作为一位到岗不久的教师,我们需要很强的课堂教学能力,借助教学反思我们可以拓展自己的教学方式,来参考自己需要的教学反思吧!以下是小编为大家收集的平行四边形面积的教学反思,仅供参考,希望能够帮助到大家。
平行四边形面积的教学反思 1
平行四边形面积的计算是在学生学习了长方形的面积和平行四边形认识的基础上教学的,平行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所有平行四边形面积公式的推导,是本节课的重点,整个教学过程由复习准备导入新课,进行新课,巩固练习,课堂小结几个环节组成,在复习中,教师先让学生回答平行四边形的底和高各是多少,以唤起学生对平行四边形认识的回忆,在通过把一个可拉动长方形铁框拉成一个平行四边形,使学生看到长方形和平行四边形之间的内在联系,为后面学习新知识打下基础。新课突出了三个环节。
一是引导学生初步探究,通过提出一个客观的`实际问题,如果有一块很大很大的平行四边形草地,还能用数方格的方法计算它的面积吗?小组讨论。用问题激起学生再次探究,可以把要探究的平行四边形转化成我们学过的什么图形呢?
二通过学生实际操作,用不同方法把平行四边形转化成长方形,并通过操作,观察,找出平行四边形与所拼的长方形的内在联系,在此基础上,推导出平行四边形的面积计算公式。
三是引导学生会用公式正确计算平行四边形面积,解决实际问题,在练习中,一定要做到一练一小结,提醒学生要注意的问题。
在拓展练习中,为了提高学生的判断能力,让学生主动去寻找计算面积所必需的条件,并根据条件正确地求平行四边形的面积,效果还不错,整节课充分体现了新课标的精神。
这节课也有几个地方联系不够紧密,新课转折不够严密,练习强化不够具体,操作时间不够充分。
如果今后再上这节课,要注意练习的多样性,要注意语言表达严谨性,还要加强动手操作的训练,如让学生计算一些没有直接告诉底和高或近似平行四边形要求它的面积,让学生去量出需要的条件,有利于培养学生的综合运用知识和解决问题的能力。
平行四边形面积的教学反思 2
平行四边形的面积计算式教学是在学生掌握了平行四边形的特征以及长方形面积计算基础上进行的,它同时又是进一步学习三角形面积、梯形面积的计算的基础。教材首先提出:公园准备在一块平行四边形空地上铺草坪,如何计算这块空地的面积?这是学生在学习了长方形、正方形的面积后,提出的如何计算平行四边形面积的问题。
教材这样安排的目的是让学生面对一个新的问题,思考如何去解决教材提供了两种提示性的方法:一种是通过数格子的方法,数出这个平行四边形的'面积;一种是通过剪与拼的活动,将平行四边形的面积转化为长方形,然后计算出面积。通过本节课的使学生通过剪切、平移的方法理解平行四边形公式的推导过程,并能够运用公式解决实际问题。
本节课教学中,用长方形面积公式导入,由学生猜测、验证、再猜测、再验证的方法推导出平行四边形的面积公式。在此次过程中教师充分调动学生已有的知识经验,通过小组合作,把学习的主动权交给学生,最后通过习题巩固,使学生灵活运用平行四边形的面积公式。
平行四边形面积的教学反思 3
平行四边形的面积一课是多边形的面积这一单元第一小节的资料。根据新课标的要求及教材的知识特点,并结合我班学生的具体情景,我制定了以下的教学目标:
1、了解平行四边形面积的含义,掌握平行四边形面积的计算公式,会计算平行四边形的面积并能解决实际中的问题。
2、经过操作、观察、讨论、比较活动,让学生初步利用图形转化来推导平行四边形面积的计算方法,培养学生在动手操作、探索的过程中构成观察、分析、概括、推导本事,发展学生的空间观念。
3、经过活动,激发学习兴趣,使学生在数学活动中获得成功的体验,建立自信心、培养团结协作的精神,感受数学与生活的密切联系。
学生先前已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。可是小学生的空间想象力还不够丰富,对平行四边形面积计算公式的推导有必须的困难。所以本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和构成过程。
《数学课程标准》提出了重视学生学习过程的全新理念,要充分发挥学生的主观能动性,让学生参与知识发生发展的全过程。本节课中,我采取多种手段引导学生积极参与学习过程。本节课教法上最大的特点是让学生动手操作,把静态知识转化为动态,把抽象数学知识变为具体可操作的规律性知识,指导学生理论联系实际,开展讨论,
使他们自主、欢乐地解决问题。另外,我还力图体现学生学法的转变:从被动理解学习变为在自主、探究合作中学习,让学生亲身体验知识的构成过程,促使学生思维的发展,培养学生动手、动口、动脑的本事,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。
反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、创设有效的问题情景
在课的开始就以我校要建设两块绿地,一个是长方形,一个是平行四边形,此刻要将种植任务平均分给五年级的四个班,如果让你来分配任务,你打算先解决什么问题?这一生活中的实际问题引出平行四边形面积的计算问题。让学生带着浓厚的兴趣开展新知的探究。这样的设计有助于学生感受数学与生活的密切联系,有助于学生学会用数学的眼光审视我们的生活,激发学生的情感体验,提高学生理解数学并运用数学解决问题的能力。
二、注重学生数学思维的发展
在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生将平行四边形转化成长方形,在学生体会转化这一数学思想方法的.同时,引导学生进一步观察、思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生易于得出结论。
三、注重优化练习,拓展思维
练习设计的优化是优化教学过程的一个重要方面。本课教学过程中,我注重学练结合,习题的设计既有梯度又注重变式,同时利用教具和多媒体课件进行直观演示,帮忙学生理解和掌握。
本节课的不足之处:
1、在公式的推导环节的教学中应当再强调一下转化后的长方形的长和宽与原先平行四边形的底和高之的关系,从而便于那些学习本事稍差的学生更好地理解平行四边形面积公式的推导过程。
2、教师的语言应当再精炼一些,避免重复自我的问话或是重复学生的回答,从而能够节省一部分时间。
3、在练习中应再多给学生留一些思考的时间,尽量使每个学生都能有正确解题的体验,增强自信心。
在今后的教学中我会注意以上问题,不断改善,使我的课堂教学更加精彩。
平行四边形面积的教学反思 4
本节课资料是在学生已经学会长方形、正方形的面积计算的基础上掌握平行四边形的特征,并认识平行四边形的底和对应的高的基础上教学。我能根据学生已有的知识水平和认知规律进行教学。
心理学家皮亚杰指出:活动是认知的基础,智慧从动作开始。动手操作过程是学生学习的一种循序渐进的探索过程。所以,我主要采用了动手操作,自主探索,合作交流的学习方式,经过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。经过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、教师为主导的教学思想。
一、渗透转化思想,引导探究
经过本节课的学习,要能够为推导三角形、梯形面积的计算公式供给方法迁移。转化是数学学习和研究的一种重要思想方法。我在教学本节课时采用了转化的思想,先经过数方格求面积发现数方格对于大面积的平行四边形来说太麻烦,然后根据观察表格中的数据,引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,之后引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透转化的思想方法,充分发挥学生的想象力,培养了创新意识。
之后,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形长方形的转化过程,以及他们之间的关系,突出了重点,化解了难点。
二、重视操作试验,发展本事
本节课教学我充分让学生参与学习,让学习数方格,让学生剪拼,引导学生参与学习全过程,去主动探求知识,强化学生参与意识,我引导学生运用实验割补法把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作转化推导的过程叙述出来,以发展学生思维和表达本事。这样教学对于培养学生的空间观念,发展解决生活中实际问题的本事都有重要作用。
三、注重优化练习,拓展思维
练习设计的'优化是优化教学过程的一个重要方面。本课教学过程中,注重学练结合,既有坡度又注重变式。第一题告诉学生底和高,直接求平行四边形面积,规范格式,检验学生是否到达运用公式,解决实际问题。第二题出示包含剩余条件的图形题,强调底和高必须对应,学习上更上一个层次。第三题考察学生灵活运用公式求平行四边形的底和高。第四题认识等底等高的平行四边形的面积相等。现不要学生计算,引导学生撕开它们的面积相等吗?并说明理由,让学生明确两个平行四边形共底,根据平行线间的距离处处相等,它们的高也相等。本课练习能促使学生牢固的掌握新知。
平行四边形面积的教学反思 5
“平行四边形的面积”这一课时是第六单元《多边形的面积》的起始课,也是学生第一次用转化的数学思想方法来探索面积计算公式,这节课上,学生在探索过程中获得数学思想,活动经验为之后的“三角形的面积”及“梯形的面积”计算公式的探索起到重要的借鉴作用。根据我所教的班级的学生实际情况,在备课时我注重以下几个方面的尝试:
一、创设生活情境,激发孩子们的学习兴趣。引入部分,我为学生设计了比较平行四边形花坛和长方形花坛两个面积比较大小的情境,使学生在情境中发现以前所学的知识并不能解决这个问题,从而自发的产生探究平行四边形面积计算的兴趣。
二、动手操作,探索新知。在推导平行四边形面积计算公式的过程中,我设计了数一数,剪一剪,拼一拼等一系列的操作活动,放手让学生利用方格纸及割补,拼摆等方法,在操作实验中运用转化的思想将平行四边形转化成学生熟知的长方形,并引导学生观察交流,讨论所拼成的'长方形的长和宽与原来平行四边形的底和高之间的联系,通过学生自己的观察分析,得到长与底,宽与高的一一对应的关系,从而顺理成章的得到平行四边形的面积计算公式。
三、突出学生在数学学习中的主体地位,彰显生命化课堂的学习本质。在本节课的教学中,我始终将自己定位在学习的组织者,引导者参与其中,注重在探究中向学生渗透有效的数学思想和数学方法,注重学习方法的优化。并通过教学中师生之间,生生之间的互动关系产生教与学之间的共鸣。
虽然这节课由于时间的关系,还有一部分的学习任务没有完成,但是我想学生通过这样的自主探究,由“要我学”到‘我要学“的思想转变,相信还是受益匪浅的。
平行四边形面积的教学反思 6
本节课我主要采用自主探究、合作交流的方式进行,根据学生的预习,先说一说自己有质疑的、不会的问题,以及自己不同的见解、看法和重点等。接着让学生在展示台上演示自己的操作过程。教师追问,引发学生思考,学生评价,当堂检测,充分尊重了学生的主体地位,突破难点,解决了关键,发展了学生能力,很好地完成了学习目标。
在创设情境,设疑引入环节中,学生现有知识水平中无法通过计算来比较两个花坛面积的大小,从而激发学生探究知识的欲望,感受数学与生活的密切联系。
在操作探索,获取新知环节,我主要让学生亲身经历用数、移、拼等操作方法在自主、合作的积极学习氛围中推导出平行四边形的面积公式,学会“转化”的.方法。同时使学生明白学会一种解题方法比做十道题都重要,教会学生不仅要“学会”,而且要“会学”。充分尊重了学生的主题地位,突破了难点,解决了关键,发展了学生能力。
在练习环节,练习题量虽然不大,但内涵盖了本节课要讲的所有知识点,具有一定的弹性,使不同的学生得到了不同程度的发展,从而进一步内化了新知。同时,在成功的喜悦中,使他们体会到,数学就存在于我们身边,只要细心观察,认真思考,都可以找到数学方面问题。
回顾本节教学,我也感到了不足之处,比如:
应该让学生更多的表达,更清楚的表述,教师应该是一个快乐的倾听者。而我在课堂上虽想到了这一点,还是急于归纳概括学生的结论,应让学生再说的充分些,让每个学生有更深刻的理解的基础上,站在更高的角度去归纳,更深更全面的去概括。
学生明白但表述不清楚,就是因为被圈在了教师给的固定模式里,因此我觉得今后在常态教学中更应注重学生个体表达,并且不必一定按照教师给的固定模式,应该允许学生用自己的方式、用自己的语言来述说解题思路帮助分析问题。不仅要求学生在课堂上大胆地说,而且还要求学生与同学互相交流着述说,这样让学生充分展示自己的思考过程,并用流利的语言来叙述给同学听,在这样的过程中才能不仅能及时发现问题,及时查漏补差。
平行四边形面积的教学反思 7
教学片断中,学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:
(一)创设生活情境,激发探究欲望
小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。回归生活,让课堂与生活紧密相联,是新课程教学的基本特征。因为我们知道,只有植根于生活世界并为生活世界服务的课堂,才是具有强盛生命力的课堂。所以新课程强调突破学科本位,砍掉学科内容的繁、难、偏、旧,把课堂变成学生探索世界的窗口,学生活中的数学,获得合作的乐趣,生活融入甚至成为课堂教学,课堂教学本身就是生活,经历、体验、探究、感悟,构成了教学目标最为重要的行为动词。
上述教学片断中,教师带领学生进行实地考察,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。
(二)重视学生的自主探索和合作学习
动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:"在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的`精神世界中,这种需要特别强烈。"上述这个教学片断中,对传统的平行四边形面积的教学方法作了大胆改进,教学中我有意设计了曹冲称象这个同学们都熟悉的故事引入,其用意一方面是激发学生的学习兴趣,另一方面是孕伏了转化的数学思想。为学生解决关键性问题-把平行四边形转化为长方形奠定了数学思想方法的基础。这一设计意图在教学中得到了较好的体现,课后调查发现全班有近一半的同学想到了把平行四边形转化成已经学过的图形这一方法。接着教师鼓励学生用自己的思维方式大胆地提出猜想,由于受长方形面积公式的干扰,有的同学认为:平行四边形面积等于两条相邻边的乘积。对于学生的猜想,教师均给予鼓励。因为虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理。
平行四边形面积的教学反思 8
开学初,就被告知新老师要上汇报课,作为一个教书“小白”,顿时觉得有一丝紧张。估摸着应该在期中考试前,于是选了第四单元的内容。后来时间调整,重新选了《平行四边形的面积》这一课。
这节课是在学生已经掌握了长方形面积的计算公式和平行四边形特征的基础上进行学习的,由数格子的方法切入,我根据学生已有的知识水平和认知规律进行教学,现针对教学设计思路和实际课堂教学效果进行自我反思。
1、数学内容来源于生活实际,同样也应当应用于生活。上课伊始,我通过解决两块土地的面积哪块大这个问题,让学生自己想到运用原有的“数格子”的方法解决问题。学生积极主动地投入到数学活动中去。创设了学生熟悉的生活情境,学生也体会到了计算它的面积的用处,激发起学生的求知欲望。
2、动手实践,自主探索与合作交流是学生学习数学的重要方式。在教学中由学生独立数格子,填表格,观察发现,开始探究平行四边形的面积,填写表格,观察表格数据后引出平行四边形面积的猜想。接着是读操作要求,小组合作通过剪一剪、拼一拼等方法,推导出平行四边形的面积公式。来进行公式的验证。给予了学生足够的自主学习、小组讨论的时间,因此,在汇报时学生能够有条理的说出自己的方法,进行交流,并经历了知识的形成过程。
3、拓展方法,渗透数学思想。在教学时,以学生的验证推导为主,学生在之前大胆猜测的基础上,加上适时引导,学生自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。转化的思想,是数学学习和研究的重要思想方法。启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透转化的思想,充分发挥学生的想象力,培养了创新意识。通过剪一剪,拼一拼,学生探究出了将平行四边形转化成长方形的方法,并通过操作加以演示推导。
4、练习设计的优化是优化教学过程的一个重要方面。本课教学练习题中,第一题告诉学生底和高,直接求平行四边形面积,规范格式,检验学生是否达到运用公式,解决实际问题。第二题出示含有多余条件的图形题,让学生判断计算是否正确,从而强调底和高必须对应,学习上更上一个层次。
结合实际效果,自我总结本节课的.不足之处有:
(1)转化思想渗透不够,平行四边形的面积计算公式是学生动手操作转化为长方形从而推导出来的,这一过程当中,应将“转化”这一数学思想渗透。而在实际教学中,转化思想没有突出,渗透不够。
(2)在学生把平行四边形转化成长方形时,没有给学生充裕的时间展示不同的割补方法。后两种方法只是教师讲解、演示给学生看。
(3)在学生汇报时,当学生的语言罗嗦时,我有点过急,常把学生的话打断,应允许学生用自己的语言去表达或让学生自己修改语言。
(4)时间把握得不好,对知识的巩固运用做的不够,本打算在基本练习之后,让学生探究把长方形框架拉成平行四边形后什么变了,什么没变,以此拓展学生的能力,由于对时间把握不够,在课件中删除了这道题。
经验+反思=成长,是学者波斯纳提出的一个教师成长的公式,它清楚地揭示了反思在教师专业成长中的重要意义。因此,在以后的教学中,还需多反思。
平行四边形面积的教学反思 9
我经过让学生自我动手用剪,平移,拼的方法进行问题转化,验证了用“底乘高”的猜测是正确的,经过观察图形的动态变化,从比较中发现用“相邻两边相乘”是错误的。得出平行四边形的面积=底×高。本节课因为是让学生自我动手操作,所以学生兴致很高,课堂气氛也较活跃。我认为本节课的练习设计也很合理。
第一、创设问题情景,引起矛盾冲突,激发了学生的学习兴趣。
第二、重视操作探究,发挥主体作用。为了引起学生的兴趣,我准备了一个可活动的长方形框架,如果把它拉成一个平行四边形,周长和面积有变化吗怎样变化如果任意拉这个平行四边形,你会发现什么什么情景下它的面积最大设计意图:经过这个拓展题目使学生体会平行四边形面积的变化,从而理解的更透彻,运用的更灵活。使学生在练习中思维得到发展,培养学生分析问题和解决问题的能力。
第三、渗透“转化”的思想。“转化”是数学学习和研究的一种重要思想方法,在本节课的教学中,以学生的探究活动为主要形式,教学过程由浅入深,由易到难,由具体到抽象,由感性认识到理性认识,步步深入,紧扣主题。同时渗透“转化”的思想,让学生掌握学习的方法,学会利用旧知识解决新的问题,构成积极主动的探究氛围。
练习:
1、一个平行四边形的底是4厘米,高是3厘米,它的`面积是多少?在练习纸上画底是4厘米高是3厘米的平行四边形。鼓励同学画几个不一样的平行四边形。
2、请你设计一个面积是12平方米的平行四边形花坛。可能有多少种情景,哪种比较合理。
第1、2两题看似无关,但却联系紧密,根据第1道题得出一个学生十分难理解的结论,等底等高的平行四边形面积必须相等。反过来第2题又让学生认识到这句话反过来说是错的,从而得出面积相等的平行四边形不必须等底等高。
平行四边形面积的教学反思 10
由于暑假在家,我就备了这一课。所以一开始我的教学目标还是很明确的:
①借助学生已有的经验和方格图,让学生初步感知平行四边形的面积可能与它的底和对应高有关,再通过剪、拼进一步确定平行四边形的面积计算公式,并能根据公式正确计算平行四边形的面积。
②在操作、观察、比较的过程中,渗透转化的思想, 发展学生的空间观念,使学生获得探索图形内容的基本方法和基本经验。
开始,先复习长方形面积的计算方法和长方形公式的由来,让学生实现知识的迁移。本课的重点就在于将平行四边形转化成长方形,进而推导出平行四边形面积的计算公式。在比较长方形和平行四边形两个图形这一教学环节中,给足学生数方格的时间,突出怎样去数方格(先数满格,不满一格的视为半格,为什么?)为以后学习不规则图形面积埋下伏笔。还有一种数法,将图形的沿高切下,平移,使学生发现多出的三角形与缺的`三角形大小相等,如果剪下来平移到缺的地方可以转化成长方形,有了这样的感悟,然后放手让学生将自己准备的平行四边形通过剪拼转化成长方形,这样将操作、理解、表述有机地结合起来,学生有非常直观的“转化”感受。
将平行四边形转化成学生学过的长方形来计算它们的面积,这时进行适时的小结:探索图形的面积公式,我们可以把没学过的图形转化为已经学的图形来研究。学生比较容易掌握把新的、陌生的问题转化成学生相对熟悉的问题的方法。我们可以将数学方法传递给学生,这样有利于学生主动探索解决问题的方法,体会解决问题的策略,提高数学的应用意识。
平行四边形面积的教学反思 11
平行四边形面积的计算是在学生学习了长方形的面积和平行四边形认识的基础上教学的,平行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所有平行四边形面积公式的推导,是本节课的重点。教学中通过把一个可拉动长方形铁框拉成一个平行四边形,使学生看到长方形和平行四边形之间的内在联系,为后面学习新知识打下基础。新课突出了三个环节,一是引导学生初步探究,通过提出一个客观的实际问题,如果有一块很大很大的平行四边形草地,还能用数方格的方法计算它的面积吗?小组讨论。用问题激起学生再次探究,可以把要探究的平行四边形转化成我们学过的什么图形呢?二通过学生实际操作,用不同方法把平行四边形转化成长方形,并通过操作,观察,找出平行四边形与所拼的长方形的内在联系,在此基础上,推导出平行四边形的面积计算公式。三是引导学生会用公式正确计算平行四边形面积,解决实际问题,在练习中,一定要做到一练一小结,提醒学生要注意的问题。
平行四边形的面积公式是几何图形面积计算第一次运用“转化”思想方法推导得出的。因此,本节课让学生形象直观地明白什么是“转化”,深刻理解“转化”的本质,就显得尤为重要。对于“转化”思想,本节课不在是渗透的朦朦胧胧,而是把这种学习方法明朗化,让“转化”本领成为学生思维的“主角”,并当作学习的一个重点让学生掌握。我首先出示三个图形让学生通过比较,在直观的基础上,利用图形的转化,直接说出了它们的面积,渗透了转化的数学思想方法。这样,学生面对“计算平行四边形面积”这一新问题,就很自然地得到了两种猜想:用平行四边形相邻两边相乘(以前学习的长方形面积计算公式等知识的负迁移)和用平行四边形的底乘以高(转化思想方法的运用)。进而,教师提出问题:同一个平行四边形的面积怎么会有两个答案呢?激发学生进一步去探究。迫使学生动脑筋想办法,用割补方法进行问题转化,验证了用“底乘高”的猜测是正确的,通过观察图形的动态变化,从比较中发现用“相邻两边相乘”是错误的`。学生在这一实践活动过程中获得割补转化的数学思想方法。在练习阶段的“你会求阴影部分的面积吗?”,不仅是巩固新知,而是将“转化”本领内化成解题技巧。
这节课,采用先让学生“大胆猜测”,再进行“小心求证”的教学思路,教师有意识地把经历“猜想与验证”蕴涵在探究平行四边形面积公式的数学活动中。当学生对平行四边形的面积计算获得两个合理的猜想后,教师不做否定,而是要求学生对自己的想法进行检验,学生通过思维顿悟、教师的直观演示,自己发现错误的原因,这不但让学生对知识理解更透彻,影响更深刻,而且给学生学生探究发现知识的方法指导。这样的过程,既不同于由一般到特殊的演绎过程,也有别于由具体到一般的归纳过程。它是一种发现并填补认知的空隙,即定向探索解决问题的研究过程,这符合数学知识发现的一般规律,因而具有比较一般的方法论意义。这样的数学思维方法的运用,有效地训练了学生综合运用思维方法获取知识的能力,同时也受到了科学思想方法的启蒙。
平行四边形面积的教学反思 12
《平行四边形的面积》是五年级上册第六单元多边形面积的起始课,后面三角形面积、梯形面积和组合图形的面积都是在此基础上学习的。
本节课的重点是:运用转化的方法推导出平行四边形的面积公式并能正确地说出平行四边形的面积公式的推导过程。在本节课的教学中,为了突破重点,设计了以下的活动:
1、设计了比较两个图形大小的小游戏,体会转化思想在数学中的应用。
2、设计了数一数,剪一剪,拼一拼求平行四边形纸片面积的活动,通过小组合作,借助适当的工具,运用转化的方法,把平行四边形转化成长方形,推导出平行四边形的面积公式并能正确地说出平行四边形的面积公式的推导过程。
3、通过大量的实际问题,能应用平行四边形的面积公式解决生活中的问题,并在解决问题的过程中理解平行四边形的面积是用相对应的底和高相乘,等底等高的两个平行四边形的面积相等。
我们在教学中一贯强调,“授人以鱼,不如授人以渔”。在数学教学中,更要注重数学思想方法的'渗透。学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。
在这节课中,以“猜猜谁的面积大”的小游戏,渗透了“转化”的思想方法。然后我设计了数一数,剪一剪,拼一拼求平行四边形纸片面积的活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?
长方形的长和宽与平行四边形底和高有什么关系?再思考后,学生得出结论:因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
学生掌握了推导平行四边形面积的方法,也为今后推导三角形、梯形等面积公式和其他类似的问题提供了思维模式。
这个求证过程也促进了学生猜测、验证等思维能力的发展。学生在本节课的学习中有点紧张。在说推导过程时,没有说出最完整的推导过程,有点遗憾。与我的语言引导也有关系,在今后的教学中,我会注意语言的引导。
平行四边形面积的教学反思 13
孩子们已经认识了三角形、平行四边形和梯形,理解了面积的概念,会计算长方形、正方形面积了。在学习了平行四边形、三角形和梯形的面积后,就要求孩子掌握有关多边形面积的系统知识。这一单元,孩子们要探索并体会所学多边形的特征、图形之间的关系、图形之间面积的转化,要掌握平行四边形、三角形、梯形的面积计算公式及公式之间的关系,要体验图形平移、旋转等变化……感觉任务非常艰巨。
平行四边形面积一课,重点是“转化”。但为什么要转化,如何转化,需要让孩子经历一个思考的过程。
邻边相乘(长×宽)的面积计算方法是学生掌握的.已有经验。如何让停留于“邻边相乘”这一概念上的学生悟到“剪拼转化”呢?如何仅仅提问“你能通过剪一剪、拼一拼的方法,将一个平行四边形变成长方形吗?”并加以引导,学生注意力会更多地停留在正确实施剪拼的活动上,难以深入理解“平行四边形的面积、底、高、邻边与长方形的面积、长、宽”之间的联系和区别。
经验出现差异式断层,就必须让学生发现差异、感悟差异,并追本溯源,以经验原点的同一性助推再认性经验的改造,沟通“教”与“学”的通道。
在学生坚信这个平行四边形面积=底×邻边=9×6=54平方厘米时,呈现格子图。于是学生将平行四边形的面积锁定在(8×4)32平方厘米和(10×4)40平方厘米之间。这一过程不仅学生认识到长方形面积和平行四边形面积的差异,也让学生在面积的度量层面沟通了平行四边形面积与长方形面积的计算方法,即“每行摆的单位面积数×摆的行数”。接下来,让学生自己利用格子图探究得到平行四边形的面积计算公式就水到渠成了。
平行四边形面积的教学反思 14
平行四边形面积的计算是在学生学习了长方形的面积和平行四边形认识的基础上教学的,平行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所以平行四边形面积公式的推导,是本节课的重点,整个教学过程由旧知导入新课,进行新课,巩固练习,课堂小结几个环节组成。
一、注重了数学专业思想方法的渗透。
我们在教学中一贯强调,“授人以鱼,不如授人以渔”,在数学教学中,就是要注重数学专业思想方法的渗透。数学专业思想方法即解决数学具体问题时所采用的方式、途径、手段,它是学习数学知识、运用数学知识解决实际问题的具体行为。因此,要求学生掌握基本概念、基本定律、基本运算、演算例题等一些基础知识固然重要,但更重要的是,要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。
在这节课中,一开始数格子就开始渗透割补的方法,不仅为学生接下来研究平行四边形的面积,提供了方法,还为学生的研究提供了思路。在推导平行四边形面积公式的时候学生马上能想到运用割补的方法把平行四边形的面积转化成已经学过的图形的面积。
二、注重了学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,教师要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。在这节课中,我设计了剪一剪、移一移、拼一拼等学习活动,逐步引导学生观察思考得出:长方形的面积与原平行四边形的'面积相等,拼成的长方形的长和宽相当于平行四边形底和高,最后使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、练习设计注重层次性,体现了学生对公式的运用和实践的能力的培养
在平行四边形面积的计算公式推导出来后,我设计了一些变式练习,强化巩固学生获得的知识,引导学生将获得的知识运用于实际生活,通过实际问题的解决,学生将书本知识转化为能力,练习第3题:解决生活问题。学校有一块近似平行四边形的花坛,底4米,高6米,每平方米花坛需要5元,问这个花坛种花大约需要多少钱?这环节让学生综合运用知识解决问题,培养学生的实践能力。
另外,我还注意培养学生的发散性思维,设计了一题:一个平行四边形的面积为12平方米,它的底和高可能是几?这个颇具开放性的问题。体现了对平行四边形面积公式的运用和理解,既有层次性,又能让学生明白虽然平行四边形的形状不相同,但只要等底等高,这两个图形的面积也相等。
这节课在老师们的帮助下,我的课有了明显的进步,可在上课时还存在着不少的缺憾:
还有课堂语言不够简练,缺少与学生之间的沟通与交流,这几点都还是有待提高的,不过通过这次上课也让我锻炼了胆魄,让我对课堂艺术有了进一步的理解,非常感谢老师和学校领导给我这样一个机会。
平行四边形面积的教学反思 15
“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程,数学教学要求紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设各种情境,为学生提供从事数学活动的机会,激发他们对数学的兴趣,以及学好数学的愿望。”为此,老师们都非常重视情境的创设,力求将自己置于组织者、引导者、合作者的地位,树立以学生为主体的教学观。
对于情境教学,首先我们应该充分重视“问题情境”在课堂教学中的作用,不仅要在教学的引入阶段格外注意,而且应渗透到教学过程的每一个环节,在情境中不断激发学习冲动,使学生经常处于渴求新知的状态,激发其自身的学习动力和思维空间。其次,从长远的前景来看,引入教学情境不仅要让学生“学会”数学,更重要的是使他们“会学”数学,培养他们在生活中科学地思考,把学习中探索、体会到的观念、方法尽快地提升到理论的高度。当然,要设置好情境还不可忽视情境创设和教材主旨的统一,始终坚持从激发学生的学愿望和参加动机出发。以下我将根据情境教学的要求结合《平行四边形的面积》来谈一谈?
1、把数学知识的教学融于现实情境中,学生在情境中学的高兴,学的扎实。我通过主题图这一个情境,将新知的学习置于这一现实情景中,通过猜想、转化、平移、旋转、演示等活动,进一步加强数学知识与生活的联系,感受数学在生活中的作用,体会学习数学的意义与价值。
2、充分发挥学生的主体作用,加强学生主观能动性的培养。整节课中,老师给学生提供了探究交流的时间和空间,并创设多种教学活动,激发学生兴趣,学习与巩固知识。例如在平行四边形面积计算方法推导过程中,老师先让学生独立思考,然后互相交流,最后动手操作,把平行四边形转化成长方形,推导出平行四边形的.计算方法,在平等和谐的氛围中培养了学生的合作意识、团队精神和动手能力。
3、 有效的渗透了数学的一些思考和学习方法。在教学中,老师让学生经历了提出猜想—操作转化—验证猜想这一过程,对学生以后学习三角形面积和梯形面积打下了良好的基础。
4、充分利用小组合作这一课题的有效性,发挥学生的主体地位和主观能动性,加强师生合作、生生合作,培养学生的合作能力和交流能力。
【平行四边形面积的教学反思】相关文章:
平行四边形的面积教学反思12-30
平行四边形面积教学反思04-14
《平行四边形面积》教学反思04-14
平行四边形面积的教学反思04-24
《平行四边形的面积》教学反思03-12
平行四边形面积的教学反思04-25
平行四边形面积教学反思04-14
《平行四边形的面积》教学反思04-03
面积的教学反思04-14
《面积》的教学反思06-09