初三数学上册《一元二次方程的解法》教学反思

2021-11-23 教学反思

  作为一位优秀的老师,课堂教学是重要的工作之一,对教学中的新发现可以写在教学反思中,教学反思我们应该怎么写呢?下面是小编为大家收集的关于人教版初三数学上册《一元二次方程的解法》教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

  初三数学上册《一元二次方程的解法》教学反思 篇1

  利用求根公式解一元二次方程的一般步骤:

  1、找出a,b,c的相应的数值;

  2、验判别式是否大于或等于0;

  3、当判别式的数值大于或等于0时,可以利用公式求根,若判别式的数值小于0,就判别此方程无实数解。

  在讲解过程中,我要求学生先进行1、2步,然后再用公式求根。因为学生第一次接触求根公式,求根公式本身就很难,学生可以说非常陌生,如果不先进行1、2步,结果很容易出错。首先,对于一些粗心的同学来说,a,b,c的符号就容易出问题,也就是在找某个项的系数或常数项时总是丢掉前面的符号。其次,一无二次方程的求根公式形式复杂,直接代入数值后求根出错一定很多。但有少数心急的同学,他们总是嫌麻烦,省掉1、2步,直接用公式求根。

  为什么会这样呢?我认为有这几方面的原因:

  一是学生没体会这样做的好处,其实在做题过程中检验一下判别式非常必要,同时也简化了判别式的值,给下面的运算带来方便。这样做并不麻烦,而直接用公式求值也要进行这两步。

  二是学生刚学习公式法,例题比较简单,对于简单的题,这样做还可以,但一旦养成习惯,遇到复杂的习题就不好办了。

  三是部分学生老是想图省事,没学会走,就想跑,想一口吃个大胖子。

  在今后的教学中,还要加强对新知识学习过程中格式和步骤的要求,并且对习惯不好的同学要进行耐心细致的讲解,让他们认识到这样做的弊端,掌握正确的学习方法,提高正确率。

  初三数学上册《一元二次方程的解法》教学反思 篇2

  (1)一元二次方程是研究现实世界数量关系和变化规律的重要模型,引课时从生活中常见的“梯子问题”出发,根据学生应用勾股定理时所列方程的`不同,引导学生对所列方程的解法展开讨论,进而获得开平方法。引课时力求体现“问题情境——建立数学模型——解释、应用与拓展”的模式,注重数学知识的形成与应用过程。

  (2)如何配方是本节课的教学重点与难点,在进行这一块内容的教学时,教师提出具有一定跨度的问题串引导学生进行自主探索;提供充分探索与交流的空间;在巩固、应用配方法时,从一元二次方程二次项系数为1讲到二次项系数不为1的情况,从方程的配方讲到代数式的配方与证明,呈现形式丰富多彩,教学内容的编排螺旋式上升。这既提高了学生的学习兴趣,又加深了对所学知识的理解。

  初三数学上册《一元二次方程的解法》教学反思 篇3

  一、一元二次方程的解法之间的比较:

  1.直接开平方法应用简单,但受形式限制;开平方的时候要注意正负。

  2.配方法较麻烦,用公式法更方便,故一般不采用。但配方法是一种较重要的数学方法,公式法就是由它推导出来的,而且在后面的函数中还要用到配方法,所以要掌握好。它的重要性,不仅仅表现在一元二次方程的解法中,在今后学习二次函数,到高中学习二次曲线时还将经常用到。配方的时候,要注意二次项系数应先化为1,再把常数项移到式子的右边,然后把方程两边都加上一次项系数一半的平方;左边就变成了一个平方的形式,再运用直接开平方的方法求出方程的解。

  3.公式法是一元二次方程的基本解法,对所有的一元二次方程都适用;用公式法的时候要先把方程变为一般形式,在求出方程的判别式,最后用公式求出方程的解。

  4.因式分解法使用方便,是解一元二次方程最常用的方法,但不是所有的二次三项式都能很方便地进行因式分解。应用时要注意,等号的右边一定要为0,然后再把方程的左边进行因式分解,将方程左边分解成两个一次因式的乘积的形式,令每个因式分别为零,得到两个一元一次方程,解每个方程就求出了原方程的解。

  二、一元二次方程的解法选用:

  1.先观察能否用直接开平方法,能用就优先采用;

  2.再观察能否用因式分解法;

  3.用公式法。

  注意:一般不采用配方法。

  初三数学上册《一元二次方程的解法》教学反思 篇4

  一元二次方程是整个初中阶段所有方程的核心。它与二次函数有密切的联系,在以后将应用于解分式方程、无理方程及有关应用性问题中。一元二次方程的解法——因式分解法,是建立在一元二次方程解法及因式分解的基础上,因此我采取让学生带着问题自学课本,寻找因式分解法解一元二次方程的形式特征,即等号右边必须为零,左边必须为两个一次因式的乘积(不能是加减运算),利用零的特性,将求一元二次方程的解,通过因式分解法,转化为求两个一元一次方程的解,将未知领域转化为已知领域,渗透了化归数学思想,让班上中等偏下学生先上黑板解题,将暴露出来的问题,在全班及时纠正。本节课较好地完成了教学目标,同时还培养了学生看书自学的能力,取得较好的教学效果。

  老师提示:

  1.用分解因式法的条件是:方程左边易于分解,而右边等于零;

  2.关键是熟练掌握因式分解的知识;

  3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零。

【关于人教版初三数学上册《一元二次方程的解法》教学反思】相关文章:

1.《一元二次方程的解法--因式分解法》教学反思

2.《一元二次方程的解法》的教学反思

3.《一元二次方程解法》教学反思

4.《一元二次方程的解法》教学反思范文

5.人教版初三数学《一元二次方程》教学计划

6.《一元二次方程解法》教学反思(通用6篇)

7.一元二次方程数学教学反思

8.《一元二次方程》数学教学反思

上一篇:《一次函数》教学反思 下一篇:小学五年级文言文教学反思