾。

  ①利用一组整式的乘法运算复习完全平方公式,为探究运用完全平方公式进行分解因式打下基础。

  ②利用一组运用平方差公式分解因式的习题,引导学生利用逆向思维去探究如何分解a2±2ab+b2类的二次三项式。

  2、授新。

  ①根据第二组复习题引出利用完全平方公式进行因式分解,得出完全平方公式。

  ②引导学生观察完全平方公式的结构特征,得出完全平方式的概念。再让学生自主地编写一些完全平方式,检验学生对完全平方公式的理解。

  3、例题:

  ①精讲课本57页例3,加深对完全平方公式的理解,同时感知“整体”思想在分解因式中的应用。

  ②精讲课本57页例4,引导学生得出分解因式的一般步骤,向学生渗透“化归”思想。

  4、反馈训练:

  安排的习题题型不复杂,直接运用公式不超过两次,习题难易有梯度,满足不同层次的同学的需要。

  5、课堂小结:采用提问式对本堂课的内容进行小结。

  6、作业:采用分层布置作业。

  《完全平方公式》的说课稿 4

  (一)说课内容

  新课标《数学》(华东师大版)八年级上册第十四章《整式的乘法》

  的第三节《完全平方公式》的运用、

  (二)教材的地位和作用

  完全平方公式是初中数学中的重要公式,在整个中学数学中有着广泛的应用,是后面学习重要数学思想"配方法"的基础、

  本节内容共安排两个课时,这次说课是其中第二个课时、

  完全平方公式的运用这节课是在学生已经学习完全平方公式的基础上的拓展与运用、

  (三)教学目标

  1,知识与技能目标:使学生灵活运用完全平方公式,会运用完全平方公式去解决一些实际问题

  2,过程与方法目标:进一步发展学生符号感和推理能力,培养学生数学建模的思想、

  3,情感与态度目标:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验,树立自信心,学会在与同学的交流中获益、

  (四)教学的重点与难点:

  一、如何运用完全平方公式解决问题、

  二,说教法与学法

  (1)多媒体辅助教学,提高课堂的效率与容量

  (2)教学中逐步设置疑问,引导学生动手,动脑,动口,积极参与知识全过程、

  (3)由易到难安排例题,练习,符合八年级学生的认知结构特点、

  (4)课堂中,对学生激励为主,表扬为辅,树立其学习的自信心、

  三,说教学过程

  (一)课前3分钟

  这一部分中,安排道判断题,通过这几道判断题加深学生对完全平方公式结构

  特征的理解、具体练习如下:

  (二)引导学生展开探索公式的变式(在这部分给充分的时间让学生讨论)

  为了更好的掌握这两个重要的公式,老师应该引导学生对公式的变式进行探讨、老师可以给出一个示范:在公式(1)中,可以将,分别看作一个整体,将移到左边可得一个变式:

  也就是可以用和表示出,这时老师让学生以四人小组以竞赛的形式探讨其他的变式、

  具体操作如下:

  在10分钟之内,看哪一个小组能推导出更多的变式出来,并根据最后的结果给以加不同等级的加分、

  在学生探讨的过程中,老师可以给以启发和引导,鼓励小组合作,一起解决问题,从而提高大家的积极性和合作精神、

  最后老师根据学生的讨论结果归纳补充,看当时具体情况做出适当的调整、

  (三)练习

  这部分,安排A,B,C组练习,根据题目的难易程度设计了三个梯度、

  学生能完成A,B组题,就到达了这节课的目的

  A,B组题的完成是在限定时间内以小组形式完成,开始先是个人独立做练习,然后小组对答案,讨论答案正确与否,最后老师根据学生的具体情况做相应的个别题目的解答、

  具体题目如下:

  A组:

  1、已知求与的值、

  2、已知求与的值、

  3、已知求与的值、

  4、已知求与的`值、

  B组:

  5、已知,求的值、

  6、已知,求的值、

  7、已知,求的值、

  8、试说明不论x,y取何值,代数式的值总是正数、

  C组:

  1,已知三角形ABC的三边长分别为a,b,c且a,b,c满足等式,请说明该三角形是什么三角形

  2,设求的值

  (四),板书设计(结合课件使用)

  1,黑板正中间板书:完全平方公式的运用

  2,黑板的左边板书两个公式:

  得到一个变式:

  3,根据学生讨论的情况做出一些相应的板书、

  (五),作业

  课堂上没有完成的题目、

  《完全平方公式》的说课稿 5

  一、教学目标:

  经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于创新的精神和合作学习的习惯;重点是正确理解完全平方公式(a±b)2=a2±2ab+b2,并初步运用;难点是完全平方公式的运用。

  二、教学过程:

  1.检查学生的“预习知识树”,导入课题:

  师:前面学习了平方差公式,同学们对平方差公式的结构特点、运用以及学习公式的意义有了初步的认识。今天,我们继续学习、研究另一种“乘法公式”――完全平方公式。请拿出你的“预习知识树”,小组内互查并交流,在预习中有疑问的同学请询问。

  (活动:老师巡视、检查学生的预习情况,并解答学生在预习中存在的问题)生:(互查、讨论“预习知识树”,有问题的询问问题。)师:(老师点评学生预习情况,并出示老师做的“知识树”,引出课题:完全平方公式。)说明:把预习提到课前,利用“知识树”引导学生自学,学生可以独立思考、自主学习,也可合作交流、讨论研究,这样预习会更充分,听讲时就能有准备、有选择;一上课,老师就检查“预习知识树”,了解学生新课学习情况,适当点拨,在课堂上留出更多的时间大量拓展、提高,发展学生的能力。

  2.自学检测,制造通用工具:师:下面进行自学检测.计算:

  ⑴(x+3)2;

  ⑵(2x-5)2;

  ⑶(mn+t)2;

  ⑷(-4x+y2)2。

  (活动:投影显示练习题。)

  生:(四人到黑板上板演,答错了,由学生纠正,老师再点评。)

  师:观察练习,公式中的a、b可代表什么?

  生:可以表示一个数,也可以表示一个单项式、多项式。

  说明:点评时,老师反复引导学生分清题目中哪部分相当于公式中的a,哪部分相当于公式中的b,就是让学生明确“公式中的a、b可表示数,也可表示一个单项式、多项式或其他的式子”的'变化规律,即制造通用工具。在前面学习平方差公式时,学生应该认识到这个道理,在这里再次强化。

  师:说得非常好,明确“公式中的a、b可以表示一个数,也可以表示一个单项式、多项式”的变化规律,就能正确运用公式解题了。显然,刚做的练习题是由公式变化来的,若是变下去,能变多少道题?

  生:无数道。师:最终是几道题?生:一道。说明:这就是老师的“暗线”语言,引导学生明白从公式出发,反映在a、b上只是取值不同,可以演变出无数道题,是“解压”的过程,最终还是利用公式解题,所有的题目只有“一道”,只是形式不同,这又是“压缩”的过程,把握了变化规律才能更好地解题。

  师:你会变了吗?请各小组编题。(活动:四人小组先在组内讨论、交流,再推选完成最快的两个小组出示题目,其他小组同学练习。)说明:引导学生现场出题,一是激发学生兴趣、活跃气氛,二是验证变化规律。

  师:下面思考,如何计算:(a+b+c)2生1:可根据多项式乘以多项式来计算,就是把(a+b+c)2看做(a+b+c)(a+b+c)。

  师:不错。还有其他方法吗?生2:也可以把其中的(a+b)两项看成一项,变成[(a+b)+c]2的形式,就能直接运用完全平方公式了。

  师:说得非常好。两种方法都可以,但哪种更简单呢?请你任选一种,完成练习。

  生:(紧张地做题,同时找两个学生到黑板上板演。)师:这道题若是变为(a+b+c+d)2,你会做吗?

  生:(齐答)会。师:怎么办?生1:把其中(a+b)看做一项,(c+d)看做一项,还是利用完全平方公式解题。

  生2:还有其他分组方式,如把(a+c)看做一项,(b+d)看做一项,也能直接运用公式解题。

  师:方法一样吗?生:一样的。师:还能变下去吗?这样可以变出多少道题?

  生:无数道。师:最终是几道题?生:(齐答)一道题。师:现在,老师相信每个学生都会解这样的题了。课下,请同学们思考:如果把(a+b)2的指数变化一下,又可以变出多少道题,你能计算出来吗?

  (活动:投影显示一组题目,如(a+b)3、(a+b)4……)说明:这就是老师进一步利用这个例子论证“公式中的a、b可表示数,也可表示一个单项式、多项式或其他的式子”的变化规律。

  3.通过大量的习题验证通用工具,学生并且自造通用工具。

  师:通过前面的检测,看出同学们已经基本掌握了完全平方公式。下面进入达标检测。

  (活动:投影显示达标检测题)1.填空:

  ①(2x+3y)2=______;②(14a-1)2=116a2-____+1;③当x=5,y=2,则(x+y)(x-y)-(x-y)2=_________。

  2.计算:

  ①(-2m-n)2;

  ②(2-3a2)(3a2-2);

  ③(-cd+12)2;

  ④(n+3)2-n23.计算:(x+2y+3)(x+2y-3)生:(积极、主动地在作业本上完成上面练习题。)师:(巡视,批阅完成快的学生的作业,最后集体点评,只讲不会的。)说明:第2①题,可先变形为[-(2m+n)]2,再按(a+b)2的公式展开,也可直接理解成-2m与n的差,按(a-b)2计算;第2②题将(2-3a2)变形为-(3a2-2),原式可转化为-(3a2-2)2,直接运用公式计算;第2④题把(n+3)看做a

  、n看做b,逆用平方差公式也是一种解法,同时训练学生的逆向思维;第3题是下节课训练内容,在这里可以提前,引导学生通过变形,得出(x+2y+3)(x+2y-3)=[(x+2y)+3][(x+2y)-3]=(x+2y)2-32=x2+4xy+4y2-9,这里还是把(x+2y)看做a、3看做b,进一步验证了“通用工具”,即“解决某一类问题的一种思维方式或方法”。拓展提高还是在“变”上下功夫,要求学生能较熟练掌握,逐步达到脑算的层次,水到渠成,能力自然提高,学生就会自造“通用工具”了。

  4.嫁接“知识树”,推荐作业。师:本节课你有什么收获?还有什么问题吗?

  (活动:再次投影本节课“知识树”。)生:这节课我们学习、研究了完全平方公式(a±b)2=a2±2ab+b2,知道了公式中a、b,可以是单项式也可以是多项式,能运用公式解题了,能力上又有新的提高.师:课下完成本节课的作业.[投影显示]思考题:计算(a+b+c)2、(a+b+c+d)2的结果,观察有什么规律,感兴趣的同学还可计算(a+b)3、(a+b)4的结果,你又能发现什么规律.预习指导:

  ①课本第38-39页内容,重点研究例3两个题目的解题方法,能尝试独自解答课后随堂练习或习题,

  ②设计下节课“知识树”,优化本单元“知识树”。说明:本环节是将本节课“知识树”

  移植到乘法公式的单元“知识树”上,整体构建知识,同时更加强化了学生的“能力树”。作业是推荐性的作业,达标检测就是“堂堂清”,学生课下只须做好预习作业就行了,这样会有更多自由安排的时间,发展个性。

  《完全平方公式》的说课稿 6

  一、教学目标

  (1) 知识与技能;学生通过推导完全平方公式,掌握公式结构,能计算。

  (2) 过程与方法目标;学生探究完全平方公式,体会数形结合。

  二、教学重点

  公式结构及运用。

  三、教学难点

  公式中字母AB的含义理解与公式正确运用。

  四、教具

  自制长方形、正方形卡片

  五、教学过程

  教师活动

  学生活动

  1、 创设情景,提出问题,引入课题

  (1) 想一想

  1.一位老人很喜欢孩子,每当孩子到他家做客时,老人都拿出糖招待他们,来了几个孩子老人就会每个孩子几块糖。

  (1) 第一天,a个男孩去看老人,老人共给他们几块糖?

  (2) 第二天,个女孩子去看望老人,老人共给他们多少块糖?

  (3) 第三天,( )个孩子一起去看望老人,老人共给他们多少块糖?

  (4) 第三天比前二天的孩子得到糖总数哪个多?多多少?为什么?(分组讨论)

  2、 学生四人一组讨论。

  填空:

  (1)第一天给孩子 块糖。

  (2)第二天给孩子 块糖。

  (3)第三天给孩子 块糖。

  男孩子第三天多得 块糖

  女孩第三天多得 块糖。

  (2) 做一做、请同学拼图

  a教师巡视指导学生拼图

  1、 教师提问:

  (1)、大正方形边长?

  (2)每一块卡片的'面积是多少?

  (3)用不同形式表示正方形总面积,比较发现什么?

  2、 想一想

  (1)(a +b )用多项式乘法法则说明

  (2)( a -b )

  3、请同学们自己叙述上面的等式

  4、说一说,a b能表示什么?

  (□+○) □+2□○+○

  5、算一算

  (1)(2X-3)(2)(4X+5Y)

  请同学们分清a b

  6、练一练

  (1)(2X-3Y) (2)(2XY-3X)

  7、试一试(a+b+c)

  作业:

  P135 1、2

  学生2人一组拼图交流

  2、学生观察思考

  (1) 大正方形边长?

  (2) 四块卡片的面积分别是

  (3) 大正方形的总面积是多少?

  3、

  (1)学生运用多项式乘法法则推导

  (a+b)=a+2ab+b说出每一步运算理由

  (2)学生自己探究交流

  4、学生用语言叙述公式

  5、师生共同a、b对应项 教师书写

  6、学生独立完成练一练展示结果

  7、学生四人一组讨论交流

  《完全平方公式》的说课稿 7

  一、学习目标

  1.会运用完全平方公式进行一些数的简便运算

  二、学习重点

  运用完全平方公式进行一些数的简便运算

  三、学习难点

  灵活运用平方差和完全平方公式进行整式的简便运算

  四、学习设计

  (一)预习准备

  (1)预习书p26-27

  (2)思考:如何更简单迅捷地进行各种乘法公式的运算?[

  (3)预习作业:1.利用完全平方公式计算

  (1)(2) (3)(4)

  2.计算:

  (1) (2)

  (二)学习过程

  平方差公式和完全平方公式的逆运用

  由 反之

  反之

  1、填空:

  (1)(2)(3)

  (4)(5)

  (6)

  (7)若,则k=

  (8)若是完全平方式,则k=

  例1计算:1. 2.

  现在我们从几何角度去解释完全平方公式:

  从图(1)中可以看出大正方形的边长是a+b,

  它是由两个小正方形和两个矩形组成,所以

  大正方形的面积等于这四个图形的面积之和.

  则S= =

  即:

  如图(2)中,大正方形的边长是a,它的面积是 ;矩形DCGE与矩形BCHF是全等图形,长都是 ,宽都是 ,所以它们的面积都是 ;正方形HCGM的边长是b,其面积就是 ;正方形AFME的边长是 ,所以它的面积是 .从图中可以看出正方形AEMF的面积等于正方形ABCD的`面积减去两个矩形DCGE和BCHF的面积再加上正方形HCGM的面积.也就是:(a-b)2= .这也正好符合完全平方公式.

  例2.计算:

  (1) (2)

  变式训练:

  (1) (2)

  (3) (4)(x+5)2–(x-2)(x-3)

  (5)(x-2)(x+2)-(x+1)(x-3) (6)(2x-y)2-4(x-y)(x+2y)

  拓展:1、(1)已知,则=

  (2)已知,求________,________

  (3)不论为任意有理数,的值总是()

  A.负数B.零C.正数D.不小于2

  2、(1)已知,求和的值。

  (2)已知,求的值。

  (3).已知,求的值

  回顾小结

  1.完全平方公式的使用:在做题过程中一定要注意符号问题和正确认识a、b表示的意义,它们可以是数、也可以是单项式,还可以是多项式,所以要记得添括号。

  2.解题技巧:在解题之前应注意观察思考,选择不同的方法会有不同的效果,要学会优化选择。

  《完全平方公式》的说课稿 8

  一、教材分析

  本节内容在全书及章节的地位:《完全平方公式》是人教版数学八年级上册第十四章的内容。在此之前,学生已学习了多项式的乘法,这为过渡到本节的学习起着铺垫作用。本节课通过学生合作学习,利用多项式相乘法则和图形解释而得到完全平方公式,进而理解和运用完全平方公式,对以后学习因式分解,解一元二次方程都具有举足轻重的作用。

  作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透换元思想和数形结合思想 。

  二、学情分析

  学生刚学过多项式的乘法,已具备学习和运用完全平方公式的知识结构,但是由于学生初步学习乘法公式,认清公式结构并不容易,因此教学时要循序渐进。

  三、教学目标

  知识与技能

  1.完全平方公式的'推导及其应用。

  2.完全平方公式的几何证明。

  过程与方法

  经历探索完全平方公式的过程,进一步发展符号感和推理能力。

  情感态度与价值观

  对学生观察能力、概括能力、语言表述能力的培养,以及数学思想的渗透。

  四、教学重点难点

  教学重点

  完全平方公式的推导过程;结构特点与公式的应用。

  教学难点

  完全平方公式结构特点及其应用。

  五、教法学法

  多媒体辅助教学,将知识形象化、生动化,激发学生的兴趣。教学中逐步设置疑问,引导学生动手、动脑、动口,积极参与知识全过程。

  六、教学过程设计

  师生活动

  设计意图

  一.复习多项式与多项式的乘法法则

  1、多项式与多项式的乘法法则内容。

  2、多项式与多项式的乘法练习。

  二.讲授新课

  完全平方公式的推导

  1、利用多项式与多项式的乘法法则和几何法推导完全平方(和)公式

  附:有简单的填空练习

  2、利用多项式乘法则和换元法推导完全平方 (差)公式

  (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  二、总结完全平方公式的特点

  介绍助记口诀:首平方,尾平方,首尾两倍乘积放中央。

  三、课堂练习

  1、改错练习

  2、例题讲解(总结利用完全平方公式计算的步骤)

  第一步选择公式,明确是哪两项和(或差)的平方;

  第二步准确代入公式;

  第三步化简。

  计算练习

  (1)课本110页第一题

  (2) (x-6)2 (y-5)2

  四、课堂小结:

  1、应用完全平方公式应注意什么?

  在解题过程中要准确确定a和b,对照公式原形的两边, 做到不丢项、不弄错符号、2ab时不能少乘以2。

  2、助记口诀

  复习多项式与多项式的乘法法则为新课的学习做准备。

  利用不同的的方法来推导完全平方公式,让学生认知数学中的不同解题方法。

  利用助记口诀帮助学生更加准确的掌握完全平方公式的特点。

  通过课堂练习,使学生掌握用完全平方公式计算的步骤,加强学生解题的准确率。

  强调应用完全平方公式解题的注意点和助记口诀,提高学生解决问题的能力和解题的准确率。

  《完全平方公式》的说课稿 9

  学习任务

  1、了解完全平方公式的特征,会用完全平方公式进行因式分解.

  2、通过整式乘法逆向得出因式分解方法的过程,发展学生逆向思维能力和推理能力.

  3、通过猜想、观察、讨论、归纳等活动,培养学生观察能力,实践能力和创新能力.

  学习建议教学重点:

  运用完全平方公式分解因式.

  教学难点

  掌握完全平方公式的特点.

  教学资源

  使用电脑、投影仪.

  学习过程学习要求

  自学准备与知识导学:

  1、计算下列各式:

  ⑴(a+4)2=__________________⑵(a-4)2=__________________

  ⑶(2x+1)2=__________________⑷(2x-1)2=__________________

  下面请你根据上面的等式填空:

  ⑴a2+8a+16=_____________⑵a2-8a+16=_____________

  ⑶4x2+4x+1=_____________⑷4x2-4x+1=_____________

  问题:对比以上两题,你有什么发现?

  2、把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来就得到__________________和__________________,这两个等式就是因式分解中的完全平方公式.它们有什么特征?

  若用△代表a,○代表b,两式可表示为△2+2△×○+○2=(△+○)2,△2-2△×○+○2=(△-○)2.

  3、a2-4a-4符合公式左边的'特征吗?为什么?

  4、填空:a2+6a+9符合吗?______相当于a,______相当于b.

  a2+6a+9=a2+2()()+()2=()2

  a2-6a+9=a2-2()()+()2=()2

  可以把形如a2+2ab+b2与a2-2ab+b2的多项式通过完全平方公式进行因式分解.

  学习交流与问题研讨:

  1、例题一(准备好,跟着老师一起做!)

  把下列各式分解因式:⑴x2+10x+25⑵4a2-36ab+81b2

  2、例题二(有困难,大家一起讨论吧!)

  把下列各式分解因式:⑴16a4+8a2+1⑵(m+n)2-4(m+n)+4

  3、变式训练:若把16a4+8a2+1变形为16a4-8a2+1会怎么样呢?

  4、运用平方差公式、完全平方公式,把一个多项式分解因式的方法叫做运用公式法.分析:重点是指出什么相当于公式中的a、b,并适当的改写为公式的形式.

  分析:许多情况下,不一定能直接使用公式,需要经过适当的组合,变形成公式的形式.

  强调:分解因式必须分解到每一个因式都不能再分为止.

  练习检测与拓展延伸:

  1、巩固练习

  ⑴下列能直接用完全平方公式分解的是()

  A、x2+2xy-y2B、-x2+2xy+y2C、x2+xy+y2D、x2-xy+y2

  ⑵分解因式:-a2+2ab-b2=_________,-a2-2ab-b2=_________.

  ⑶课本P75练一练1、2.

  2、提升训练

  ⑴简便计算:20042-4008×2005+20052

  ⑵已知a2-2a+b2+4b+5=0,求(a+b)2005的值.

  ⑶若把a2+6a+9误写为a2+6a+9-1即a2+6a+8如何分解?

  3、当堂测试

  补充习题P42-431、2、3、4.

  分析:许多情况下,不一定能直接使用公式,需要经过适当的组合,变形成公式的形式.

  课后反思或经验总结:

  1、本节课是在学生已经了解因式分解的意义,掌握了提公因式法、平方差公式的基础上进行教学的,是运用类比的方法,引导学生借助上一节课学习平方差公式分解因式的经验,探索因式分解的完全平方公式法,即先观察公式的特点,再直接根据公式因式分解.

  《完全平方公式》的说课稿 10

  总体说明:

  完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结.同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处.而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用.因此学好完全平方公式对于代数知识的后继学习具有相当重要的意义.

  本节是北师大版七年级数学下册第一章《整式的运算》的第8小节,占两个课时,这是第一课时,它主要让学生经历探索与推导完全平方公式的过程,培养学生的符号感与推理能力,让学生进一步体会数形结合的思想在数学中的作用.

  一、学生学情分析

  学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础.

  学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.

  二、教学目标

  知识与技能:

  (1)让学生会推导完全平方公式,并能进行简单的应用.

  (2)了解完全平方公式的几何背景.

  数学能力:

  (1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力.

  (2)发展学生的数形结合的数学思想.

  情感与态度:

  将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”.

  三、教学重难点

  教学重点:

  1、完全平方公式的推导;

  2、完全平方公式的应用;

  教学难点:

  1、消除学生头脑中的前概念,避免形成“相异构想”;

  2、完全平方公式结构的认知及正确应用.

  四、教学设计分析

  本节课设计了十一个教学环节:学生练习、暴露问题——验证——推广到一般情况,形成公式——数形结合——进一步拓广——总结口诀——公式应用——学生反馈——学生PK——学生反思——巩固练习.

  第一环节:学生练习、暴露问题

  活动内容:计算:(a+2)2

  设想学生的做法有以下几种可能:

  ①(a+2)2=a2+22

  ②(a+2)2=a2+2a+22

  ③正确做法;

  针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?

  活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:

  (a+2)2=a2+22,如果不将这种定式思维_就很难建立起一个正确的概念;这一环节的.目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.

  第二环节:验证(a+2)2=a2–4a+22

  活动内容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22

  活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.

  第三环节:推广到一般情况,形成公式

  活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

  活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.

  第四环节:数形结合

  活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢?

  展示动画,用几何图形诠释完全平方公式的几何意义.

  学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)

  活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.

  第五环节:进一步拓广

  活动内容:推导两数差的完全平方公式:(a–b)2=a2–2ab+b2

  方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2

  方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2

  活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.

  第六环节:总结口诀、认识特征

  活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2

  (a–b)2=a2–2ab+b2

  特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;

  ②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)

  口诀:首平方,尾平方,首尾相乘的两倍在中央.

  活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误.

  第七环节:公式应用

  活动内容:例:计算:①(2x–3)2;②(4x+)2

  解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9

  ②(4x+)2=(4x)2+2?????(4x)()+()2=16x2+2xy+

  活动目的:在前几个环节中,学生对完全平方公式已经有了感性认识,通过本环节的讲解以及下一环节的练习,使学生逐步经历认识——模仿——再认识.从而上升到理性认识的阶段.

  第八环节:随堂练习

  活动内容:计算:①;②;③(n+1)2–n2

  活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏.

  第九环节:学生PK

  活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快.

  活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.

  第十环节:学生反思

  活动内容:通过今天这堂课的学习,你有哪些收获?

  收获1:认识了完全平方公式,并能简单应用;

  收获2:了解了两数和与两数差的完全平方公式之间的差异;

  收获3:感受到数形结合的数学思想在数学中的作用.

  活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的认识,体会数学思想的精妙.

  第十一环节:布置作业:

  课本P43习题1.13

  《完全平方公式》的说课稿 11

  教学目标

  1、知识与技能:体会公式的发现和推导过程,了解公式的几何背景,理解公式的本质,会应用公式进行简单的计算.

  2、过程与方法:通过让学生经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展推理能力和有条理的表达能力.培养学生的数形结合能力.

  3、情感态度价值观:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习自信心.

  教学重难点

  教学重点:

  1、对公式的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释.

  2、会运用公式进行简单的计算.

  教学难点:

  1、完全平方公式的推导及其几何解释.

  2、完全平方公式的结构特点及其应用.

  教学工具

  课件

  教学过程

  一、复习旧知、引入新知

  问题1:请说出平方差公式,说说它的结构特点.

  问题2:平方差公式是如何推导出来的?

  问题3:平方差公式可用来解决什么问题,举例说明.

  问题4:想一想、做一做,说出下列各式的结果.

  (1)(a+b)2(2)(a-b)2

  (此时,教师可让学生分别说说理由,并且不直接给出正确评价,还要继续激发学生的学习兴趣.)

  二、创设问题情境、探究新知

  一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(如图)

  (1)四块面积分别为:;

  (2)两种形式表示实验田的'总面积:

  ①整体看:边长为的大正方形,S=;

  ②部分看:四块面积的和,S=.

  总结:通过以上探索你发现了什么?

  问题1:通过以上探索学习,同学们应该知道我们提出的问题4正确的结果是什么了吧?

  问题2:如果还有同学不认同这个结果,我们再看下面的问题,继续探索.(a+b)2表示的意义是什么?请你用多项式的乘法法则加以验证.

  (教学过程中教师要有意识地提到猜想、感觉得到的不一定正确,只有再通过验证才能得出真知,但还是要鼓励学生大胆猜想,发表见解,但要验证)

  问题3:你能说说(a+b)2=a2+2ab+b2

  这个等式的结构特点吗?用自己的语言叙述.

  (结构特点:右边是二项式(两数和)的平方,右边有三项,是两数的平方和加上这两数乘积的二倍)

  问题4:你能根据以上等式的结构特点说出(a-b)2等于什么吗?请你再用多项式的乘法法则加以验证.

  总结:我们把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2称为完全平方公式.

  问题:

  ①这两个公式有何相同点与不同点?

  ②你能用自己的语言叙述这两个公式吗?

  语言描述:两数和(或差)的平方等于这两数的平方和加上(或减去)这两数积的2倍.

  强化记忆:首平方,尾平方,首尾二倍放中央,和是加来差是减.

  三、例题讲解,巩固新知

  例1:利用完全平方公式计算

  (1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2

  解:(2x-3)2=(2x)2-2o(2x)o3+32

  =4x2-12x+9

  (4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2

  =16x2+40xy+25y2

  (mn-a)2=(mn)2-2o(mn)oa+a2

  =m2n2-2mna+a2

  交流总结:运用完全平方公式计算的一般步骤

  (1)确定首、尾,分别平方;

  (2)确定中间系数与符号,得到结果.

  四、练习巩固

  练习1:利用完全平方公式计算

  练习2:利用完全平方公式计算

  练习3:

  (练习可采用多种形式,学生上黑板板演,师生共同评价.也可学生独立完成后,学生互相批改,力求使学生对公式完全掌握,如有学生出现问题,学生、教师应及时帮助.)

  五、变式练习

  六、畅谈收获,归纳总结

  1、本节课我们学习了乘法的完全平方公式.

  2、我们在运用公式时,要注意以下几点:

  (1)公式中的字母a、b可以是任意代数式;

  (2)公式的结果有三项,不要漏项和写错符号;

  (3)可能出现①②这样的错误.也不要与平方差公式混在一起.

  七、作业设置

  • 相关推荐

【《完全平方公式》的说课稿】相关文章:

《完全平方公式》教案02-15

《完全平方公式》教学设计01-21

完全平方公式教学反思10-22

完全平方公式教学反思07-04

完全平方公式教学反思10-22

完全平方公式数学教案03-01

完全平方公式教学设计实用03-03

数学教案:完全平方公式02-17

《完全平方公式》教学设计范文07-03

《完全平方公式》教学反思范文07-04