作为一位杰出的教职工,时常要开展教案准备工作,教案是教学活动的总的组织纲领和行动方案。那么你有了解过教案吗?下面是小编帮大家整理的3的倍数的特征教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
3的倍数的特征教案1
学习内容
3的倍数的特征(教材第10页的内容及教材第11页练习三的第3~6题) 第 1 课时 课型 新授
学习目标
1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。
2.引导学生学会判断一个数能否被3整除。
3.培养学生分析、判断、概括的能力。
教学重点 理解并掌握3的倍数的特征
教学难点 会判断一个数能否被3整除。
教具运用 课件
教学方法 二次备课
教学过程
【复习导入】
1.学生口述2的倍数的特征,5的倍数的特征。
2.练习:下面哪些数是2的倍数?哪些数是5的倍数?
324 153 345 2460 986 756
教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。
板书课题:3的倍数的特征。
【新课讲授】
1.猜一猜:3的倍数有什么特征?
2.算一算:先找出10个3的倍数。
3×1=3 3×2=6 3×3=9
3×4=123×5=15 3×6=18
3×7=213×8=24 3×9=27
3×10=30……
观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)
提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)
12→21 15→5118→81 24→42 27→72
教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?
(以四人为一小组、分组讨论,然后汇报)
汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。
3.验证:下面各数,哪些数是3的倍数呢?
21054 216 129 9231 9876
小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)
4.比一比(一组笔算,另一组用规律计算)。
判断下面的数是不是3的倍数。
34025003 1272 2967
5.“做一做”,指导学生完成教材第10页“做一做”。
(1)下列数中3的倍数有 。
143545100 332 876 74 88
①要求学生说出是怎样判断的。
②3的倍数有什么特征?
(2)提示:①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)
②接着再考虑什么?(最小三位数是100)
③最后考虑又是3的倍数。(120)
【课堂作业】完成教材第11~12页练习三的第4、6、7、8、9、10、11题。
【课堂小结】同学们,通过今天的学习活动,你有什么收获和感想?
【课后作业】完成练习册中本课时练习。
板书设计 第2课时3的倍数的特征
一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。
【作业设计】
学习目标, 教学方法, 数学, 教师, 能力。
3的倍数的特征教案2
教学目标
1、经历探索3的倍数特征的过程,理解其特征,能判断一个数是不是3的倍数。
2、能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展分析、比较、猜测、验证的能力。
3、通过归纳、类比猜测等学习数学的活动,体验数学问题的探索性和挑战性,感受数学结论的确定性。
教学重点
理解3的倍数的特征
教学难点
探索活动中,发现规律,并归纳出3的倍数的特征。
教学过程
一、谈话引入,提示课题
我们已经研究了2,5的倍数的特征,那么3的倍数又会有什么特征呢?(板书课题)
二、探索交流、获取新知
1、出示1~100数字表格
2、找出3的倍数,并做出记号
3、观察3的倍数,你发现了什么?(生认为没有什么规律,师再引导观察)
⑴任意选择几个3的倍数。如42、87、93。
⑵板书在黑板上
⑶交换个位和十位上的数字,得到24、78、39。
⑷判断这三个数是不是3的倍数
⑸想一想:交换数位前后的两个数中什么不变?(给足充分的讨论时间)生得到:交换前后两个数字的和不变。
⑹引导提问:3的倍数的特征跟一个数各个数位上数字的和有关系,到底有什么关系呢?
⑺分析、猜测。生从这几个数字的和,可以看出它们又刚好是3的倍数(6、15、12)
⑻验证、归纳
① 让生随意再找几个3的倍数,利用同样方法,将每个数的各个数字加起来进行验证。
② 发现规律,进行归纳
⑼尝试检验:①出示84、92、102、315。②利用规律进行检验。③小结:这个规律对三位数一样成立。
三、巩固练习
第7页的试一试和练一练
四、板书设计:
3的倍数的特征
3的倍数的特征:把一个数各个数位上的数字加起来的和正好是3的倍数。
五、课后反思:
略
3的倍数的特征教案3
教学内容:
苏教版义务教育教科书《数学》五年级下册第33~34页例5、“练一练”和“你知道吗”,第36页练习五第8~10题。
教学目标:
1.使学生认识和掌握3的倍数的特点,能判断或写出3的倍数,并能说明判断理由。
2.使学生经历探索和发现3的倍数的特征的过程,培养观察、比较和分析、概括等思维能力,积累数学活动的经验,提高归纳推理的能力,进一步发展数感。
3.使学生主动参与探索、发现规律的活动,获得探索数学结论的成功感受;体验数学充满规律,体会数学的奇妙,增强学习数学的积极情感。
教学重点:
认识3的倍数的特征。
教学难点:
研究并发现3的倍数的特征。
教学准备:
准备计数器教具和学具。
教学过程:
一、激活经验
1.复习回顾。
提问:2和5的倍数有哪些特征?
回顾一下,我们是怎样发现2和5的倍数的特征的?(板书:找出倍数——观察比较——发现特征)
2.引入课题。
谈话:我们上节课通过找2和5的倍数,对找出的倍数进行观察、比较,分别发现了2和5的倍数的特征。今天,我们就按照这样的过程,探索、寻找3的倍数的特征。(板书课题)
二、学习新知
1.提出猜想,引导质疑。
引导:我们知道2的倍数,个位上是0.2.4.6.8;5的倍数,个位上是5或O.那你能猜想一下3的倍数会有什么特征吗?为什么这样想?说说你的想法。(按思维惯性,可能许多学生会猜测个位上是3的倍数)
许多同学认为,3的倍数可能是个位上是3.6.9的数。(板书:3的倍数,个位上是3、6、9)
质疑:利用以前的经验学习新内容,是不错的学习方法。今天大家联系2和5的倍数的特征这样猜想,想法是很好的,数学学习经常可以这样类推。那这一次的猜想还对不对呢?大家来看几个数:13是3的倍数吗?26和49呢?(根据回答擦去板书内容后半部分)
2.利用经验,组织探究。
(1)找3的倍数。
(2)探索特征。
3.学生归纳,强化认识。
追问:现在你能告诉大家,经过找出倍数、观察比较,我们发现3的倍数有什么特征吗?
让学生读一读板书的结论。
强调:同学们通过自己的思考、探索,发现了一个数各个数位上数字的和是3的倍数,这个数就是3的倍数;反之,一个数各个数位上数字的和不是3的倍数,这个数就一定不是3的倍数。
4.阅读“你知道吗”。
启发:当你发现3的倍数的特征时,你对数学有什么感觉?
谈话:是的,数学很神奇、神秘,3的倍数居然和它各个数位上数字的和有这样密切的关系!数学有许多神奇、有趣的规律,只要我们具有一定基础,认真探究,这一条条神奇的秘密和规律就会被发现和应用。下面请大家阅读课本第34页的“你知道吗”,看看会有什么神奇的规律告诉你。
交流:你知道了什么?什么样的数叫完全数?举例说一说。(结合举例6和28,先板书因数,再板书表示完全数的等式) 现在发现的完全数都有什么特征?
三、练习巩固
1.做“练一练”第1题。
2.做“练一练”第2题。
3.做练习五第8题。
4.做练习五第9题。
5.做练习五第10题。
四、课堂总结
提问:今天的学习你又有什么收获和体会?
判断3的倍数的方法,和判断2、5的倍数不同在哪里?
3的倍数的特征教案4
小学数学《3的倍数的特征》教案
一、教学目标
【知识与技能】
理解和掌握3的倍数的特征,能熟练判断一个数是否是3的倍数。
【过程与方法】
经历观察、猜想、推翻猜想、再观察、再猜想、验证的过程,提升逻辑推理能力。
【情感、态度与价值观】
在猜想论证的过程中,体会数学的严谨性。
二、教学重难点
【重点】3的倍数的特征,判断一个数是否是3的倍数。
【难点】3的倍数的数的特征的归纳过程。
三、教学过程
(一)导入新课
复习导入:我们是如何研究2、5的倍数的特征的?
引出继续利用百数表研究3的倍数的特征并出示课题。
(二)讲解新知
组织学生在百数表中圈出3的倍数,提出问题:能否猜想3的倍数的特征会与什么有关?
学生发现从个位探究并不成功,教师顺势引导——单纯横着看找不到什么规律,还能怎么看;或是提示我们只看个位不行还能怎么看。引导学生发现“斜着看时,十位依次增大1,个位依次减小1,总和不变”。
组织学生小组讨论,重点讨论3的倍数对于个位是否还有特殊要求以及十位与个位的和有没有什么规律,之后教师再组织学生反馈多次举例验证,便可以得出个位可以是任意数且十位和个位的和均为3的倍数。
提问学生应该如何找到3的倍数,引导学生发现总结规律的必要性。
师生共同总结得出:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
(三)课堂练习
1。判断下面的数是否为3的倍数。
24 58 46 96
2。尝试在每个数后面加一个数使这个三位数成为3的倍数。
(四)小结作业
提问:今天有什么收获?
带领学生回顾:3的倍数的特征;发现研究倍数的特征,方法却各有不一,体会数学知识的多样性。
课后作业:
思考什么样的数字同时是2、3、5的倍数,并尝试列举1000以内的这种数字。
四、板书设计
3的倍数的特征教案5
教学目标
1.让学生探索3.的倍数的特征,会判断一个数是不是3的倍数。
2.让学生在学习过程中学会运用分析、比较、归纳或猜想、检验等方法,并进一步学会与同学交流。
教学重难点
判断一个数是不是3的倍数。
课前准备
小黑板、学具卡片
教学活动
一、引入新课,激发兴趣
教师在黑板上写出一组数:5、6、14、18、25、27、36、41、90,问学生:谁能判断出哪些数是3的倍数?(这些都是一些简单的数,估计学生通过口算很快就能判断出来)
教师再写出几个数:1540、2856、3075,再问:谁能很快判断出哪些数是3的倍数?当学生出现畏难情绪时,教师说:我能很快地说出这几个数当中,2856和3075都是3的倍数。
谈话:你们会想这是老师预先算好的。你们可以考考老师,不管你报一个什么数,我都能很快地判断出来,你们愿意来试一试吗?
学生报数,教师很快地回答,并把是3的倍数的数板书在黑板上,再让学生用计算器进行验证。
谈话:你们一定在想:老师你有什么窍门吗?有啊!你们想知道吗?让我们一起来探索3的倍数的特征。(板书课题:3的倍数的特征)
二、自主探索。合作学习
1.先让学生猜一猜:3的倍数有什么特征?举例说明。
2.根据学生猜测的结果,讨论:个位上是3、6、9的数是3的倍数吗?
3.当学生得出3的倍数与个位上的数没有关系时,教师引导学生在小组里用计数器拨几个3的倍数,看每次用了几颗算珠?
如:84、51、27、90、123、2856、3075,它们用的算珠颗数分别是:8+4—12;5+1—6;2+7—9;9+0—9;1+2+3—6;2+8+5+6—21;3+O+7+5—15。
4.引导学生观察、分析、讨论:用的算珠的颗数有什么共同点?
:每个数所用算珠的颗数都是3的倍数。
5.提问:这些数所用算珠的颗数跟什么有关系?小组讨论,交流讨论结果。
:一个数是3的倍数,这个数各位上的数的和一定是3的倍数。
6.进一步验证。(1)同桌之间互相报数,验证刚才的结论是否正确。(2)用1、2、6可以写成126,还可以组成哪些三位数?这些三位数是3的倍数吗?小组讨论后得出结论:3的倍数,跟数字的位置没有关系,只跟各位数上的数的和有关系。
7.试一试:如果一个数不是3的倍数,这个数各位上数的和是3的倍数吗?
在小组里举例验证、讨论交流。得出:一个数不是3的倍数,这个数各位上数的和不是3的倍数。归纳:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
三、运用结论。巩固拓展
1.做“想想做做”第1题。
指名口答。提问:你是怎么判断出67不是3的倍数,84是3的倍数的?
2.做“想想做做”第2题。
提问:每一题有没有余数与什么有关?有什么关系?谈话:在没有余数的算式下边画横线,看谁做得快。指名报结果,共同评议。
3.做“想想做做”第3题。
让学生独立填写,再在小组里交流:你能找到几种不同的填法?
4.做“想想做做”第4题。
学生涂完后,指名回答:9的倍数都是3的倍数吗?
5.做“想想做做”第5题。
各自组数,并把组成的数记下来。
指名报答案,全班学生评议。
6.补充题。
提问:你今年几岁?再过几年你的岁数是3的倍数?
四、
3的倍数的特征教案6
教学内容:
教材19页内容,能被3整除的数的特征。
教学要求
使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。
教学重点:能被3整除的数的特征。
教学难点:会判断一个数能否被3整除
教学方法:
三疑三探教学模式
教具学具:
课件等。
教学过程
一、设疑自探(10分钟)
(一)基本练习
1、能被2、5整除的数有什么特征?
2、能同时被2 和5整除的数有什么特征?
(二)揭示课题
我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来研究能被3整除的数的特征(板书课题)
(三)让学生根据课题提问题。
教师:看到这个课题,你想提出什么问题?(教师对学生提出的问题进行评价、规范、整理后说明:老师根据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示认真探究,就能弄明白这些问题。)
(四)出示自探提示,组织学生自探。
自探提示:
自学课本19页内容,思考以下问题:
1、观察3的倍数,你发现能被3整除的数有什么特征?举例验证。
2、能被2、3整除的数有什么特征?
3、能被2、3、5整除的数有什么特征?
二、解疑合探(15分钟)
1、检查自探效果。
按照学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织学生合探解决。根据学生回答随机板书主要内容。
2、着重强调;
一个数各个数位上的数字之和能被3整除,这个数就能被3整除。
三、质疑再探(4分钟)
1、学生质疑。
教师:对于本节学习的知识,你还有什么不明白的地方,请说出来让大家帮你解决?
2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)
四、运用拓展(11分钟)
(一)学生自编习题。
1、让学生根据本节所学知识,编一道习题。
2、展示学生高质量的自编习题,交流解答。
(二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。
1、判断下列各数能不能被3整除,为什么?
72 5679 518 90 1111 20373
2、58 115 207 210 45 1008
有因数3的数:( )
有因数2和3的数:( )
有因数3和5的数:( )
有因数2、3和5的数:( )
让学生说说怎么找的。
(三)全课总结。
1、学生谈学习收获。
教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。
2、教师归纳总结。
学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。
板书设计:
能被3整除的数的特征 一个数各个数位上的数字之和能被3整除,
这个数就能被3整除。
3的倍数的特征教案7
教学目标
1、知识与技能
理解并熟记3的倍数的特征,能正确判断一个数是不是3的倍数,培养理解力和应用知识的能力。
2、过程与方法
经历自主实践、合作交流探究3的倍数的特征的过程,培养的探究能力和合作意识。
3、情感态度与价值观
感受数学知识探究的条理性,培养严谨的学习态度,体验合作的乐趣。
教学重难点
【教学重点】
3的倍数特征。
【教学难点】
探究3的倍数特征的过程。教学过程
教学过程
一、以旧引新,竞赛导入
1、请说出2的倍数的特征、5的倍数的特征。
2、下面各数哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数?
35 158 200 87 65 164 4122
既是2的倍数又是5的倍数的数有什么特征?
3、你能说出几个3的倍数吗?上面这些数中,哪些是3的倍数。你能迅速判断出来吗?
4、比一比。请学生任意报数,学生用计算器算,老师用口算,判断它是不是3的倍数。看谁的数度快!
5、设疑导入:你们想知道其中的奥秘吗?这节课就来学习3的倍数的特征。我相信:通过这节课的探索大家也一定能准确迅速地判断出一个数是不是3的倍数。(揭示课题)
二、猜想探索,归纳验证
1、大胆猜想:猜一猜3的倍数有什么特征?
(1)交流猜想。(有的说个位上是3、6、9的数是3的倍数,有的同学举出反例加以否定)
(2)整理认识。只观察个位上的数不能确定它是不是3的倍数,那么3的倍数到底有什么特征呢?
2、观察探索:出示第10页表格。
(1)圈一圈。上表中哪些是3的倍数,把它们圈起来。
(2)议一议。观察3的倍数,你有什么发现?把你的发现与同桌交流一下。(学生交流)
(3)全班交流。横着看圈起的前10个数,个位上的数字有什么规律?十位上的数字呢?判断一个数是不是3的倍数,只看个位行吗?
(4)问题启发:
大家再仔细看一看,3的倍数在表中排列有什么规律?
从上往下看,每条斜线上的数有什么规律?(个位数字依次减1,十位数字依次加1)
个位数字减1,十位数字加1组成的数与原来的数有什么相同的地方?(和相等)
每条斜线的数,各位上数字之和分别是多少,它们有什么共同特征?(各位上数字之和都是3的倍数。)
3、归纳概括:现在你能自己的话概括3的倍数有什么特征吗?
3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
4、验证结论
大家真了不起!自主探索发现了3的倍数的特征。但如果是三位数或更大的数,你们的发现还成立吗?请大家写几个更大的数试试看。
(1)尝试验证。(生写数,然后判断、交流、得出结论。)
(2)集体交流。
教师说一个数。如342,学生先用特征判断,再用计算器检验。
一个更大的数。4870599,学生先用特征判断,再用计算器检验。
5、巩固提高。
3的倍数的特征教案8
教学目标:
1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自身的语言总结特征。
2、在探索活动中,感受数学的微妙;在运用规律中,体验数学的价值。
教学重、难点:是3的倍数的数的特征。
教学过程:
一、提出课题,寻找3的特征。
师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜想一下?
生1:个位上是3、6、9的数是3的倍数。
生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。
生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们一起来研究。(揭示课题)
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学人手一张。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)
二、自主探索,总结3的特征师:
先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学利用p18的表。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)
师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。
同学同桌交流后,再组织全班交流。
生1:我发现10以内的数只有3、6、9是3的倍数。
生2:我发现不论横的看或竖的看,3的倍数都是隔两个数出现一次。
生3:我全部看了一下,刚才前面这位同学的猜测是不对的,3的倍数个位上0~9这十个数字都有可能。
师:个位上的数字没有什么规律,那么十位上的数有规律吗?
生:也没有规律,1~9这些数字都出现了。
师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?
生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。
师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?
生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。
师:这是一个重大发现,其他斜线呢?
生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。
生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。
生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。
师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?
生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,假如是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。
同学先自身写数并验证,然后小组交流,得出了同样的结论。
全班齐读书上的结论。
三、巩固练习:
完成p19做一做
四、课堂小结:
这节课你有什么收获
3的倍数的.特征教案9
教学目标:
1、理解3的倍数的特征,掌握一个数是否是3的倍数的判断方法。
2、培养分析、比较及综合概括能力。
3、培养合作交流的意识,掌握归纳的方法,获取一定的学习经验。
教学重点:
掌握3的倍数的特征,正确判断一个数是否是3的倍数。
教学难点:
探索3的倍数的特征。
教学过程:
一、创设情景,明确目标(3分钟)
(一)创设情景,反馈预习
1、师:课前我们已经完成了导学案自主预习部分,我们已经知道了2、5的倍数特征,下面的数你能判断出下面的数哪些是2的倍数,哪些是5的倍数,哪些即是2的又是5的倍数呢?
P:16、24、85、102、138、170、
2 的倍数:16、24、102、138、170
5的倍数:85、170
即是2的倍数又是5的倍数:170
师:说一说,你是怎么想的?
生1:个位上是02468就是2的倍数。个位是上0或者5的数就是5的倍数。一个数既是2的倍数,又是5的倍数,它的个位上一定是0.
2、看来要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?
生:2的倍数的个位数是0、2、4、6、8;5的倍数个位上是0、5。
师:那么3的倍数有什么特征呢?是不是还看个位数呢?这就是这节课我们要研究的内容。
3、教师板书课题:3的倍数的特征。
(二)明确目标,引领方法
1、出示学习目标(见学案),生自读目标。
2、同伴说说自己的理解,谈谈如何实现目标。
设计意图交流预习内容,解决预习中的问题;明确学习目标,带着目标进行合作学习。
二、自主学习,同伴合作(15分钟)
(一)自主学习,自我感知
1、小棒游戏,探究规律
师:首先我们来做一个摆小棒的游戏,怎么玩呢?(拿6根小棒)找一个同学在这张数位表上随意用小棒摆出一个数,我能马上猜出它是不是3的倍数。信不信?
师:你来!
师:为了验证我猜得对不对,再请一个同学到前面的展台上用计算器来算一算,跟我比比速度。
学生摆出:51
师:51是3的倍数。我算的比计算器快吧?
师:能摆一个三位数吗?
学生摆出:312
师:312是3的倍数。
师:再来一个难点的。
学生摆出:1123
师:1123不是3的倍数。
师:想知道老师为什么判断的这么快吗?相信通过下面的操作你能发现其中的秘诀。
2、小组合作探究
(1)用3根小棒摆一个数,这些都是3的倍数吗?
师:我们一探究要求:用相应根数的小棒在数位表上各摆出3个数。
小组内合理分工,请大家看一下导学案的合作要求
①根据要求每人用3根小棒摆一个数,并思考是不是3的倍数,3人摆数,1人记录。
②用计算器算一算,将3的倍数圈出来。
③仔细观察表格,从中你发现了什么?
(2)用4根再摆出一些数,这些都是3的倍数吗?
(3)用6根再摆出一些数,这些都是3的倍数吗?
(4)摆出3的倍数与所需的小棒的根数有什么联系?3的倍数有什么特征?
预设
第一组:用3根小棒摆:2、12、102,都分别是3的倍数。
第二组:用4根小棒摆:22、1111、1102,都不是3的倍数。
第三族,用6根小棒摆:都是3的倍数。
问题:你发现了什么?
生:我们发现了3根、6根小棒摆出来的数都是3的倍数。
师:关键要看小棒的根数,了不起的发现。
生:只要小棒的根数是3的倍数,这个数就是3的倍数。
师:你们认为除了3根、6根,还有其它情况是吗?具体解释一下。
生: 9根、12根、15根……都行——
(5)真的是这么回事吗?以9为例摆摆看。
师:来,说说你们小组摆出了哪个数,它是不是3的倍数?
生:我用9根小棒摆出了36,36是3的倍数。
师:哪个小组还想出三位数、四位数或是更大的数?
生:我用9根小棒摆出了216,216是3的倍数。
生:我用9根小棒摆出了3015,3015是3的倍数。
师:说得完吗?
生:说不完。
师:大家用九根小棒摆出来的数都是3的倍数吗?那你认为他们小组的结论合理吗?
生:很合理。
师:大家说着,我把它记录下来(板书):只要小棒的根数是3的倍数,摆出来的数就是3的倍数。
师:由摆数所用小棒的根数我们就能快速判断出一个数是不是3的倍数。
3、提升
师:通过摆小棒,我们能判断出一个数是不是3的倍数,现在不摆了,也不拨了,通过上面的两次操作,能不能说说什么样的数是3的倍数?
师:小组内交流一下。
小组活动。
师:谁来说说?
生1:各个数位上的数加起来是3的倍数,这个数就是3的倍数。
生2:各个数位上数的和是3的倍数,这个数就是3的倍数。
生3:只要各个数位上数的和是3的倍数,这个数就是3的倍数。
师:无论是小棒的根数还是各个数位上珠子的颗数,实际上也就是各个数位上数的和。只要各个数位上数的和是3的倍数,这个数就是3的倍数。
4、探究原因,区别理解
(1)要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?
研究16
师:上节课我们讲过,16是2的倍数,它是由一个十和六个一组成的,那么想想把一个十,两个两个的分,会出现什么结果?(也就是说如果把16两个两个地分,正好可以分完,没有余数)
但既然十位上没有剩余,那十位上的数还需要观察吗?(我们只需要观察个位上的6根小棒就可以,把它两个两个地分能正好分完)
用刚才的方法判断5的倍数为什么也只观察个位?(因为一个百被5分完没有余数)
看来判断2、5不受百位和十位的影响,只需要观察个位上的数就可以。
通过刚才地研究,我们更加熟练了判断2、5倍数的方法,还知道了为什么只需要观察个位上的数就可以了。
(2)问:为什么3的倍数特征要看各个数位相加的和呢?
举例24是不是3的倍数,但是个位4是吗?这是为什么?自己分一分,画一画,看看24为什么是3的倍数?
一个十3个3个分余1根,第二个余1根,两个各余1根,在和个位继续分,
138分一分,试一试,看看是不是3的倍数
一个百3个3个分最后剩1根,三个十3个3个分,每个余1根,所以剩三个一,个位傻上还剩一个8,合起来继续分,12个继续分。
(2):梳理一下:24、138,分一遍,你发现什么?(剩余就是3的倍数。数位是几,余数就是几)无论百位上是几,3个3个分完,就剩几。
P:剩余的小棒正好是每个数位加起来的数。(因为这些数位和剩下的数相同,所以可以直接把数位上的数相加,如果和是3的倍数,那么这个数就是3的倍数,如果不是,就不是3的倍数。)
三、巩固拓展,形成能力(10分钟)
(一)巩固训练,夯实基础
1、口头练习:是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是3的倍数,再算一算各个数位上的和是不是3的倍数?
把一个数各个数位上的数相加是3的倍数……
2、圈出3的倍数的数:42、78、111、165、655、5988
3、□2,这是一个两位数,十位被遮盖住了,如果它是3的倍数,猜一猜,这个数可能是几?为什么?
(预设:生1:1。
师:可以吗?还有其他答案吗?
生2:1,4,7都可以。
师:理由呢?
生2:1+2=3,4+2=6,7+2=9,3,6,9都是3的倍数,所以填1、4、7都可以。
师:恭喜你,三种可能都被你们猜中了!
师:如果它既是2的倍数,又是3的倍数呢?
生:24。
师:为什么只有24可以呢?
生:因为只有24既是2的倍数,又是3的倍数。)
(二)拓展训练,灵活创新
以前我们用除法来检验这个数是不是3的倍数,今天我们又学了3的倍数特征,我们只需要求各个数位上的和是3的倍数就可以,但是如果遇到这样的题怎么办?(PPT)
13689362754、123456789
老师:如果用各个数位之和是3的倍数,比较麻烦。
但是我们用划掉3的倍数的方法求,这样即便是很复杂的数也能特别轻易的解决。比如:13689362754,从左开始,1不够,看13,是3的4倍,余1,和6组成16余1,18算完……
后面的练习我们下课完成,好,这节课不仅发现3的特征,还根据特点发现简便地判断方法,更可贵的发现了背后的道理。学习数学就是这样,不仅要知其然还要知其所以然。希望同学们能在快乐的数学海洋里继续愉快地畅游。这节课我们就上到这里,下课。
教师巡视,个别辅导。
(二)同伴讨论,互助共进
完成学案中“同伴合作,互助共进”内容。
重点交流学生所举的例子。
教师巡视,个别辅导。
设计意图这一环节由学生自学和同伴合作,完成因数倍数的知识的学习。
四、师生共学,交流分享(5分钟)
(一)小组展示,彰显风采
指名小组进行汇报。
(二)师生完善,共同提高
1、学生纠正、补充、质疑
2、教师精讲、点拨、
在学生讨论比较充分的基础上,教师进行点拨来完善学生对比的认识。
设计意图通过教师的点拨完善学生对比的认识。
五、巩固拓展,形成能力(10分钟)
(一)巩固训练,夯实基础
先由学生自主完成学案中相应的内容,再同桌交流,完善答案。
1、是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是是不是3的倍数,再算一算各个数位上的和是不是3的倍数?
把一个数各个数位上的数相加是3的倍数……
2、看一看哪些是3的倍数:42、78、111、165、655、5988
原来判断是用除法,现在用加法。改革了
3、不用计算,能快速算出来那个式子有余数吗?
802、3;342、3
4、下面的数是3的倍数吗?888、555,那这样的三位数都是三的倍数吗?P:777、888,可以想成3个8相乘,像这样的三位数一定是3的倍数
5、下面都是吗?789、345、654
都是,有什么特点?相邻、连续三个自然数。
是不是所有都是呢?举例:123.为什么呢?
654,把大的给小的,把6给4,三个都是5了,把较大数给叫小叔一个,数字和不变,所以一定是3的倍数。
6、是吗?363、669、993。是。有简便的方法吗?每个数学都是3的倍数,这个数字和一定是3的倍数。
3的倍数的特征教案10
一、学习目标
(一)学习内容
《义务教育教科书数学》(人教版)五年级下册第10页的例2。例2是探究3的倍数特征,教材仍然采用百数表,让学生先圈数,再观察、思考。
(二)核心能力
在探究3的倍数特征的过程中,学会从不同角度去观察和思考,进一步积累观察、猜想、验证、归纳的思维活动经验。
(三)学习目标
1.借助百数表,经历探究3的倍数特征的过程,理解3的倍数的特征,能正确判断一个数是不是3的倍数,并解决生活中的实际问题。
2.在探究3的倍数特征的过程中,学会从不同角度去观察和思考,发展合情推理的能力,积累数学思维活动经验。
(四)学习重点
探索3的倍数的特征。
(五)学习难点
归纳举证3的倍数的特征
(六)配套资源
百数表、计算器
二、教学设计
(一)课前设计
(1)回忆我们研究过的2、5倍数的特征是什么?并能给同学们解释是怎样探究出来的。
(2)自制一张百数表。
(二)课堂设计
1.复习引入
师:谁来给大家介绍一下,2、5的倍数特征是什么?我们是怎样研究出来的?
学生自由发言,重点引导学生回忆知识形成的过程。
小结:我们是利用百数表,先找数,然后观察、猜想,最后进行验证和归纳,得出了2、5倍数的特征。
师:这节课我们来研究“3的倍数的特征”。(板书课题)
【设计意图:通过复习2、5倍数的特征及探求的方法,唤醒学生的记忆,为探求3的倍数的特征做铺垫。】
2.问题探究
(1)找3的倍数
师:研究“3的倍数的特征”,你们准备怎样研究?
生自由发言。
师:你们准备借助百数表,利用研究2、5倍数特征的方法来研究3的倍数的特征,现在拿出你准备的百数表。同桌合作先找出3的倍数,然后观察圈出的数,看看有什么发现?
(2)全班交流、讨论
①发现问题
学生展示圈好的百数表。
师:说说你们的发现?
预设:只看个位不行。
师:为什么不行?
横着看:个位上的数0-9都有,竖着看:个位上的数也是0-9都有。
②分析问题
师:同学们发现,在百数表中(课件出示),横着、竖着观察3的倍数,只看个位上的数,没有规律可循。横着、竖着看,看不出规律,换个角度思考,我们还可以怎样看?只看个位不行,我们还可以看什么?
学生自由发言,引导学生斜着看。
师:大家认为除了横着、竖着看,我们还可以斜着看,现在请你斜着观察3的倍数,你又有什么新发现?
生独立观察、发现。
【设计意图:因为3的倍数的特征比较隐蔽,根据探究2、5倍数的特征的经验,学生发现不了规律。在学生实在没人看出规律时,教师再提示学生可以换一个角度去观察、去思考,接着重新去探索。】
③解决问题
师:把你的发现和根据发现引发的猜想,在小组内交流一下,并想办法来验证你们的猜想。(可以用计算器)
小组合作交流后全班汇报。
(3)归纳3的倍数的特征
师:你们的发现和猜想是什么?
小组汇报,引导学生评价补充。
引导小结:斜着观察发现,每一行数的个位与十位的和分别是3、6、9、12、15,它们都是3的倍数,各个数位上的和是3的倍数,这个数也是3的倍数。
师:这个猜想对不对呢?你们是怎么验证这个猜想呢?
生汇报验证的过程。
师:举什么样的例子既简单又有代表性?
举的例子包含有两位数、三位数、四位数……,多举几个
师:有没有同学发现反例的,各个数位上的和是3的倍数,但是这个数却不是3的倍数。
师:通过验证,你们得出的3的倍数特征是什么,谁再来说一说?
归纳小结:一个数各个数位上的和是3的倍数,这个数就是3的倍数。
【设计意图:经过引导,学生进行二次探索,发现、猜想、验证并归纳出3的倍数的特征,积累数学探究的活动经验。】
3.巩固练习
(1)课本第11页“练习二的第3题”
圈出3的倍数。
92 75 36 206 65 3051 779 99999
111 49 165 5988 655 131 2222 7203
(2)课本第10页“做一做”
(3)小明拿了5个圆片,小军拿个6个圆片,用他们拿的圆片在数位表上摆数,谁拿的圆片摆出的数一定是3的倍数?谁拿的圆片摆出的数一定不是3的倍数?
请说明理由。
先独立完成,然后同桌合作操作验证。
4.全课总结
师:通过这节课的探究,我们获得了什么新知识?采用了什么样的研究方法?
在探究的过程中我们遇到了什么新问题?
小结:通过找数、观察、猜想、验证、归纳的研究方法,得出了3的倍数的特征。
师:为什么判断一个数是不是2或5的倍数,只要看个位数?而判断一个数是不是3的倍数,要看各位上数的和呢?请大家课下阅读第13页的“你知道吗”我们下节课进行交流。
3的倍数的特征教案11
教学目标:
1、通过自主探索,掌握2、3、5 的倍数的特征。
2、能判断一个数是不是2、5 或3 的倍数。
3、知道奇数和偶数,能判断一个数是偶数还是奇数。
教学重点:
2、3、5 的倍数的特征。
教学难点:
3 的倍数的特征是难点。
教学准备:
课件。
教学过程:
一、引入新课。
讲解导入:同学们,我们在前几节课中已经掌握了倍数和因数的特征。像2、3、5 这些特殊的数,它们的倍数又有哪些特征呢?这节课我们就一起来学习。(板书课题)
二、探究2 的倍数的特征。
1、引导:同学们都看过电影吧?电影票的票号和电影院入口一般都是怎样设置的?
2、出示教材第17 页主题图,问:双号的号码有什么特点?
3、引导学生明确奇数和偶数的概念:在自然数中,是2 的倍数的数叫做偶数(0 也是偶数),不是2 的倍数的数叫做奇数。(板书)
4、组织学生做“你说我判断”的游戏:同桌合作,一个同学任意说一个数,另一个同学判断一下对方说的是奇数还是偶数;交换角色再做。同桌之间互相说一些数,并判断是偶数还是奇数。
5、出示“做一做”的题目,让学生完成。(巡视;学生做完后集体订正)
三、探究5 的倍数的特征。
1、刚才我们学习了2 的倍数的特征,了解了奇数和偶数的概念,现在我来考考大家,看大家掌握的怎么样:所有同学,学号是奇数的请举手。(停顿,等学生举完手)所有的同学,学号是偶数的请举手。
2、好,同学们对奇数和偶数掌握的还是不错的。下面我们继续做游戏:学号是5 的倍数的同学请举手。
3、同学们想一想,哪些数是5 的倍数?5 的倍数有哪些特征?
4、出示教材第18 页的表,让学生找出1 至100 中的5 的倍数并涂上颜色。提问:涂一涂,你能从表中看出什么规律?(指名板演)
5、观察一下这些数的个位数,你能得出什么结论?
6、让学生做教材第18 页“做一做”的练习,先分别找出2 和5 的倍数。
7、让学生再找一找既是2 倍数又是5 的倍数的数。提问:你是怎么找到的?
8、不错,这两种方法都可以找到10 的倍数。有些同学还发现了既是2 的倍数又是5 的倍数的数一定是10 的倍数。同学们在观察这些是10 的倍数的数,大家能不能总结出10 的倍数的特征?
四、探究3 的倍数的特征。
1、刚才我们学习了2 和5 的倍数的特征,那么3 的倍数又有哪些特征呢?请同学们先把3 的倍数找出来,在进行小组讨论,看看3 的倍数有什么特征。
2、观察这些数,大家能不能找到3 的倍数的特征?(给学生足够的时间来讨论)
3、用老方法不能得出3 的倍数的特征,怎么办呢?提示:同学们再看看12 这个数,研究一下它的个位和十位上的数字,看看能发现什么?
4、表扬学生的发现,鼓励学生继续探讨:非常棒!同学们在研究一下15、18、21,看看这三个数是不是也符合这个规律。
5、现在大家是不是可以总结出3 的倍数的特征了?(教师同步板书)
6、现在同学们用自己得出的结论做“做一做”第1 题,看看其他数是不是也是这样的。
7、组织学生做“我说你判断”的游戏。
8、让学生自主完成“做一做”第2 题。
五、总结。
组织学生说说这节课学到了哪些知识以及有些什么收获。
作业
1、下列哪些数是2 的倍数,而不是5 的倍数?在对应的括号内画“√”。
8 10 24 120 88 185 ()()()()()()
2、找出下列各数中是3 的倍数的数。
45 76 121 273 690 1234 29 94 302 57 850 20xx
3、写出三个既是3 的倍数又是2 的倍数的数。
4、写出三个是3 的倍数但不是2 和5 的倍数的数。
5、在方框中填一个数,使每个数都是3 的倍数。
8 5 1 34 78 31
板书设计:
2、3、5 的倍数的特征
3的倍数的特征教案12
设计说明
1、让学生产生探究的兴趣。
兴趣是学好数学的动力源泉。为了使学生产生探究的意识,激发学习兴趣,形成最佳的学习心理状态,我充分利用小学生好奇心强这一心理特点,创设了“猜一猜”的游戏情境:让学生出题,随意说一个数,老师迅速地说出该数是不是3的倍数,以此来调动学生学习的积极性。
2、让学生发现学习的方法。
本设计在教学3的倍数时,先让学生运用已经学过的2和5的倍数的特征的知识进行知识迁移,对3的倍数的特征进行初步的猜想。再由猜想与验证的不一致,激起学生探究新知识的兴趣。接着根据学生提出的探究3的倍数的特征的方法,让学生以小组合作的形式,探究3的倍数的特征。通过这样一个过程,培养学生的推理能力,充分体现学生的主体地位。
课前准备
教师准备PPT课件计数器记录表
学生准备百数表计数器教学过程
教学过程
⊙创设情境
师:用5,6,7组成一个没有重复数字的三位数,使这个数是2的倍数。说说什么样的数是2的倍数。
师:能组成既是2的倍数又是5的倍数的数吗?为什么?
师:同学们,我们已经知道要判断一个数是不是2或5的倍数,只需观察这个数的个位即可。那么你们能通过观察发现3的倍数的特征吗?今天我们就一起来探究3的倍数的特征。(板书课题:3的倍数的特征)
设计意图:创设问题情境,既可以巩固已学知识,又可以引导学生积极主动地投入到3的倍数的特征的教学过程中来,有利于学生轻松、愉快地学习新知。
⊙探究新知
1、提问:我们已经知道判断一个数是不是2或5的倍数,只要看这个数的个位即可,那么你们能猜出什么样的数是3的倍数吗?
(学生可能会说个位上是3,6,9的数是3的倍数)
师:大家同意他的猜想吗?他的猜想到底对不对呢?我们一起来探究一下。
课件出示百数表。
师:在百数表中找出3的倍数。用自己喜欢的方法圈一圈。
师:请同学们观察一下,3的倍数个位上是哪些数?刚才那位同学的猜想正确吗?要判断一个数是不是3的倍数,能不能只看个位?
2、观察百数表中圈出的3的倍数,你们发现了什么?
(1)引导学生先横着看,再竖着看,学生找不到3的倍数的特征。
(2)引导学生斜着看,先看第一斜行的3,12,21。
学生分组讨论这3个数有什么特征。
汇报交流:第一斜行3的倍数各位上的数相加,和是3。
(3)第二斜行是否也有这一特征呢?第三斜行呢?第四斜行呢?
设计意图:先让学生从第一斜行开始思考3的倍数的特征,能使教学难点化整为零,易于逐个突破。
3、操作验证。
(1)在计数器上分别拨出几个3的倍数:12,42,45,75,87,看看各用了几颗珠子。
学生以小组为单位,用计数器拨出3的倍数,并填写记录表。
(2)思考:观察这些3的倍数,它们十位与个位上的数的和与3有着怎样的关系?学生分组讨论后得出结论。
总结:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3的倍数的特征教案13
教学目标:
1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。
2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。
教学重、难点:是3的倍数的数的特征。
教学过程:
一、提出课题,寻找3的特征。
师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜测一下?
生1:个位上是3、6、9的数是3的倍数。
生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。
生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)
二、自主探索,总结3的特征师:
先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生利用p18的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)
师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。
学生同桌交流后,再组织全班交流。
生1:我发现10以内的数只有3、6、9是3的倍数。
生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。
生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。
师:个位上的数字没有什么规律,那么十位上的数有规律吗?
生:也没有规律,1~9这些数字都出现了。
师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?
生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。
师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?
生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。
师:这是一个重大发现,其他斜线呢?
生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。
生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。
生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。
师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?
生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。
学生先自己写数并验证,然后小组交流,得出了同样的结论。
全班齐读书上的结论。
三、巩固练习:
完成p19做一做
四、课堂小结:
这节课你有什么收获
3的倍数的特征教案14
自学预设:
自学内容P19做一做,P20的T4-11
指导方法
复习:1、判断下面哪些数是2的倍数,哪些数是5的倍数?
18,25,46,85,100,325,180,90
2、2的倍数和5的倍数各有什么特征?
3、既是2的倍数又是5的倍数的数有什么特征?
思考:
1、1×3=
2×3=
3×3=
4×3=
5×3=……..
你发现上面的式子有什么特点?
2、3的倍数有什么特点?举例说明
3、哪些数既是2、5的倍数又是3的倍数?
小组讨论
尝试练习
1、试着完成P19的做一做练习
2、判断下列数哪些是3的倍数?
333427180
69390405300
教学内容:3的倍数的特征(P19及P20题4~5)
教学目标:
①使学生通过操作自己发现3的倍数的特征,并归纳出3的倍数的特征。
②能应用3的倍数的特征,会判断一个数是否是3的倍数。
③培养学生观察、分析、概括、推理能力。
④让学生在探索发现过程中体验到成功的乐趣,培养学习数学的信心。
教学重点:探求3的倍数的特征。
教学难点:会判断一个数是否是3的倍数。
教学过程:
一、预习反馈,探究新知
我们已经知道了2、5倍数的特征,那么3的倍数又有什么特征呢?现在我们就来学习和研究3的倍数的特征(板书课题)
1.反馈3的倍数的特征。
(1)思考并回答:①什么样的数是3的倍数?
②要想研究3的倍数的特征,应该怎样做?
(2)学生反馈:(根据学生说的逐一板书,先找出一些3的倍数)
1×3=35×3=15
2×3=66×3=18
3×3=97×3=21
4×3=128×3=24
……
(3)观察:3的倍数的各位数字又什么特征?它是不是3的倍数?其它位数又什么特征?
(4)提问:如果老师讲这些3的倍数的各位数字和十位数字调换,它还是3的倍数吗?(学生自己动手验证)
我们发现:调换位置后还是3的倍数,那么3的倍数有什么奥妙呢?(分组讨论,汇报)可以提示:将各个数字加起来
汇报:如果把3的倍数的各位上的数字相加,他们的和是3的倍数。
验证:下面各数,哪些是3的倍数呢?210,54,216,129,9231,9876543204
(5):一个数各位上的数的和是3的倍数,这个数就是3的倍数。
2.练习:完成P19做一做
三、课堂:学生今天学习的内容。
四、巩固练习:完成P20题4~5
五、能力拓展:
(1)在□里填上适当的数,使它是3的倍数
3□5□1646□400□
(2)在□里填上适当的数,使它成为偶数,并且是3的倍数。
□7□3□□06□0□81□□
(3)有一个数有因数3,又是5的倍数,在两位数中最大的一个数是,在三位数中最小的一个数是。
六、课后:
七、作业:
八、课后反思:
3的倍数的特征教案15
教学目标:
1、在探索活动中,观察发现3的倍数的特征。
2、能够运用2、3、5的倍数的特征,迁移类推出其他相关倍数问题的解决方法。
教学重点:观察发现3的倍数的特征
教学难点:运用2、3、5的倍数的特征
教学过程;
活动一:复习巩固。
1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征么?指名说
2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)
3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)
活动二:探索研究3的倍数的特征。
1、在书上第6页的表中,找出3的倍数,并做上记号。
2、观察3的倍数,你发现了什么?先独立完成,看谁找的快
教师参与到讨论学习中。先独立思考,想己的想法,然后与四人小组的同学说说你的发现。
生一:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。
生二:十位上的数也没有什么规律。
生三:将每个数的各个数字加起来试试看
3、你发现的规律对三位数成立吗?找几个数来检验一下。
活动三:试一试
在下面数中圈出3的倍数。
284553873665
活动四:练一练
1、请将编号是3的倍数的气球涂上颜色。自己独立完成,在小组内说说自己的想法。
361754714548
2、选出两个数字组成一个两位数,分别满足下面的条件。独立完成,说说你的窍门和方法。
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5的倍数。
(4)同时是2,3和5的倍数。
活动五:实践活动
在下表中找出9的倍数,并涂上颜色。可以在自主实践以后再交流。
板书设计:
【3的倍数的特征教案】相关文章: