高一数学第三章同步训练题:函数与方程

2021-06-13 试题

  在中国古代把数学叫算术,又称算学,最后才改为数学。数学分为两部分,一部分是几何,另一部分是代数。小编准备了高一数学上册第三章同步训练题,具体请看以下内容。

  1.设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-12)f(12)0,则方程f(x)=0在[-1,1]内()

  A.可能有3个实数根 B.可能有2个实数根

  C.有唯一的实数根 D.没有实数根

  解析:由f -12f 120得f(x)在-12,12内有零点,又f(x)在[-1,1]上为增函数,

  f(x)在[-1,1]上只有一个零点,即方程f(x)=0在[-1,1]上有唯一的实根.

  答案:C

  2.(2014长沙模拟)已知函数f(x)的图象是连续不断的,x、f(x)的对应关系如下表:

  x123456

  f(x)136.1315.552-3.9210.88-52.488-232.064

  则函数f(x)存在零点的区间有

  ()

  A.区间[1,2]和[2,3]

  B.区间[2,3]和[3,4]

  C.区间[2,3]、[3,4]和[4,5]

  D.区间[3,4]、[4,5]和[5,6]

  解析:∵f(2)与f(3),f(3)与f(4),f(4)与f(5)异号,

  f(x)在区间[2,3],[3,4],[4,5]上都存在零点.

  答案:C

  3.若a1,设函数f(x)=ax+x-4的零点为m,g(x)=logax+x-4的零点为n,则1m+1n的取值范围是

  ()

  A.(3.5,+) B.(1,+)

  C.(4,+) D.(4.5,+)

  解析:令ax+x-4=0得ax=-x+4,令logax+x-4=0得logax=-x+4,

  在同一坐标系中画出函数y=ax,y=logax,y=-x+4的图象,结合图形可知,n+m为直线y=x与y=-x+4的交点的横坐标的2倍,由y=xy=-x+4,解得x=2,所以n+m=4,因为(n+m)1n+1m=1+1+mn+nm4,又nm,故(n+m)1n+1m4,则1n+1m1.

  答案:B

  4.(2014昌平模拟)已知函数f(x)=ln x,则函数g(x)=f(x)-f(x)的零点所在的区间是

  ()

  A.(0,1) B.(1,2)

  C.(2,3) D.(3,4)

  解析:函数f(x)的导数为f(x)=1x,所以g(x)=f(x)-f(x)=ln x-1x.因为g(1)=ln 1-1=-10,g(2)=ln 2-120,所以函数g(x)=f(x)-f(x)的零点所在的区间为(1,2).故选B.

  答案:B

  5.已知函数f(x)=2x-1,x0,-x2-2x,x0,若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是________.

  解析:画出f(x)=2x-1,x0,-x2-2x,x0,的`图象,如图.由函数g(x)=f(x)-m有3个零点,结合图象得:0

  答案:(0,1)

  6.定义在R上的奇函数f(x)满足:当x0时,f(x)=2 014x+log2 014x则在R上,函数f(x)零点的个数为________.

  解析:函数f(x)为R上的奇函数,因此f(0)=0,当x0时,f(x)=2 014x+log2 014x在区间0,12 014内存在一个零点,又f(x)为增函数,因此在(0,+)内有且仅有一个零点.根据对称性可知函数在(-,0)内有且仅有一解,从而函数在R上的零点的个数为3.

  答案:3

  7.已知函数f(x)=x+2x,g(x)=x+ln x,h(x)=x-x-1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是________.

  解析:令x+2x=0,即2x=-x,设y=2x,y=-x;

  令x+ln x=0,即ln x=-x,

  设y=ln x,y=-x.

  在同一坐标系内画出y=2x,y=ln x,y=-x,如图:x10

  则(x)2-x-1=0,

  x=1+52,即x3=3+521,所以x1

  答案:x1

  8.若函数f(x)=ax2-x-1有且仅有一个零点,求实数a的取值范围.

  解:(1)当a=0时,函数f(x)=-x-1为一次函数,则-1是函数的零点,即函数仅有一个零点.

  (2)当a0时,函数f(x)=ax2-x-1为二次函数,并且仅有一个零点,则一元二次方程ax2-x-1=0有两个相等实根.则=1+4a=0,解得a=-14.综上,当a=0或a=-14时,函数仅有一个零点.

  9.关于x的二次方程x2+(m-1)x+1=0在区间[0,2]上有解,求实数m的取值范围.

  解:设f(x)=x2+(m-1)x+1,x[0,2],

  ①若f(x)=0在区间[0,2]上有一解,

  ∵f(0)=10,则应用f(2)0,

  又∵f(2)=22+(m-1)2+1,

  m-32.

  ②若f(x)=0在区间[0,2]上有两解,

  则0,0-m-122,f20,

  m-12-40,-3

  m3或m-1,-3

  -32-1.

  由①②可知m的取值范围(-,-1].

  B组 能力突破

  1.函数f(x)=x-cos x在[0,+)内

  ()

  A.没有零点 B.有且仅有一个零点

  C.有且仅有两个零点 D.有无穷多个零点

  解析:在同一直角坐标系中分别作出函数y=x和y=cos x的图象,如图,由于x1时,y=x1,y=cos x1,所以两图象只有一个交点,即方程x-cos x=0在[0,+)内只有一个根,所以f(x)=x-cos x在[0,+)内只有一个零点,所以选B.

  答案:B

  2.(2014吉林白山二模)已知函数f(x)=2mx2-x-1在区间(-2,2)上恰有一个零点,则m的取值范围是

  ()

  A.-38,18 B.-38,18

  C.-38,18 D.-18,38

  解析:当m=0时,函数f(x)=-x-1有一个零点x=-1,满足条件.当m0时,函数f(x)=2mx2-x-1在区间(-2,2)上恰有一个零点,需满足①f(-2)f(2)0,或

  ②f-2=0,-20,或③f2=0,02.

  解①得-18

  答案:D

  3.已知函数f(x)满足f(x+1)=f(x-1),且f(x)是偶函数,当x[0,1]时,f(x)=x,若在区间[-1,3]上函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是________.

  解析:由f(x+1)=f(x-1)得,

  f(x+2)=f(x),则f(x)是周期为2的函数.

  ∵f(x)是偶函数,当x[0,1]时,f(x)=x,

  当x[-1,0]时,f(x)=-x,

  易得当x[1,2]时,f(x)=-x+2,

  当x[2,3]时,f(x)=x-2.

  在区间[-1,3]上函数g(x)=f(x)-kx-k有4个零点,即函数y=f(x)与y=kx+k的图象在区间[-1,3]上有4个不同的交点.作出函数y=f(x)与y=kx+k的图象如图所示,结合图形易知k0,14].

  答案:0,14]

  4.(1)m为何值时,f(x)=x2+2mx+3m+4.①有且仅有一个零点;②有两个零点且均比-1大;

  (2)若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围.

  解:(1)①函数f(x)有且仅有一个零点方程f(x)=0有两个相等实根=0,即4m2-4(3m+4)=0,即m2-3m-4=0,m=4或m=-1.

  ②设f(x)有两个零点分别为x1,x2,

  则x1+x2=-2m,x1x2=3m+4.

  由题意,有=4m2-43m+40x1+1x2+10 x1+1+x2+10

  m2-3m-403m+4-2m+10-2m+2m4或m-1,m-5,m1,

  -5

  (2)令f(x)=0,

  得|4x-x2|+a=0,

  即|4x-x2|=-a.

  令g(x)=|4x-x2|,

  h(x)=-a.

  作出g(x)、h(x)的图象.

  由图象可知,当04,即-4

  故a的取值范围为(-4,0).

 

【高一数学第三章同步训练题:函数与方程】相关文章:

高一数学轮函数与方程训练题05-30

高一数学函数与方程同步练习题目06-14

高一数学必修同步训练题示例06-02

数学解方程课后训练题05-29

数学方程问题选择题训练06-01

数学第五单元同步训练题06-21

高一数学函数与方程练习题06-14

爱莲说同步训练题06-21

天鹅同步训练题05-26