五年级上小学数学教案:《植树问题》

2023-03-27 教案

  在教学工作者开展教学活动前,可能需要进行教案编写工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。写教案需要注意哪些格式呢?下面是小编整理的人教版五年级上小学数学教案:《植树问题》,希望能够帮助到大家。

  五年级上小学数学教案:《植树问题》 篇1

  教学内容:

  五年级上册P106例1及相关练习。

  教学目标:

  1、知识目标:让学生从熟悉的生活情境中发现并理解掌握间隔数与植树棵数的规律,会解决简单的植树问题。让学生经历将实际问题抽象出植树问题模型的过程,掌握种树棵数与间隔数之间的关系

  2、过程目标:引导学生经历植树问题的探索过程,理解和掌握在直线上植树时棵数与间隔数之间的关系。

  3、情感目标:通过实践活动激发学生热爱数学的情感,感受日常生活中处处有数学,体验学习成功的喜悦。培养学生的应用意识和解决实际问题的能力。

  教学重点:

  会应用植树问题的规律解决两端要栽的问题。

  教学难点:

  建构数模,探寻规律。

  学具:

  数字表格小棒

  教学过程:

  一、导入。

  (一)、提出问题、引发思考、探究规律。

  1、手引发的思考。

  师:伸出你的左手,张开手指,用数学的眼光看一看,你发现了什么?

  师:大家都有一双锐利的数学眼睛,发现手指与间隔之间也有数学。其实在生活中那些司空见惯的现象,只要用心观察、思考也能发现他们的数学奥秘。这节课,我们将深入研究类似手指与间隔这样的数学问题。

  2、提问:每年的3月12日是什么日子?(点出植树的好处,进行思想教育。)揭题。(板书课题)

  二、新课探究。

  1、出示题目:同学们在校园小路一边植树,每隔5米栽一棵(两端要栽)。一共要栽多少棵树?【学生读题,分析题意。】

  2、学生大胆猜测。让学生利用学具表格完成对因为长度不定的猜想,展示学生的猜想:(由于长度的不同,学生出现的情况不同,但总是会出现棵数比间隔数多一)

  理解:“间隔”、“间隔数”、“棵数”。

  3、验证,建立数模。(学生分小组亲自动手验证) ?

  棵数和间隔数到底之间有什么关系呢?让学生大胆地猜想,并用图示的方法验证。

  课件显示:隔5米种一棵,再隔5米种一棵……,一直画到100米!学生会感觉:这样一棵一间隔画下去,方法是可以的,但太麻烦了,又浪费时间。

  引导学生:要研究棵数和间隔数之间有什么关系,有更简单的方法吗?

  让学生思考、交流,尝试从简单入手,用“把大数变小数”的方法进行研究,渗透“化繁为简”的数学思想。

  4、发现规律。

  学生开始动手画图、填表、比较分析,然后展示他们的研究结果,发现在小数据中两端都种的情况下,都有“棵数比间隔数多1”的规律。

  师:“棵数比间隔数多1”的规律是同学们用较小的数据研究出来的,如果数据增大,这个规律还成立吗?

  课件动态演示:一个间隔对应一棵,这样一直对应下去,100个间隔就有100棵,种完了吗?

  师:如果这条路变得很长很长、无限长,两端都种还有这样的规律吗?让学生从中体会到,不管数字多大,用“一一对应”的方法,最后还要补上一棵才能达到两端都种的结果。这个环节,潜移默化地渗透“极限”的思想。

  5、总结归纳,应用规律,完成例1的学习。

  归纳“化繁为简”的解题策略。让学生体会到研究问题可以从简单入手,将困难的变为容易的,将复杂的变为简单的,用这样的方法,可以有效的解决问题。把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。

  师:你们能用一个式子把规律表示出来吗?

  【板书】间隔数+1=棵数?棵数-1=间隔数

  学生完成课本例1的学习、解答。

  6、联系生活

  在我们生活中存在着很多类似植树问题的现象,你发现了吗?(让学生找出生活中的有关植树问题原理的实例)

  让学生通过举例,体会到植树问题在生活中的广泛应用。同时让学生清楚地认识到路灯排列、排队等生活现象都与“植树问题”有着相同的数学结构,也给这种数学思想以充分的建模。

  三、巩固练习。

  1、点击生活。

  (1)一排同学之间有7个间隔,这一排有()个同学。

  (2)工人叔叔要在路的一边安装路灯,一共安装了6座。从第一座到最后一座一共有()个间隔。

  2、解决问题。

  (1)5路公共汽车行驶路线全长12km,相邻两站之间的距离都是1km。一共设有多少个车站?

  (2)在一条全长2km的街道两旁安装路灯(两端也要安装),每隔50m安一盏。一共要安装多少盏路灯?

  3、拓展练习

  园林工人沿一条笔直的公路一侧植树,每隔6m种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  四、课堂总结。

  五、作业:课本P109练习二十四第1、3题。

  板书设计:

  植树问题

  (两端要栽)

  全长÷间隔长度=间隔数间隔数+1=棵数

  100÷ 5 = 20(个)20+1= 21(棵)

  答:一共要栽21棵树。

  教学反思

  “植树问题”是人教20xx版五年级上册“数学广角”的内容,教材将它分为以下几个层次:“两端都栽”、“只栽一端”、“两端都不栽”、“封闭图形情况”以及”方阵问题”等。本节课要解决的是两端都栽的植树问题,主要目标是向学生渗透一一对应的数学思想,初步感悟“化归”的解题方法,构建植树问题数学模型。设计教学时,我运用“问题导学,互动探究”的教学模式,即以问题情境为载体,进行自主学习,以认知冲突为诱因,展开合作探究,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。根据学生的认知规律,我设计了以下几个环节:

  一、观看图片,寻找数学信息,让学生初步认识间隔,感知间隔数与手指数的关系。

  二、以一道植树问题为载体,放手让学生自主学习,应用不同方法解决问题,引发学生认知冲突。

  三、抓住课堂生成的契机,以生活中植树问题的应用为研究对象,再度质疑,引导学生合作探究植树问题的实质。

  四、多层次、多角度的达标测评练习,拓展学生对植树问题的认识。

  反思整个教学过程,我认为这节课有以下几点做得比较好:

  1、通过自主探索的活动,让学生获得学习成功的体验,增进学生学好数学的信心。结合学生的年龄特点和教学内容,我设计了很多孩子喜闻乐见的教学环节。例如:在问题导入时,让学生根据不完成全的应用题,对缺少条件的应该题大胆进行猜测,激发学习兴趣。再如:自主学习、互动合作这一环节中让学生选择自己喜欢的方法解题、验证“间隔数”与“棵数”之间的规律。

  2、渗透一一对应的思想方法,培养学生数学思维能力和解决问题的能力。让学生通过观察、猜测、实验、交流等活动,既学会一些解决问题的`一般方法和策略又逐步形成求实态度和科学精神。

  3、注意反映数学与人类生活的密切联系。

  本节课的教学内容本来就是来自于生活,通过观察生活找出解决这类问题的规律,从而应用于生活。所以,我设计的每一环节都紧扣生活,以解决生活中的问题为主线,有目的地进行数学学习活动,使学生学得有趣,同时,增强了数学学习的应用价值。

  4、本课的练习本着由易到难,循序渐进的原则,有以下两个层次:

  (1)直接应用,解决比较简单的实际问题。在巩固练习中,我安排学生完成已知间隔数求棵数及已知棵数求间隔数的两道填空题,以及“做一做”中知道总长和间距求棵数的练习,让学生从正反两个方面出发解决简单的实际问题。训练学生双向可逆思维的能力。

  (2)现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它。如上楼梯、排队、敲钟、锯木头等,所以在后面的提高练习中,我把这些生活中常见的现象编进题目中,让学生拓宽视野,解决生活中不同现象的“植树问题”。

  这节课的不足是过于侧重于植树问题的原理,课堂的练习密度不够,从练习中也反馈出个别学生吃不透的现象。所以今后教学时要注意把握好度,适当进行取舍,照顾好中差生。

  五年级上小学数学教案:《植树问题》 篇2

  设计说明

  这节课主要的教学目的是向学生渗透复杂问题从简单入手的思想,让学生有机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此本节课的设计说明如下:

  1.让数学走进生活。

  弗赖登塔尔说过:“数学是现实的,学生要从现实生活中学习数学。”在教学过程中以谜语导入,以学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,能清晰地看出手指的根数与间隔数之间相差1,让学生认识并总结出间隔数和手指根数的'关系,为下面的学习作铺垫,同时也激起了学生的学习兴趣。

  2.让学生成为学习的主人。

  教师是学习的引导者,学生是学习的主人,教师在学生的学习过程中起到启发、引导的作用。在本节课的教学中,体现了学生的主体地位,发挥学生的主观能动性。因此,本节课的设计采用自主探究式学习模式,借助小组学习的方式让学生经历从探究发现规律到应用规律的实践活动过程,通过有序的操作、思考、实践等活动,使学生的所想、所悟与直观形象结合,经历知识的探究过程,渗透数学学习方法,深刻体会到解决植树问题的思想方法的内涵。

  课前准备

  教师准备PPT课件

  学生准备直尺

  教学过程

  谜语导入,揭示课题

  1.猜谜语:两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。(手)

  2.介绍间隔。

  (1)找一找。

  师:勤劳的人们用双手创造了幸福的生活,在我们的手上也隐藏了数学的奥秘,同学们想知道吗?伸出你的左手,你看到了什么?

  (2)数一数。

  师:5根手指之间有几个空?

  (3)讲一讲。

  师:在数学上,我们把像这样的空叫做间隔,手上每两根手指之间都有一个间隔。也就是说,5根手指之间有4个间隔,间隔数为4。(师伸出4根手指、3根手指、2根手指)现在有几个间隔?

  (4)说一说。

  师:你们发现手指数和间隔数的关系了吗?谁能说一说?(手指数比间隔数多1或间隔数比手指数少1)

  3.引入新课。

  师:生活中,间隔随处可见。每相邻两棵树之间的距离也是一个间隔,这节课我们就一起来研究和解决一些简单的与间隔有关的问题

  五年级上小学数学教案:《植树问题》 篇3

  教学目标:

  1. 使学生通过生活中的事例,初步体会解决植树问题的方法。

  2. 初步培养学生从实际问题中探索规律,找出解决问题的有效方法 的能力。

  3. 让学生感受数学在日常生活中的广泛应用,培养学生的应用意识 和解决问题的能力。

  教学重点:

  用解决植树问题的方法解决实际问题。

  教学难点:

  栽树的棵数与间隔数之间的关系。

  教具准备:

  多媒体。

  设计理念:新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

  教学过程

  一、谈话导入:

  师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔一定的距离植树,这就需要计算准备多少棵树苗;还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

  二、揭示学习目标:(媒体出示)

  通过这节课的学习,我们要解决哪些问题呢?

  1. 能根据相关条件,求出需要多少棵树苗或计算两树间的距离。

  2. 能利用植树问题,灵活解决生活中类似的实际问题。

  三、探究新知:

  1. 出示例1:同学们在全长100米的`小路一边植树。每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

  师:你会计算吗?(让学生回答)你算的对吗?请同学们自己动脑来验证一下。

  学习提示:(媒体出示)

  ①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵树?请你画线段图来看看。(注意看图上有几个间隔和几个间隔点)

  ②通过上面的分析,你能找出什么规律?和同桌或小组内说说。

  ③现在你能算出一共需要多少棵树苗吗?

  ④你还有别的想法吗,在小组内说说。

  2. 学生自学探讨。(师巡视)

  3. 班内交流。学生回答后,师媒体演示间隔数和间隔点数的关系。

  总结规律:栽的棵数比间隔数多1。

  完成例题。

  四、变化巩固:

  1. 做一做:118页学生独立完成。订正时说说怎么想的。重点让学生明确先求出间隔数,即36棵树有35个间隔。

  2. 122页第2题。独立完成,同桌交流想法,可一生板演。

  五、检测反馈:(独立完成)

  1. 在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共可以种多少棵树?

  2. 5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  3. 从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?

  学生完成后师批阅订正,发现问题及时解决。

  六、总结延伸:这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题。解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的情况,希望大家开动脑筋,灵活处理。

  五年级上小学数学教案:《植树问题》 篇4

  教学内容:

  人教版五年级上册数学第七单元数学广角植树问题

  教学目标:

  知识技能目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

  2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、通过实践活动激发热爱数学的情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点:

  理解“植树问题(两端要种)”的特征,应用规律解决问题

  教学难点:

  理解“间距数+1=棵数,棵数-1=间距数

  教学过程:

  一、设计情景、引入课题

  1、教学“间隔”的含义

  师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

  (课件出示)师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

  2、举例生活中的“间隔”

  师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

  3、理解间隔数,引入课题。

  在一条路上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)

  二、探索新知,探究规律

  1、出示招聘启事

  在操场边,有一条20米长的小路。学校计划在小路一边种树,要求每隔5米栽一棵。特聘请校园设计师数名,要求设计植树方案一份,择优录取。

  2、出示例题,理解题意:

  师:(课件出示例题。)

  师:谁能读一读?这道题告诉我们什么数学信息?求什么问题?你认为这道题中什么词语最关键?

  (课件解释关键词语,加深学生理解)

  师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。

  3、出示合作要求。

  (1)教师讲解小组合作要求。

  (2)学生4人小组开始合作学习,利用学具设计出植树方案。(可以用不同的形式表达)

  (3)教师巡视,指导学生小组合作。

  (4)小组作品展示,及小组评价。教师及时点评学生的.设计方案,并及时鼓励学生。

  (5)引导学生总结出在实际生活中的植树情况可以分为三种:第一种两端都栽,第二种:只栽一端,第三种:两端都不栽。

  4、以小组为单位探究棵数与间隔数间的关系:

  (1)数一数:数出棵数和间隔数。

  (2)比一比:比较出棵数和间隔数之间的规律。

  两端都要栽时,植树的棵数比间隔数多1(棵数=间隔数+1)。

  只栽一端时,植树的棵数与间隔数相同(棵数=间隔数)。

  两端都不栽时,植树的棵数比间隔数少1(棵数=间隔数-1)。

  三、课堂小结、反馈练习

  1、公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  2、广场上的大钟5时敲响5下,8秒敲完。 12时敲12下,需要多长时间敲完?

  五年级上小学数学教案:《植树问题》 篇5

  【教学内容】:

  人教版四年级下册第120页第八单元例3

  【教材分析】

  本次教学内容属于第二学段中“实践与综合应用”领域的教学。

  “课标”中要求这部分内容教学时,“应引导学生从不同角度发现实际问题中所包含的丰富的数学信息,探索多种解决问题的方法,并鼓励学生尝试独立地解决某些简单的实际问题。”同时建议“数学教学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳等活动,获得基本的数学知识和技能,进一步激发学生的学习兴趣”。

  根据课标的要求,又考虑到前两个例题都是围绕植树这一情境展开的,因此我将教学内容由“围棋盘的最外层每边都能放19个棋子,求围棋盘最外层一共可以摆多少个棋子”的问题改为为学校设计花坛,在古柳周围正方形台面上摆花。激发学生学习兴趣的同时培养学生为学校贡献力量的集体主义意识。

  【学情分析】

  学生已经初步接触了植树问题,会解决在一条线段中的植树问题,了解了栽的棵数与间隔数的关系。本课主要研究封闭图形上的植树问题,如何让学生建立起封闭植树和线段植树的联系,在头脑中建立解决此类问题的模型是教学的重点。

  学生对动手操作、自主设计等教学活动比较感兴趣,因此我创设了为学校设计花坛的情境,设计了自主探究、小组合作等教学环节,来调动学生学习的积极性。

  【教学目标】

  1.利用信息技术平台,提供问题情境,让学生通过生活中的事例探索、掌握解决封闭图形中植树问题的方法。

  2.通过多媒体课件,渗透数形结合思想,引导学生在解决问题的分析、思考过程中,经历抽取出数学模型的过程。

  3.在解决问题中,培养学生的独立思考、合作探究的能力,体会数学在生活中的广泛应用。

  【教学重、难点】

  教学重点:让学生掌握解决封闭图形植树问题的思维方法。

  教学难点:探索发现封闭图形情况下棵树与间隔数之间的关系。

  【教学设想】

  本次教学内容为请学生扮演设计师角色为学校设计不同形状的花坛,学生对此内容感兴趣,对动手设计等教学环节比较感兴趣,课堂气氛应非常活跃。学生在思维的碰撞中能够自主探究出封闭图形中植树问题的解题方法,并从中发现问题中存在的一般规律。最终达到能运用知识解决实际问题的目的。

  【教学过程】

  一、创设情景,引入问题

  1.播放花坛中由鲜花拼摆出的不同形状的图案,学生欣赏图片,从中感受到鲜花排列的整齐特点。

  2.进而教师提问:想不想用鲜花设计属于自己的花坛?今天这节课大家就来设计一个自己喜爱的花坛来装饰校园。

  3. 出示问题一:古柳周围正方形台面要摆花,边长是9米,每隔一米摆一盆,请大家帮助算一算,只摆其中一边需要多少盆花?

  4. 组织学生反馈::9÷1+1=10盆

  小结:同学们用以前学习的植树问题帮老师解决了这个数学问题。

  5.出示问题二:如果古柳周围的正方形台面四周都要摆上10盆花,一共需要多少盆花呢?

  预设生1:40盆,生2:36盆。

  5.提出建议:到底是36盆还是40盆,要知道哪个答案是对的,老师建议大家用画一画的方法来验证一下到底是需要多少盆。

  〖通过展示生活中常见的花坛中鲜花组成的图案,结合生活实际创设装点校园的情境,激发学生学习兴趣,调动学生学习的主动性。引出生活中的数学问题,激发学生探究欲望。〗

  二、多元表征,感知模型

  1.出示学习建议:

  (1)请利用老师提供的材料,在纸上画一画,圈一圈。并写出算式。(花盆可以用符号表示)

  (2)画好后先独立思考,再在小组中说一说你的方法。

  〖把学习的主动权交给了学生,放手让学生想一想、画一画、说一说,激活学生已有的生活经验,既满足了学生的表现欲望,又培养了学生自主探索、小组合作学习的意识。〗

  2.组织反馈:你是怎么想的?由学生介绍自己的想法和列式。(先把学生的四种方法都用投影展示出来,再讲评每一种方法)

  预设:生1:10×2=20,8×2=16 20+16=36;生2:9×4=36;生3:8×4+4=36;生4:10×4-4=36; 〖通过多媒体投影直观展示学生思维过程和解决方法,激发学生探究欲望。〗

  3.回顾方法:刚才我们这四种方法解决了问题。(课件动态演示)

  〖通过信息技术动态展示不同的解题策略,引导学生从不同之中找到相同点,将各种算法统一起来,散而不乱,达到了多样化之后的优化,让学生经历多元表征,充分感知数学模型,实现了信息技术与教学内容的'整合。〗

  小结:通过同学们的认真思考,利用已有的知识与经验探索出了这四种不同的策略来解决了同一个数学问题。

  三、探索规律,有效建模

  1.延续情境,提出问题:除了给古柳树周围正方形的台面摆鲜花外,学校还想再建一个大花坛,其中需要把红色太阳花摆在三角形台面上(每边6盆),把粉色的月季花摆在六边形的台面上(每边4盆),请你算一算各需要多少盆。)

  每边6盆,一共要多少盆?每边4盆,一共要多少盆?

  2.组织反馈:你是怎么算的?(结合图说明算式的意思)

  3.组织讨论:仔细观察这些算式,告诉我们这些封闭图形上每边摆花的盆数,求花盆总数可以怎么求呢?

  小结:我们将正方形,三角形,六边形等图形作为研究的材料,发现了在这样的封图形上植树的棵数就是(每边盆数-1)×边数=盆数

  4.拓展练习、提出问题:圆形花坛一周全长16米,如果沿着圆坛一圈每隔2米放一盆花,一共需要几盆花?

  学生利用材料自主探索。

  5.组织交流评价:一共种几棵?你是怎么想的?你觉得在圆上放花有规律吗?有什么规律?你还有什么新的发现?(投影展示学生的设计方案,引导学生将在圆坛上摆花的问题和线段上的植树问题联系起来)

  小结:花盆数=间隔数

  〖组织学生利材料自主设计,并进行交流讨论,充分展示学生的思维过程,在思维碰撞中学生们认识到在圆坛上摆花的问题可以和线段上的植树问题联系起来,轻松地找到了新旧知识的结合点。〗

  6.提升:在三角形、正方形、正六边形上摆花盆的总数与间隔数是不是也具有这样的关系呢?

  (1)学生利用材料自主探索

  (2)组织交流反馈

  (3)动态演示:将这些图形拉伸为圆,并转化为线段。

  小结:其实在所有封闭图形上,都具有花盆数=间隔数这样的关系。所以我们要求花盆总数,可以先求出间隔数。

  〖通过电脑动画的演示,学生可以直观地发现所有的封闭图形植树问题都可以转化为在圆上的植树问题,并且有和在线段上一端栽树的情况一样。这样,又一次沟通了各个封闭图形之间的联系,轻松突破的本课难点。〗

  四、拓展提升,实践应用

  1.学校为了美化校园环境,引进了60盆花,如果想在学校门前的空地上摆出一个漂亮的图案,可以怎么摆?请和大家说说你的设计方案。

  2.组织学生汇报。

  3.小结

  通过今天这节课的学习,你有什么收获?

  五年级上小学数学教案:《植树问题》 篇6

  教学内容:人教版义务教育课程标准实验教材四年级(下册)第117---118页例1

  教学目标

  1.通过探究发现一条线段上两端要种、一端要种、两端不种三种不同情况植树问题的规律。

  2.使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学过程

  1、课前谈话:

  今天来这里上课,有什么不同的感觉?

  老师挺高兴的,这么多人,正好做一个公益宣传,请看--

  春天,是植树的最佳时间,在座各位朋友,同学,为了我们地球生命,给这些孩子们一个健康的环境,请爱护树木,有钱出钱,有力出力,多多种树!支持的,鼓鼓掌!谢谢!

  一、创设情境,出示问题(2分钟)

  1、揭示课题(2分钟)

  师:你们觉得种树与数学有联系吗?

  生:间隔,米数等等问题。

  师:种树与数学之间确实有联系,这节课我们就一起在种树问题上研究数学。(课件出示课题:植树问题)

  2、出示问题

  课件出示问题:同学们在全长1000米的小路一旁植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗。

  二、化繁为简,解决问题(26分钟)

  1、理解信息(2分钟)

  师:能看懂吗?告诉我们哪些信息?

  生:全长100米,每隔5米等等

  师:每隔5米是什么意思?

  生:就是两棵树之间的“间隔”;

  师:“间隔”这个词听过吗?能举几个例子吗?

  比如同学之间,手指之间......都可以看作是间隔。

  师:两端要种什么意思?

  生:头和尾各要种一棵。

  2、形成猜想(1分钟)

  师:如果,把这条路的一旁看成一条线段的话,猜猜看,需要几棵树?看谁想得快!

  生1:200

  生2:201

  生3:202

  师:三个猜想答案,到底哪个答案才是对的?我们有什么办法知道?

  生:验证。

  3、化繁为简(4分钟)

  师:是的,可以画图,模拟种一种,数一数,就能知道正确的答案了。

  师:(课件演示)请看,用这条线段表示这条路。“两端要种”,先在开头种上一棵,然后每隔5米种一棵......大家看,种了多少米了?生:35米

  师:才种了35米,一共要种多少米?

  生:1000米。

  师:这样一棵一棵,一直种到1000米?!同学们,你有什么想法?

  生:太累了,太麻烦了,太浪费时间了。

  师:英雄所见略同,一棵一棵种到1000米,方法是对的,但确实太麻烦了。其实,像这样比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?

  生:想

  师:这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究,在研究的过程中发现规律。(课件出示:研究方法:复杂问题--简单问题--发现规律--解决问题)

  3、举例验证(5分钟)

  师:比如:1000米的路太长了,我们可以先在短一点的路上种一种,看一看,是不是有什么规律,找到规律了我们再来解决复杂的问题。(课件出示:100米--

  师:你认为取多少长的路,画图种树,比较好验证呢。

  生:5米,10米,15米,20米,25米。

  师:老师给你们带来了长短不同的“路”,把它想象成“路”,行吗?你可以把它看作是10米,15米等等,现在请你用笔,独立在这些“路边”种树,并列出算式,把你的发现也写在纸上,开始。(学生独立活动,2分钟后,)

  师:把自己的发现,轻轻地告诉小组里的同学,并做好向全班同学汇报。

  4、反馈交流(如何操作还是一个问题)(5分钟)

  请一个小组把自己的研究成果展示在黑板上。

  师:请你代表这组同学,把研究的过程,和得到的'规律,向全班同学解释一下。

  师生互动

  师:这空在这里是怎么回事?

  生:间隔5米;

  师:为什么是空了4个间隔?

  生:20米里正好有4个5米;

  师:怎么算出来的?

  生:20除以5等于4

  师:4个间隔数,空了4次

  师:这样种(板书:两端种),可以吗?)

  5、揭示规律(0.5分)

  师:运用化繁为简的解决策略,同学们发现了植树问题中,非常重要的一个规律,那就是:(板书:两端要种:棵树=间隔数+1)

  6、解决问题(3分钟)

  师:现在你能运用这个规律,解决刚才复杂的问题吗?请独立列出算式。然后向同座说一说解决思路。(请一位学生板演,并说解题思路,老师追问:这里的200指什么,为什么要减1。)

  师:(指着猜想答案)当时你是怎么猜想到200棵的。

  师:虽然你猜测的答案是错的,但你敢猜想,证明你有学数学的胆量,正因为出现了不同的答案,才让我们走上探索之路,所以,我们得谢谢你!

  7、巩固练习(6分)

  (1)从王村到李村一共设有8根电线杆,相邻两根的距离平均是200米。王村到李村大约有多远

  (2)园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  三、再度猜想,打通联系(10)

  1、过渡设疑

  2、形成猜想

  3、验证猜想

  4、得出结论

  5、打通联系

  四、拓展选择,辨别类型(3分钟)

  师:其实植树问题并不只是与植树有关,在我们的生活中,还有许多现象与植树问题很相似。

  (1)同学们排队跑步,队伍长4米,每两人之间的距离是1米,这队学生有多少人?

  1)4÷1+1=5(人)2)4÷1-1=3(人)3)4÷1=4(人)

  (2)一根10米长的木条,工人叔叔按每段2米长的标准来锯开它,需要锯几次才能完成任务?

  1)10÷2+1=6(次)2)10÷2-1=4(次)3)10÷2=5(次)

  (3)5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米,街道一边一共有几个车站?

  1)12÷1+1=22(个)2)12÷1=20(个)3)12÷1-1=9(个)

  五、丰富背景,遗留问题。(1.5分钟)

  师:其实,同学们的收获才刚刚开始。多个点等距离排列成一条直的线,点的数量与间隔数之间有一定规律;如果,多个点等距离排列成一个方阵;如果,多个点等距离排列成一个圈,或等距离排列成其它形状,这里面蕴含着更深奥的数学,期待同学们去发现!

  五年级上小学数学教案:《植树问题》 篇7

  教材分析

  植树问题一共分三种情况,教材在编排时将它们分成三个例题进行教学,分别是两端都种、两端都不种、只栽一端。本节课我对教材进行了整合,在第一课时就将三种情况全部呈现,并且将重心放在探究只种一端时,棵树和间隔数之间的关系。其实只要是只种一端,不管路是几米,间隔数和棵数始终相等,因为树和间隔始终一一对应。处理好了这层关系,理解了一一对应,那么两端都种和两端都不种就可以根据对应思想,通过迁移发现间隔数和棵数之间的关系。

  教学目标

  1、通过探究,发现在一条线段上植树的问题的规律,理解并掌握不同种法中间隔数和棵数之间的关系。

  2、经历探究规律的过程,培养学生观察、分析、合作等能力,初步渗透“一一对应”思想。

  3、感受数学来源于生活更应用于生活,培养学生应用意识和解决问题能力。

  教学重点:

  理解间隔数和棵数之间的关系,建构数学模型。

  教学难点:

  建立模型及“一一对应思想”的应用。

  教学过程

  1、恰好3月份,植树节即将到来,因此在第一环节通过询问植树的好处,渗透环保意识,并让学生感受数学问题来源与生活。

  2、第二环节我主要分三个层次进行教学,第一层通过小小设计师,将枯燥的解决问题转变成灵动的设计方案。先引导学生理解“每个5米种一棵”什么意思,有些学生可能认为只有两棵树之间的5米才是间隔,一边不种树的话那个5米就不是间隔,因此我将示意图这样设计,帮助学生更好地理解什么是间隔。再引导学生猜测并画图,让学生经历一个“猜想——验证”的过程。

  第二层是本堂课最关键的部分,首先请学生展示作品,说说自己是怎么想的,

  在说的过程中询问学生分了几个间隔,为什么分4个间隔,它是怎么来的。接着引导学生观察三种画法,它们有什么共同点和不同点,沟通三者之间的联系,并揭示每种种法的名称。然后将探究的重心放在只种一端的情况上,通过列算式,解释算式意义,并通过质疑,引导学生猜测棵数和间隔数之间有什么联系,为探究埋下伏笔。有些学生虽然对树和间隔的对应关系有点了解,但难以用语言概括,因此我在课件中用不同颜色描出树和它对应的间隔,闪烁树和间隔,并用圈一圈的方法,便于学生区分和发现,之后安排学生对照着左手,将自己的发现告诉同桌,深化对对应关系的理解。因为本节课的规律属于不完全归纳法,单靠一个例子是不科学,没有说服力的,所以我增加了300米的小路种树,想象着种树的`过程,理解为什么只一端种时,棵数始终等于间隔数。最后运用迁移,理解为什么一个加1,一个减1。

  第三层引导学生观察三个算式,有什么相同点,它们第一步都是先算什么?数学广角这类题目建模是关键,但没有解决问题的策略,就会使课显得空洞,这一层主要让学生形成一个策略:要知道一共有几棵树,必须先求出间隔数。接着通过例题,使知识得到一个巩固,最后展示生活中的植树问题,感受数学不仅来源于生活,更要运用于生活。

  第三环节中设计了两道习题,第二题是生活中常见的例子,主要为了培养学生从字里行间寻找隐藏信息的能力,接着通过变式,隐去一座房子又会怎样种。其实在画图时会有这样一个疑惑,为什么那一端空在那不种树,而这道题目可以给出很好的说明,有时候在解决问题时还要注意联系生活实际。

  教学反思:

  作为新教师,对于这类课我是比较难把握,数学思维如此缜密,我在教学的过程中难免有所疏忽。

  1、语言不够精炼,会不自觉地重复学生的话。在讲解只种一端的时候,学生对一一对应还是明了。

  2、评价语有些生硬,对于学生的回答有时不能及时得做出点评。

  3、探究得太少,自己说得太多。使课堂不够开放。

  4、本节课虽然渗透了解决的方法,先求间隔数,但没有明确间隔数的求法。应该在板书上指明。

  五年级上小学数学教案:《植树问题》 篇8

  教学目标:

  1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

  2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

  教学重难点:

  1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

  2.培养学生从实际问题中发现规律,应用规律解决问题的能力。

  3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。

  教学、具准备:

  课件、表格、尺子等。

  教学过程:

  一、教学间隔

  1.教学间隔的含义。

  师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个空也可以说成4个间隔,5个手指之间有4个间隔。那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)

  2.引入植树问题的学习。

  师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。

  二、自主探究 找出规律

  1.课件出示:为迎接2008奥运会,北京市城市规划局准备在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

  师:我们一起来读读题。谁知道每隔5米栽一棵是什么意思?那共需多少棵树苗,谁来猜一猜?

  预设:学生可能大多数对得到20棵。

  师:你们的猜测正确吗?下面我们就一起想办法来验证一下,但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题是我们可以先用比较简单的例子来验证。假设路长只有20米,每5米栽一棵(两端都栽),要栽几棵呢?

  师:下面就请小组同学一起想办法验证一下你们的猜测是否正确?

  全班交流汇报。(重点让用线段图来验证的小组来说明理由。)

  师:这个小组的同学真会想办法,他们用一条线段表示这条小路,平均分成4份,这时出现了几个间隔和几个间隔点?

  生:4个间隔和5个间隔点。也就是把一条小路平均分成4份后,如果两端都要栽树的话,共要栽几棵?(5棵)205不是等于4吗?怎么是5棵呢?多的这一棵是怎么来的?

  师:如果每隔4米栽一棵、每隔2米栽一棵又需要栽多少棵树苗呢?请小组同学一起讨论一下,并将你们解决的方法写在练习纸上。

  根据学生的回答,师填写表格:

  总 长(米)

  20

  全班观察表格寻找规律。

  师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1。(板书:棵数=间隔数+1。)

  师:对得到的这个规律有没有不同意见?

  三、巩固练习

  师:现在我们用得到的这个规律来验证一下你开始的猜测正确吗?

  (1)基础练习。

  师:请看题目,谁愿意来说一说?

  A1. 在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

  A2. 如果是每隔10米栽一棵呢?(口答)

  B.师:同学们真能干!其实在我们的生活周围存在许多类似的植树问题,这是陈老师家乡重庆的鹅公岩大桥,想知道这座桥上有多少盏路灯吗?

  课件出示:大桥全长1420米,大桥的.两侧每隔10米安装了一盏路灯。一共安装了多少盏路灯?

  C.这是我们重庆的轻轨列车,陈老师每天就坐轻轨列车回家。

  课件出示:从学校到老师家一共有14个站,每相邻两个站之间的距离平均是1千米,你知道陈老师的家离学校大约有多少千米吗?

  (2)拓展练习。

  师:老师的家乡重庆是一个美丽的城市,在重庆有一个解放碑,想听听它的钟声吗?

  课件出示解放碑的大钟及题目。

  解放碑的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间呢?

  师:请同学们独立的在练习本上完成。

  小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。

  四、数学文化

  介绍二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?

  五、全课总结

  1.通过这节课的学习你有什么收获?

  2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等(课件图片展示),这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。

  五年级上小学数学教案:《植树问题》 篇9

  教学内容:

  人教版小学数学五年级上册第106页例1。

  教学目标:

  1、知识与技能目标:

  (1)、初步认识植树问题,理解并掌握在一条直线上“两端都栽”的情况下,间隔数和棵树之间的关系。

  (2)、在理解间隔数和棵树规律的基础上解决简单的“两端都栽”的实际问题。

  2、过程与方法目标:

  (1)、通过观察比较、动手操作、合作交流等活动探究新知,经历知识的形成过程。

  (2)、经历和体验“数形结合”、“化繁为简”的解题策略和数学方法。

  (3)、培养学生的合作意识,养成良好的交流习惯。

  3、情感态度与价值观目标:

  (1)、感受数学在生活中的广泛应用。

  (2)、在自主探究的过程中体验成功的喜悦,树立学生学习数学的决心。

  教学重点:

  通过动手操作、合作交流,探究出植树问题中两端都栽时,间隔数和棵树之间的关系,抽象出植树问题的数学模型。

  教学难点:

  把现实生活中类似的问题同化为“植树问题”,运用植树问题的模型解决一些相关的实际问题。

  教学过程:

  一、谜语导入。

  (1)、师:同学们一定喜欢玩猜谜语吧?(课件出示):两棵小树十个叉,不长叶子不开花。能写会算还会画,天天干活不说话。(谜底:手)

  谁能很快说出谜底?(生口答)。

  师:你思维真敏捷。

  (2)、师:同学们,伸出你的左手,仔细观察,你能看到数字几?

  (3)、认识间隔、间隔数。

  (预设1:数字5,5个手指;数字4,4个手指缝。)

  师:你观察得真认真!

  师:(课件出示)手指间的空隙,在数学上我们叫做间隔。(板书:间隔。)一只手上有四个间隔,我们就说它的间隔数是4。(板书:“间隔”后加“数”)

  (预设2:生:有5数字5,5个手指头;有数字4,手指之间有4个间隔。

  师:你懂得真多,能告诉大家什么叫做间隔吗?

  生口答,师出示手的图片,板书“间隔”和“间隔数”。)

  (4)、认识生活中的“间隔”。

  师:生活中间隔无处不在。(课件出示:人民大会堂柱子、路灯杆、摆花盆、钟声等),师边放课件边叙述说明。

  师:想一想,生活中还有哪些地方有间隔?

  生充分交流

  (5)、揭示并板书课题。

  师:像这样有间隔现象存在的问题,统称为植树问题。(板书:植树问题)。今天我们就一起来探究有关植树问题的知识。

  二、探究新知。

  (一)、创设情境,提出问题。

  1、出示题目信息:一条新修的`公路,全长1000米,在它的一侧种树(两端都栽),每隔5米栽一棵,一共要栽多少棵?

  2、理解题意。

  (1)、从题目中你得到了哪些数学信息?

  (2)、理解题意。

  师:解决问题时,要善于抓住关键词或句子,分析题意。你认为哪些词是比较重要的?

  题目中,“两端都栽”是什么意思?

  师:既然有“两端都栽”的情况,就有“两端都不栽”的情况,也有“只在一端栽”的情况。(课件演示:两端都栽,两端都不栽,一端栽一端不栽三种情况。)今天我们重点研究两端都栽的情况。

  (3)、同学们大胆猜测一下,一共要栽多少棵?

  (指名生答)

  (4)、提出验证。

  a:师:到底哪个结论是正确的呢?我们怎么来验证一下?

  b:生尝试寻求方法。

  生:可以画一画图。

  师:你的想法非常好,可以用一条线段代表1000米长的公路,画一画图,数一数实际种了多少棵。)

  (5)、尝试验证,边叙述边课件演示:因为两端都栽,所以要先在起点栽一棵,然后每隔5米栽一棵,再隔5米再栽一棵,再隔5米再栽一棵……看看一共要栽多少棵。

  师:现在栽了多少米了?就这样一直栽到1000米处吗?

  (预设生:太麻烦了,浪费时间)

  (6)寻求“化繁为简”的数学方法。

  师:老师和你们有同感。1000米的路太长了,你觉得路的总长要是多少米好了?

  生尝试发表自己的想法。

  (预设生:50米、20米、10米

  师:我明白同学们的意思了,就是把路的总长换成比较小的数就行了。你们的想法太棒了!)

  师:在数学研究中,遇到比较复杂的问题时,我们就从简单的问题入手,即把“大数变成小数”进行研究,这样就可以“化繁为简”,找出规律。(板书:大数——小数,化繁为简)。比如,1000米太长了,我们可以转化成20米栽几棵,从而找出规律。

  师:老师在电脑上可以画成小树,你们在练习本上,也画成一棵棵小树吗?怎样表示小树比较简单?

  (预设生:画成小树太麻烦,可以用一个点表示一棵小树比较简单。)

  师:你的方法真好!用线段图来表示,简单明了。(课件演示:小树变点,成为线段图)

  (二)、自主探究。

  (1)、师:同学们,今天你们就来当一次“小小数学家”,研究一下当总长分别是10米,15米、20米、30米时,两端都栽的情况下,棵数有什么规律。请你们拿出题卡,认真画出线段图,并结合线段图把表格中的数据补充完整。

  (2)、生独立填表。

  (3)、汇报交流:谁把你的结果向大家展示一下?

  (师:谁和他的结果一样请举手?

  师:看来大家都做得非常认真!)

  师:为了便于大家观察,我把表格展示在大屏幕上。

  (4)、师:(边课件演示边引导)仔细回忆刚才画线段图填表的过程,认真分析这几组数据,能否说出总长、间隔、间隔数之间存在什么关系?(课件表格下出示:总长o间隔=间隔数)

  间隔数与棵数之间又存在什么样的关系?(课件表格下出示:间隔数o( )=棵数)。

  那么,当两端都栽时,如果知道全长和间隔,怎样求出棵数?

  (5)、学生独立思考,充分交流。

  结合生答,师完成板书:总长÷间隔=间隔数,间隔数+1=棵树。

  (6)、师:如果不画线段图,你能说出总长是50米时,每隔5米栽一棵,两端都栽,一共要栽多少棵吗?

  学生口述答案。

  师:你真了不起!

  (三)、应用规律,解决问题。

  (1)、出示前面的例题。

  师:利用刚才我们发现的两端都栽时,棵数和间隔数之间的关系,你能找到这道题的正确结果吗?

  (2)、生找出正确解法。

  (3)师:200表示什么意思?为什么要加1?(200表示间隔数,因为间隔数加一等于棵树,所以要加一。)

  (师:你讲得太棒了!老师真心佩服你!)

  (4)、师:以后再遇到生活中类似于“两端都栽”的实际问题时,就可以运用我们今天学到的知识进行解决。

  小练笔:运动会上,在一条长200米的笔直跑道的一侧插彩旗(两端都插),每隔10米插一面,一共要插多少面彩旗?

  师:请大家默读题目,然后在练习本上独立完成。

  三、学以致用。

  1、同学们,数学就在我们身边!看,我们的《小苹果》舞蹈比赛中同样蕴含着植树问题的知识。

  (课件配图片出示)五二班学生参加《小苹果》舞蹈表演,其中一列纵队全长18米,如果每两个同学之间相距2米,这列队伍一共站了多少人?

  生独立审题,尝试在练习本上独立完成。

  生交流方法和思路。

  2、钟声与钟声之间也有间隔,你能同化成植树问题进行解答吗?

  (课件出示)广场上的大钟,5时敲5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?

  指名读题,理解题意。

  师:同学们,认真倾听钟声敲响几下?仔细观察它们之间有几个间隔?(课件出示:结合5次钟声,线段图出示四个间隔)

  (学生结合课件演示,说出:钟声敲响5次,共有4个间隔。)

  大钟5时敲5下,有4个间隔,共用了几秒钟?由此能求出什么?那么12时敲12下,有几个间隔?敲完用多长时间吗?请同学们尝试独立在练习本上完成。

  汇报交流,说出思路。

  3、师:你们真了不起。请到知识城堡一展身手吧。

  (课件出示)8个同学站成一队,每两个同学之间距离1.5米。这列队伍全长多少米?

  师:线段图可以帮助我们解决许多数学问题。请同学们在练习本上画出线段图,再解答。

  生汇报交流。

  四、全课总结。通过今天的学习,你有什么收获?

  生充分交流。

  师:在今天的探究活动中,我们不仅发现了植树问题中“两端都栽”的规律,能运用这个规律解决生活中类似的问题,而且知道了数学研究中“化繁为简”方法,会通过画线段图帮助我们解决数学问题。其实,在植树问题中还有许多知识,比如两端都不栽时、只有一端栽时,或在封闭图形上栽时,棵数分别有什么规律呢?我们将在以后的学习中继续探究。

  五年级上小学数学教案:《植树问题》 篇10

  个人简介:陈智敏,男,30岁,本科学历,小学高级教师,现任乐清市雁荡镇一小副校长。先后被评为乐清市教坛新秀、温州市首届学科骨干教师,两次荣获乐清市先进教育工作者称号。2004年获得乐清市优质课一等奖,并多次承担温州市、乐清市教研室组织的送教下乡活动、乐清市级公开课教学和新课程专题讲座,所撰写的论文、案例多次在乐清市、省级获奖及发表。

  教学内容:人教版实验教材四下P117-P118页《植树问题》例1、例2

  教学目标

  1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。

  2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点

  理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。

  教学难点

  应用植树问题的模型灵活解决一些相关的实际问题。

  设计理念

  新课标实施,数学教材进行了相应的改革,数学思想方法的重要性更为彰显。每册教材通过“数学广角”来进一步渗透数学学习的思想、方法,加强学生综合运用知识的能力,逐步提高解决问题的能力。在植树问题的教学中,解题不是主要的教学目的,主要的`任务是向学生渗透一种思想,一种在数学上、在研究问题上都很重要的思想--化归思想。

  本课的设计,主要根据教学内容的特点,及学生的实际情况,引导学生积极参与,通过开放性的设计,让学生在设计植树方案的过程中通过画图亲身体验在三种种植情况下,选择的间隔不同,但棵数与间隔数之间都存在一定的关系。通过学生的体验,建构植树问题的模型,再运用模型解决生活中的类似问题。教学中重在让学生体验知识获得的过程,更注重于培养学生运用所学知识,举一反三,解决实际问题的能力。

  教学过程

  一、新课导入

  1、师:大家知道3月12日是什么节日吗?(植树节)那么今天我们就一起来研究植树中的数学问题。

  板书课题:植树问题

  二、引导探究

  1、创设情境,理解概念

  (1)出示:“为了美化环境,学校准备在操场边上的一条100米长的小路一边植树,总务主任需要准备多少棵树苗呢?

  (2)理解题意。

  a.读题,从题中你了解到了哪些数学信息?有什么问题?

  b.理解”间隔“的意思?

  C、理解三种种植情况

  (两端都种、一端种、两端不种)

  2、主动探索,发现规律

  (1)计算你的设计需要多少棵树苗?利用画线段图把它表示出来吗?并将植树方案补充完整

  植树方案

  总长(米)

  间隔(米)

  间隔数 (个)

  棵数(棵)

  种植情况示意图

  (2)学生反馈

  (3)组织讨论:你发现什么规律?

  两端都种时,棵数=间隔数+1

  一端种是时,棵数=间隔数

  两端不种时,棵数=间隔数-1

  3、应用规律,解决问题

  (1)出示例2:

  (2)读题后思考,有什么地方需要提醒同学值得注意的。

  (3)学生独立解题、反馈

  三、回归生活,变式练习

  1、封闭图形相当于一端种

  (1)出示P122练习二十第4题

  圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

  (2)讨论:封闭图形相当于植树问题中的哪个类型?

  (3)学生独立解题,反馈。

  2、同时出示两道习题:

  (1)锯木头问题(两端都不种)

  一根木头,要把它平均分成5段,每锯下一段需要8分钟,锯完一共要花多少分钟。

  (2)排列问题(两端都种)

  四、欣赏生活中类似于植树问题的事件

  生活中的类似于植树问题的――――欣赏

  • 相关推荐

【五年级上小学数学教案:《植树问题》】相关文章:

五上植树问题教学设计04-12

五年级上《植树问题》教学设计(通用11篇)10-20

人教版五上数学《植树问题》教案(精选12篇)02-29

小学植树问题教学反思08-09

《植树问题》小学数学说课稿12-07

植树问题教案03-03

植树问题说课稿12-14

植树问题说课稿12-12

五年级植树问题教学反思01-03