平行四边形面积的教学反思

2023-04-24 教学反思

  作为一名到岗不久的老师,我们需要很强的课堂教学能力,教学反思能很好的记录下我们的课堂经验,教学反思我们应该怎么写呢?下面是小编帮大家整理的平行四边形面积的教学反思,欢迎阅读与收藏。

  平行四边形面积的教学反思 篇1

  本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行学总结了一些成功的经验和失败的教训,具体概括为以下几点:

  1、亲身经历,感知公式推导过程。全体学生亲身经历,动手剪一剪、拼一拼,推导平行四边形面积。教学中,我先让学生在动手剪、拼的过程中,得到长方形。

  2、利用课件,直观演示。

  3、语言抽象。

  以上面两个环节为基础,让学生回过头来想一想,“我们是怎样得出平行四边形的面积的”,学生把自己的所做、所看、所想,用自己的语言充分地表达出来,并进行利用。

  4、把数学知识的.教学融于现实情境中,学生在情境中学得高兴,学得扎实。我通过四小校门口这一个情境,将新知的学习置于这一现实情景中,进一步加强数学知识与生活的联系,感受数学在生活中的作用,体会学习数学的意义与价值。

  5、充分发挥学生的主体作用,加强学生主观能动性的培养。

  6、有效地渗透了数学的一些思考和学习方法。“转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。

  7、充分利用小组合作这一课题的有效性,发挥学生的主体地位和主观能动性,加强师生合作、生生合作,培养学生的合作能力和交流能力。

  平行四边形面积的教学反思 篇2

  平行四边形面积的计算是以长方形的面积计算为基础,它为进一步学习三角形的面积,梯形面积的计算打下了基础。我在教学本节课时,采用剪拼的方法,把平行四边形转化为与它相等面积的长方形,从而把新旧知识联系起来,从长方形的面积公式推导出平行四边形的面积公式。

  在本节课的教学中,我先复习长方形的面积公式,让学生说出可以通过数格子和利用公式求出长方形的面积,为下面要学习的平行四边形面积作铺垫。当让学生通过数方格说出平行四边形的面积时,学生很容易数出面积,并且说出它的底和高的长度。我及时抓住这三个量,让学生大胆猜想:平行四边形的底和高与它的面积之间可能存在什么关系呢?这个问题很快激起学生的探究欲望,为下面要探讨的平行四边形面积公式的推导做好铺垫。

  为体现学生的主体地位,改变以往的“以教师为中心”的教学方式,在推导平行四边形面积公式时,我为学生创设了自由、宽松的探索空间。通过学生自学、动手画、剪拼这些操作,培养了学生的自学能力和动手操作能力,使他们变“学会”为“会学”,对学习要求中提出的第2、3个问题:转化后的图形与平行四边形有什么关系?你认为平行四边形的面积该怎样求?学生在小组合作中各抒己见,充分阐述自己的理解,这样的教学使学生乐于探索,敢于探索,也激发了学生的创新意识。

  在教学完这节课后,听课老师、评课的领导对本节课进行了评价,从这节课中我看到了自己的不足之处,下面认真进行剖析:

  1.课的开始复习内容过长,导致本节课新授知识部分时间不多。练习题与检测题进行的过于仓促,使基础不够好的学生没有充分理解和掌握。复习内容中指出平行四边形的底和高这部分内容可以删去,在新课教学中体现出来。

  2.复习部分长方形的面积的两种求法与通过数方格求平行四边形的.面积应该同时在课件中显示,进行比较,从而引入新课。

  3.教学中某些环节的过渡不恰当。如:长方形的面积学生通过数方格和利用公式求出来了,平行四边形的面积学生通过数方格说出来后,可以说:除了数方格,那么能否像计算长方形的面积那样存在一个面积公式呢?很自然为下面要推导的公式作准备。

  4.学习要求的设计不够合理。我提出了两个学习要求:(1)自学课本第65页。(2)小组合作完成三个问题。两个要求要综合起来体现,让学生为了完成所出示的任务,自己通过看书,小组合作交流,边看边操作来完成。

  针对自己在教学中的不足,今后要加强学习,多听课、多请教,多与同科目老师交流,力争使自己在教学艺术上取得更大的进步。

  平行四边形面积的教学反思 篇3

  在多边形的面积这一单元的教学中,都是以引导学生自主探索为教学目标。让学生通过剪拼、平移、旋转等方法,把未知转化成已知,并在动手实践的过程中,发现各种图形之间的内在联系,从而探索出平面图形的面积公式。

  平行四边形面积公式的基础是长方形的面积公式,学生在三年级已经掌握,所以教材首先引导学生探索平行四边形的面积公式。例1出示了两组不规则图形,让学生比较每组的两个图形面积是否相等?通过交流运用剪拼、平移的方法转化成长方形后发现每组的两个图形面积相等。接着进入例2的教学环节:出示一个平行四边形,提出“你能把平行四边形转化成长方形吗?”带着学生进入了平行四边形面积的探索过程。先让学生感受转化思想再运用转化方法探索新知,但是学生在这一过程中真正是自主探索吗?教师是引导还是支配?如何真正引导探索呢?我产生了这样的想法:沟通知识间的联系,引发对新知的自主探索。

  呈现第一个问题:“有四根小棒,两根8厘米,两个4厘米,你能拼成学过的平面图形吗?请画在方格纸上”。(学生在方格纸中画出了平行四边形或长方形)

  呈现第二个问题:“这两个图形有什么联系吗?”

  (学生出现争议:周长相同,面积相同;周长相同,面积不同;周长和面积都不同。)

  对学生出现的争议,最好的办法就是让学生自己解决。于是辩论开始了:

  生1:“都是由两根8厘米和两根4厘米的小棒围成的图形,周长是相等的”。对于周长相等,大家都达成了共识;生2:“长方形面积是长乘宽,8×4=32,平行四边形的面积也是8×4=32,所以面积相等”;生3:“不对,平行四边形的边是斜的,长方形的这条边是直的,不能都用8×4”;对于面积的.比较产生了异议。

  师:“认为平行四边形的面积是8×4的同学请说明这样算的道理;认为不是8×4的同学请想办法算出这个平行四边形的面积?”同学们拿出课前剪下的平行四边形忙开了,自主探索的过程自然开始了。

  平行四边形面积的教学反思 篇4

  平行四边形面积的计算,是学习平面几何初步知识的基础。尤其是平行四边形面积公式的推导,蕴含着转化的数学思想。对学生以后学习推导三角形、梯形面积公式有着非常重要的意义。总结本节课的教学,有以下体会:

  一、遵循“猜想——验证——推导——应用”教学过程。

  在推导平行四边形的面积公式以前,我先出示了“变、变、变”的游戏,渗透转化的数学思想,然后让学生猜想:平行四边形的面积怎样计算?学生脱口而出,我问他们根据是什么?学生回答:“是猜的”。数学结论必须通过验证才有它运用的价值,才能让人心服口服。接着,我让学生动手量、剪、拼、摆去研究,发现它的普遍规律。学生先用面积测量器量,然后又利用手中的材料,沿平行四边形的`高剪开,再拼成长方形,由此研究发现拼成后长方形与平行四边形的关系,充分体现转化的数学思想,归纳、验证得出公式。整个过程由学生参与,验证猜想公式的正确性。使学生得到一种直观上的证明。进一步加深学生对公式的认识。学生在运用公式时既知其当然,又知其所以然,对知识的应用达到了认识过程的最高境界。

  二、注重合作交流,追异求新。

  本节课教师尽量为学生说、想、做创造恰当的氛围,创设必要的情境、空间,让学生在主动参与学习活动的过程中学到知识,合作交流,增长才干,提高能力。学生在剪、拼的过程中,有的沿高剪下一个三角形,有的是剪下一个直角梯形,拼成长方形,方法之多样,令老师惊讶。在小组讨论中,学生能说出自己的“奇思妙想”,既开阔了学生的视野,又扩展了学生的思维空间,也体现了集体的智慧。

  三、课堂教学中,教师应加大“放”的力度。

  学生在拼摆的过程中,方法虽然多种多样,但语言表达不够完整,教师有些着急,“导”得过细,以至限制了学生的思维。也使一些想法不太成熟的学生,不敢说出自己的意见。另外,在教学中,教师还应着重培养学生会“倾听”的习惯,会倾听老师布置了哪些学习任务,会倾听同伴发出了哪些见解,这样才能在倾听与交流中学会新知,感受乐趣。教师在课堂上根据本班学生实际,尽可能加大“放”的力度,这样才能更好地创设一个民主、宽松的学习环境。

  平行四边形面积的教学反思 篇5

  《平行四边形的面积》一课的教学,我着重培养学生通过剪、拼、摆等动手操作的活动来让他们主动探究平行四边形的面积计算公式,掌握平行四边形面积计算公式并能解决实际问题,同时又培养了学生积极参与、团结合作、主动探索的精神。课结束后我进行反思了,本节课是能促进学生全面发展的课堂,体现新课标理念的课堂,从中也总结了一些成功的经验和失败的教训,具体概括为以下几点:

  一、 值得肯定的地方

  1、 注重数学专业思想方法的渗透。

  我们在教学中一贯强调,“授人以鱼,不如授人以渔”,在数学教学中,就是要注重数学专业思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。在这节课中,先让学生回忆平行四边形与长方形的联系,想一想长方形的面积是怎样求的?让学生想一想怎么求平行四边形的面积,学生一下子就能看出可以把平行四边形转化成长方形求出它的面积,渗透了转化的思想,为后面的学习奠定了基础。

  2、注重学生数学思维的发展

  数学教学的核心是促进学生思维的发展。教学中,教师要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。在这节课中,我设计了猜一猜、剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

  3、注重了师生互动、生生互动

  现在我们都在提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。例如:验证完猜想后,师问:两种猜想,两个结果,到底哪一个才是正确的,哪一个才是我们要的间接测量的先进方法呢?还有当学生展示完自己的方法后,教师引导:你认为他的方法怎么样?好在哪儿?你还有什么问题?通过教师设计的这些问题,不断地把课堂引上了师生互动,生生互动的高潮。

  4、练习设计层层递进

  本环节,我出示了不同层次的练习,如:知道了平行四边形的两个高一个底怎么样求它的面积?出示几个看起来不相等的平行四边形,其实面积是相等的,让学生明白等底等高的`平行四边形面积相等。这样从“基本题—变式题—发展题”,层层递进,让学困生有奔头,中间生有提高,优秀生有发展,让我们的数学课堂收获遍地开花的效果,最终实现课标要求的“让不同的孩子得到不同的发展”。

  二、教学中的不足:

  1、教师灵活性不强,对个别细节处理的不够,不能有效的抓住学生出现的问题。

  2、小组合作的能力差,缺乏对学生小组交流能力的培养,也缺乏师生间的互动交流。

  平行四边形面积的教学反思 篇6

  这堂课能围绕教学目标层层展开,先从身边的情景引入,激发学生探求新知的兴趣;接着让学生猜想平行四边的面积可能怎样求?再通过活动单一的内容用数格子的方法验证。学生都能数出它们的面积,在这个环节中学生做的很好。

  接下来又用转化方法进行再次验证,仍然是以小组合作的`形式进行,让学生自己动手画一画、剪一剪、拼一拼推导出平行四边形的面积计算公式。然后让学生到前面演示整个操作过程。在这过程中,我能用严密、准确地、有逻辑性的语言,富有层次性的问题层层深入的引导学生来探究、发现规律,得出结论,效果良好。接着我又向学生介绍了不一样的几种方法,可以让学生感受到方法很多,也可以让他们有再试一试的想法,可以可以发展他们的创新思维。而且,形象的多媒体课件为公式的推导起了一个很好地作用。

  课件还很好的演示了平行四边形转化成长方形的过程,看起来很直观。但是本节可课也有不足之处,在书写板书时最后的那个平行四边形画的不好看,线没有画直;还有最后望了否定学生的另一种猜想边×边的方法不行。在今后的教学中我一定注意书写板书,注意课堂的完整性。

  平行四边形面积的教学反思 篇7

  本节课是平行四边形面积计算的第一课时,重点是探索并掌握平行四边形的面积计算公式,会用公式计算平等四边形的面积(须找准平行四边形底与对应的高)。难点是探索平等四边形的面积计算公式(用割补法把平等四边形变成长方形,根据长方形面积公式推导出平行四边形的面积公式),这也是我们以后探索三角形、梯形面积公式的一种基本方法。

  因此,作为第一课时,我设计的重点就在推导平行四边形面积计算公式的'自然引导及探索过程和找准平行四边形的底和高计算面积底和高。一节课教学下来,反思有以下不足:

  (1)从教师自身来说,有点紧张,导致关注学生不够,学生的积极性调动不理想。

  (2)从设计来说,旧知导入(出示生活中的情景图找学过的图形并抽象出长方形,平行四边形。比在教室里找图形节省时间得多);例2可作为一个基本练习,不作为例题,这样练习题型可丰富些。

  (3)从现场教学效果来说,本节课设计了一个思考题可以培养学生的思维能力及空间想象能力,但因为断电和时间关系未展示;另一个最为遗憾的是学生反思与小结,应将推导平行四边形面积计算公式的过程提升到一个理性的高度,师适当用一两句话小结,以便为今后图形面积计算公式的探索打下基。

  平行四边形面积的教学反思 篇8

  平行四边形面积的计算,是学习平面几何初步知识的基础。尤其是平行四边形面积公式的推导,蕴含着转化的数学思想。对学生以后学习推导三角形、梯形面积公式有着非常重要的意义。总结本节课的教学,有以下体会:

  一、遵循"猜想——验证——推导——应用"教学过程

  在推导平行四边形的面积公式以前,我先出示了一道求平行四边形面积的应用题,学生脱口而出,列出算式,我问他们根据是什么?学生回答:"是猜的"。数学结论必须通过验证才有它运用的价值,才能让人心服口服。接着,我让学生动手量、剪、拼、摆去研究,发现它的普遍规律。学生先用面积测量器量,然后又利用手中的材料,沿平行四边形的高剪开,再拼成长方形,由此研究发现拼成后长方形与平行四边形的关系,充分体现转化的数学思想,归纳、验证得出公式。

  整个过程由学生参与,验证猜想公式的正确性。使学生得到一种直观上的证明。进一步加深学生对公式的认识。学生在运用公式时既知其当然,又知其所以然,对知识的应用达到了认识过程的最高境界。

  二、注重合作交流,追异求新

  本节课教师尽量为学生说、想、做创造恰当的氛围,创设必要的情境、空间,让学生在主动参与学习活动的过程中学到知识,合作交流,增长才干,提高能力。学生在剪、拼的过程中,有的'沿高剪下一个三角形,有的是剪下一个直角梯形,拼成长方形,方法之多样,令老师惊讶。

  在小组讨论中,学生能说出自己的"奇思妙想",既开阔了学生的视野,又扩展了学生的思维空间,也体现了集体的智慧。

  三、课堂教学中,教师的应变能力还有待提高

  学生在拼摆的过程中,方法虽然多种多样,但有的学生只限于平行四边形一个位置摆放,如果换角度剪、拼结果又会怎样?这一点教师引导不够到位。有的同学把平行四边形卷成一个圆筒,正好把平行四边形的两个斜边重合在一起,然后她又把平行四边形的两个斜边处沿高把三角形折起来,由此把平行四边形分成一个长方形和两个直角三角形拼成的长方形,再把这两个长方形拼在一起,发现规律。

  由于学生语言表达的不是太完整,我就没有深入领会她的意图。这说明教师的应变能力较差,有待于深入钻研教材,对课堂可能出现的各种情况有正确的估计。

  平行四边形面积的教学反思 篇9

  1、深刻理解教材是有效课堂的基础

  教师如果没有深入地解读教材、领会编者的意图,而为了追求新意而过度改编教材内容,替换学习材料,往往会把数学知识固有的内涵丢掉,无法有效完成教学任务。这节课作为传统的教学内容,有那么多种讲法,教材为什么要这样编排和设计呢?

  教学之前,我觉得数方格对平行四边形面积公式的探究帮助不大,所以总想把它删去,节约出更多的时间来探究,但经过对教材的反复研读,我终于明白数方格在计算面积中的价值。

  这是一种直观的计量面积的方法,同时也是本节课学生新旧知识的连接点,学生在数方格的过程中很容易发现平行四边形的底,高和面积与长方形有着联系,为进一步的探究提供了思路。所以,深挖教材是有效进行教学设计的第一步。

  2、课堂环节的合理设计是有效课堂的保证

  教师除了对教材的准确把握,还要对学情进行深入的分析,只有对学生的认知起点和认识发展过程进行分析和研究,才能设计出有效促进学生发展的数学活动。

  教师首先要用简约的情境带学生迅速进入课堂,并引发一系列的数学思维活动。

  然后,教师要精心选择教学内容,合理设计教学形式,让课堂活动变繁为简,变杂为精在学生探究平行四边形面积公式时,教师放得多了,探究的效率必然低下,扶得多了,学生探究的空间会大大缩水,束缚学生的发展。

  因此,对于教师应该给予什么样的指导,需要教师根据学情来合理预设。

  3、数学思想方法的提炼是有效课堂的精髓

  让学生获得基本的`数学思想方法是一小学新课程改革的新视角之一。数学思想方法的孕育犹如胎儿的发育,有一个从模糊到清晰,从未成形到成形再到成熟的过程,至于转化的思想,在本册中多次用到。

  如第一、二单元中,小数乘法和小数除法的计算,无不是把小数转化成学过的整数进行的。平行四边形在整个小学阶段的数学教学内容中是一个承上启下的图形,教师应该看到学生学习计算平行四边形的面积,方法的价值更大,通过学习割补转化的方法,为后面学习三角形面积、梯形面积、圆的面积埋下了伏笔。学生以获取知识为明线,以探究数学思想方法为暗线,明暗结合与总结时的画龙点睛。让数学思想方法该露脸时就露脸,使学生知其然,更知其所以然。

  教学是一门有遗憾的艺术,虽然我在课前对教学的各个环节作了精心的预设,但面对生成的时候,自己的处理依然有些草率。在让学生展示自己剪拼的作品时,当让学生展示完平行四边形沿顶点向对边作高和作任意高两种方法剪拼一个长方形后,有一个学生兴致勃勃地展示他沿平行四边形对角线剪开,通过平移得到一个新的平行四边形的方法,由于没有达到我们拼成学过图形的目标,当即我就简单地否定了,那个学生也尴尬地坐下了。

  课后,这个学生坐下时的表情还深深印在我的脑海中,这个学生有着大胆动手,敢于交流分享的学习态度。他让同学们更深刻地认识到为什么一定要沿高来剪开,这是多么值得表扬啊!细节成就完美,关注课堂细节,敏锐地发现教育契机,还需要我们教师不断学习,不断努力,不断总结。

  平行四边形面积的教学反思 篇10

  教学目标:

  1. 探索平行四边形面积的计算方法,会运用“转化”的数学思想方法推导平行四边形的面积计算公式,会计算平行四边形的面积。

  2. 让学生经历观察、操作、讨论、分析、比较、归纳等教学活动过程,获得积极的数学学习情感,从而发展学生的空间观念,提高学生的数学素养。

  教学重点:探究平行四边形的面积计算公式。

  教学难点:充分理解剪拼成的充分理解剪拼成的`长方形与原平行四边形之间和关系。

  教学具准备:平行四边形纸片、尺子、剪刀、课件

  教学过程

  一、谈话,揭题:

  1、谈话:听过曹冲称象的故事吗?曹冲真的称大象吗?

  2、揭题:平行四边形的面积。

  二、探究新知:

  问题(一)要求这个( )的面积,你认为必须知道哪些条件?

  1、 同桌交流

  2、 反馈:①长边×短边=10×7=70平方厘米

  ②底×高=10×6=60平方厘米

  3、 引发矛盾冲突:同一个平行四边形的面积怎么会有两个答案呢?

  4、 学生动手验证(小组合作)

  5、 请小组代表说明验证过程

  问题(二)为什么要沿着高将平行四边形剪开?

  问题(三)剪拼成的长方形的面积是60平方厘米,你怎么知道原平行四边形的面积也是60平方厘米?

  问题(四)是否每次计算平行四边形的面积都要进行剪拼转化成长方形来计算?如果要计算一个平行四边形池塘的面积,你还能剪拼吗?

  1、 引导观察,平行四边形转化成长方形,除了面积不变外,它们之间还有其它的联系吗?

  2、 推导公式:平行四边形的面积=底×高

  3、 小结

  问题(五)为什么不能用长边乘短边(即邻边相乘)来计算平行四边形的面积?

  1、动态演示: ,引导发现周长不变,面积变大了。

  2、动态演示: ,发现面积变小了

  。

  3、要求平行四边形的面积,现在你认为必须知道哪些条件?

  问题(六)是不是所有平行四边形的面积都等于底×高呢?

  让学生拿出各自的平行四边形,动手剪拼,看看行不行。

  三、应用新知

  1. 左图平行四边形的面积=?

  2.解决例1:平行四边形花坛的底是6米,高是4米,它的面积是多少?

  四、总结:

  1.回想一下今天我们是怎样学习平行四边形的面积?

  2.你还想学习哪些知识呢?

  平行四边形面积的教学反思 篇11

  自己比较喜欢的数学课是几何学方面的,喜欢一些空间想象的,今天终于是学到了。今天和孩子们一起研究和学习了《平行四边形的面积》。

  本节课是在学生掌握了平行四边形的特征以及长方形,正方形面积计算的基础上进行的,对于本节课的设计理念是主要让学生在自主探究和亲自经历的基础上进行对平行四边形的面积公式的一个探究。本节课的教学有如下的感受:

  本节课的在开始的时候先让学生回忆了长方形的面积的计算公式,之后给出了平行四边形和学生一起复习了平行四边形的一些特征,然后给出了课本上的情境图,一个长方形花坛、一个平行四边形花坛为你能知道这两个花坛的`面积吗?让学生观察图形,把学生的几何视野拓展到人类生活的空间,学生思维活跃,把能看到的图形到表达出来了,更有学生发现校门前的两个花坛,一个是平行四边形一个是长方形,我顺次让他们猜测两个花坛的大小,这时候学生说:“长方形的我们可以知道,只要量出长方形的长和宽就可以求面积了,可是对于平行四边形的就不会了”,为本节课的重点做了铺垫。这时候引出本节课的课题《平行四边形的面积》。然后让学生用数方格的的方法把两个图形做了比较、填表,暗示了平行四边形的面积和长方形的面积之间的联系,把两部分内容设计在同一张表格里引导学生从数量角度体会转化前后在长度和面积上的对应联系,为学生进一步探寻平行四边形的面积的计算方法做准备。在这一过程中我发现学生的语言表述不是很准确。在教学中注意让学生对自己的学习过程进行反思,当学生感到数方格的方法有局限性的时候,由此便会产生平行四边形面积的计算的方向和思路。从而引出本节课的教学重点。

  接下来,问:“平行四边形的面积怎么求?”给学生一个想象的空间,这时让学生想一想,在大家的七嘴八舌的汇报中,这时候绝大多数的学生都知道了做法,然后让学生小组共同探讨得出平行四边形的面积计算公式,在开始的时候,发现学生的思路很简单,只是把平行四边形沿一条高剪开,然后拼成一个长方形,从而找到长方形和平行四边形的联系。再就没有了其他的方法,然后我借助课件的演示,给学生做了一个提醒,然后孩子们才恍然大悟,原来还可以这样做的啊,然后让学生仿照老师的做法自己来做一遍,让学生一边操作,一边和同桌互相说一下自己的想法。然后再利用课件给孩子们做一次加深,让没有想到的学生能够看看更多的思路和方法。

  在练习的设计中,层次感比较强,让学生在形式多样的联系中,加深对平行四边形的面积的应用和理解。

  本节课的不足之处是:

  1、学生自己动手做的时候,给与学生的时候比较短,教师包办的多,而且教师下学生做的时候总是时不时的插话,打断学生的思路。

  2、在得出公式的时候,教师包办了,应用让学生自己通过自己的拼剪来观察原平行四边形和拼剪后的长方形作比较,从中发现他们之间的联系。最终让学生自己得出计算公式就更好了。

  3、练习中没有设计公式的变化练习,应该加入一些有些变形的练习就更好了。

  在再教的时候,我会把以上的一些不足之处都一一改正,让学生对平行四边形的面积的公式有更好的认识和理解。

  总之,我感觉这节课是成功的,学生通过自己的合作探究找到了对于平行四边形的面积的解决方法。

  平行四边形面积的教学反思 篇12

  《平行四边形的面积》是人教版五年级上册第五单元《多边形的面积》第一课时的教学内容。本节课是学生掌握并运用“转化”思想的关键,更是学生进一步探究其它平面图形面积计算的基础。课前,我带着如何有效实践“图形与几何”领域的新课标理念,如何更好地让学生获得基本活动经验,形成基本数学思想等问题,反复研读课标,揣摩教材,力求让学生在学习中不仅能够获得平行四边形面积计算公式的知识,而且能够体会和运用数学思想和方法,不仅能够正确地应用公式,而且能更好地理解这一公式的来源,力争在教学中,展示探究平行四边形面积计算方法的真实思维过程,凸显“重知识更重方法,重结果更重过程”的价值追求。以下是我在设计与执教“平行四边形的面积”一课中获得的一些启示,可能还不够成熟,可能还存在这样那样的问题,真诚地希望您能够提出宝贵意见。

  一、注重 “转化”思想的渗透。

  在数学教学中,要注重数学思想方法的渗透,要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。平行四边形的面积计算公式是几何图形面积计算第一次运用“转化”的思想方法推导得出的,这无疑增加了学生学习的难度。本节课的教学,长方形的面积计算是平行四边形面积计算的生长点,是认知前提,所以新课伊始,我首先复习长方形的面积计算公式,并通过计算不规则多边形的面积,引导学生初步体会运用剪、移、拼的方法把不熟悉的未知图形转化成我们熟悉的已知图形来计算它的面积,渗透“等积变形”,实现用“旧知”引“新知”,把“旧知”迁移到“新知”的教学预设,让学生对“转化”有所熟悉,不再陌生。同时,在潜移默化中,引导学生明确转化是一种很好的数学学习的方法,为学生进一步理解转化思想奠定基础。

  在探究平行四边形的面积计算公式的教学环节中,我首先让学生通过数方格的方法分别求出平行四边形和长方形的面积,然后观察表格中的数据,感知平行四边形与长方形的内在联系,当发现用数方格的方法计算实际生活中图形的面积不太适宜时,引导学生大胆猜测平行四边形的面积计算公式,并运用“转化”的方法将平行四边形转化成长方形,从而验证猜测,推导出公式,也让学生更深刻地理解了转化的本质。

  二、注重学生数学思维的发展。

  数学教学的核心是促进学生思维的发展。在这节课中,我设计了求不规则多边形的面积、运用剪一剪、拼一拼的方法进行图形转化等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与原平行四边形底和高有什么关系?充分利用多种媒体形象、直观的教学辅助作用,使学生在动手操作,交流研讨中得出结论。同时引导学生发现底与高的一一对应关系。在一系列的教学活动中,学生通过观察、交流、讨论、练习等形式,在理解公式推导的过程中学会解决问题,在亲自尝试,亲身体验中掌握了平行四边形面积公式的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

  三、注重培养学生的问题意识。

  问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,在教学中,为了引导学生进行自主探究,我设计了这样一系列问题:“请你猜测平行四边形面积的计算公式?为了验证猜测,你想把平行四边形转化成我们学过的'哪个已知图形?怎样转化呢?”这些问题的指向不在于公式本身,而在于探究公式的来源,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、猜想,并进行实践。当学生运用割补平移的方法将平行四边形成功地转化成长方形后,我又及时出示问题,引导学生在小组内讨论原平行四边形与转化后的长方形之间的关系,从而达到公式推导的目的。学生在独立思考、动手操作、相互交流、相互评价的过程中,增强发现问题、提出问题、分析问题和解决问题的意识和能力。

  四、注重学生学习方式的多样化。

  动手实践,自主探索与合作交流是学生学习数学的重要方式。教学中,我为学生创设了民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,充分地调动了学生的学习主动性。让每一个学生亲自动手操作,边操作边观察边思考,在自主探究与合作交流过程中,经历知识的形成。课堂上,学生们乐想、善思、敢说,他们自由地思考、猜想、实践、推理、验证……

  教学是一门有着缺憾的艺术。作为教者的我们,往往在执教后,都会留下或多或少的遗憾,但只要我们用心思考,不断改进,我们的课堂就会更加精彩。

【平行四边形面积的教学反思】相关文章:

《平行四边形面积》的教学反思07-04

平行四边形的面积教学反思12-30

《平行四边形的面积》教学反思03-12

《平行四边形面积》教学反思04-14

平行四边形面积教学反思04-14

平行四边形的面积教学反思06-21

平行四边形的面积教学反思05-27

平行四边形面积教学反思 06-29

《平行四边形的面积》教学反思04-03

平行四边形面积教学反思04-14