高一数学的课后练习题

2021-06-22 试题

  一、填空题.(每小题有且只有一个正确答案,5分×10=50分)

  1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )

  2 . 如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )

  A.0 B.0 或1 C.1 D.不能确定

  3. 设集合A={x|1

  A.{a|a ≥2} B.{a|a≤1} C.{a|a≥1}. D.{a|a≤2}.

  5. 满足{1,2,3} M {1,2,3,4,5,6}的集合M的'个数是 ( )

  A.8 B.7 C.6 D.5

  6. 集合A={a2,a+1,-1},B={2a-1,| a-2 |, 3a2+4},A∩B={-1},则a的值是( )

  A.-1 B.0 或1 C.2 D.0

  7. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )

  A.I=A∪B B.I=( )∪B C.I=A∪( ) D.I=( )∪( )

  8. 设集合M= ,则 ( )

  A.M =N B. M N C.M N D. N

  9 . 集合A={x|x=2n+1,n∈Z}, B={y|y=4k±1,k∈Z},则A与B的关系为 ( )

  A.A B B.A B C.A=B D.A≠B

  10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则下列结论正确的是( )

  A.3 A且3 B B.3 B且3∈A C.3 A且3∈B D.3∈A且3∈B

  二.填空题(5分×5=25分)

  11 .某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有 人.

  12. 设集合U={(x,y)|y=3x-1},A={(x,y)| =3},则 A= .

  13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5- x2,x∈ R},则M∪N=_ __.

  14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_

  15、已知集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为

  三.解答题.10+10+10=30

  16. 设集合A={x, x2,y2-1},B={0,|x|,,y}且A=B,求x, y的值

  17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0} ,A∩B=B, 求实数a的值.

  18. 集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.?

  (1)若A∩B=A∪B,求a的值;

  (2)若 A∩B,A∩C= ,求a的值.

  19.(本小题满分10分)已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0}.若A∩B=B,求实数a的取值范围.

  20、已知A={x|x2+3x+2 ≥0}, B={x|mx2-4x+m-1>0 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.

  21、已知集合 ,B={x|2

  参考答案

  C B A D C D C D C B

  26 {(1,2)} R {4,3,2,-1} 1或-1或0

  16、x=-1 y=-1

  17、解:A={0,-4} 又

  (1)若B= ,则 ,

  (2)若B={0},把x=0代入方程得a= 当a=1时,B=

  (3)若B={-4}时,把x=-4代入得a=1或a=7.

  当a=1时,B={0,-4}≠{-4},∴a≠1.

  当a=7时,B={-4,-12}≠{-4}, ∴a≠7.

  (4)若B={0,-4},则a=1 ,当a=1时,B={0,-4}, ∴a=1

  综上所述:a

  18、.解: 由已知,得B={2,3},C={2,-4}.

  (1)∵A∩B=A∪B,∴A=B

  于是2,3是一元二次方程x2-ax+a2-19=0的两个根,由韦达定理知:

  解之得a=5.

  (2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,-4 A,由3∈A,

  得32-3a+a2-19=0,解得a=5或a=-2?

  当a=5时,A={x|x2-5x+6=0}={2,3},与2 A矛盾;

  当a=-2时,A={x|x2+2x-15=0}={3,-5},符合题意.

  ∴a=-2.

  19、解:A={x|x2-3x+2=0}={1,2},

  由x2-ax+3a-5=0,知Δ=a2-4(3a-5)=a2-12a+20=(a-2)(a-10).

  (1)当2

  (2)当a≤2或a≥10时,Δ≥0,则B≠ .

  若x=1,则1-a+3a-5=0,得a=2,

  此时B={x|x2-2x+1=0}={1} A;

  若x=2,则4-2a+3a-5=0,得a=1,

  此时B={2,-1} A.

  综上所述,当2≤a<10时,均有A∩B=B.

  20、解:由已知A={x|x2+3x+2 }得 得 .(1)∵A非空 ,∴B= ;(2)∵A={x|x }∴ 另一方面, ,于是上面(2)不成立,否则 ,与题设 矛盾.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有 的取值范围是

  21、∵A={x|(x-1)(x+2)≤0}={x|-2≤x≤1}, B={x|1

  ∵ ,(A∪B)∪C=R,

  ∴全集U=R。

  ∴ 的解为x<-2 x="">3,

  即,方程 的两根分别为x=-2和x=3,

  由一元二次方程由根与系数的关系,得

  b=-(-2+3)=-1,c=(-2)×3=-6

【高一数学的课后练习题】相关文章:

数学的课后练习题08-07

数学课后同步练习题07-23

数学比例课后练习题07-23

数学比的意义课后练习题07-23

数学几倍课后练习题07-22

数学加与减课后练习题07-24

数学体积单位课后练习题11-11

数学找次品的课后练习题07-23

数学认识方程课后练习题07-23