教学内容:P13-14页例3-例4,完成“做一做”和练习二的局部习题。
教学目标:
在初步认识圆柱的基础上理解圆柱的侧面积和外表积的含义,掌握圆柱侧面积和外表积的计算方法,会正确计算圆柱的侧面积和外表积,能解决一些有关实际生活的问题。
培养同学良好的空间观念和解决简单的实际问题的能力。
3、通过实践操作,在同学理解圆柱侧面积和外表的含义的同时,培养同学的理解能力和探索意识。
教学重点:掌握圆柱侧面积和外表积的计算方法。
教学难点:运用所学的知识解决简单的实际问题。
教学过程:
一、复习
1.指名同学说出圆柱的特征.
2.口头回答下面问题.
(1)一个圆形花池,直径是5米,周长是多少?
(2)长方形的面积怎样计算?
板书:长方形的面积=长×宽.
二、新课
1.圆柱的侧面积。
(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的'侧面积有什么关系呢?
(同学观察很容易看到这个长方形的面积等于圆柱的侧面积)
(3)那么,圆柱的侧面积应该怎样计算呢?(引导同学根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)
2.侧面积练习:练习七第5题
(1)同学审题,回答下面的问题:
① 这两道题分别已知什么,求什么?
② 计算结果要注意什么?
(2)指定一名同学板演,其他同学在练习本上做.教师行间巡视,注意发现同学计算中的错误,并和时纠正。
(3)小结:要计算圆柱的侧面积,必需知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
3. 理解圆柱外表积的含义.
(1)让同学把自身制作的圆柱模型展开,观察一下,圆柱的外表由哪几个局部组成?(通过操作,使同学认识到:圆柱的外表由上下两个底面和侧面组成。)
(2)圆柱的外表积是指圆柱外表的面积,也就是圆柱的侧面积加上两个底面的面积。
公式:圆柱的外表积=圆柱的侧面积+底面积×2
4.教学例4
(1)出示例3。同学读题,明确已知条件(已知圆柱的高和底面直径,求外表积)
(2)求的是厨师帽所用的资料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)
(3)指定两名同学板演,其他同学独立进行计算.教师行间巡视,注意观察最后的得数是否计算正确。(做完后,集体订正。指名同学回答自身在计算时,最后的得数是怎样取得的。由此指出:这道题使用的资料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保存整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)
① 侧面积:3.14×20×28=1758.4(平方厘米)
② 底面积:3.14×(20÷2)2=314(平方厘米)
③ 外表积:1758.4+314=2072.4≈2080(平方厘米)
5.小结:
在实际应用中计算圆柱形物体的外表积,要根据实际情况计算各局部的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原资料够用.
三、巩固练习
1.做第14页“做一做”。(求外表积包括哪些局部?)
2. 练习七第6题。
板书:
圆柱的侧面积=底面周长×高
圆柱的外表积=圆柱的侧面积+底面积×2
例4:① 侧面积:3.14×20×28=1758.4(平方厘米)
② 底面积:3.14×(20÷2)2=314(平方厘米)
外表积:1758.4+314=2072.4≈2080(平方厘米)
【《圆柱的外表积》公开课教案】相关文章:
《圆柱的侧面积、外表积》优秀说课设计08-17
圆柱的体积公开课教案04-15
精选数学圆柱的体积公开课教案06-20
数学圆柱的体积公开课教案08-25
大班美术公开课教案《圆柱体造型》09-18
大班科学公开课教案《斜坡与小圆柱》08-23
《圆柱的体积》教案08-18
圆柱的体积精选教案09-10
《圆柱的认识》教案07-18