植树问题教案

2023-03-25 教案

  作为一无名无私奉献的教育工作者,很有必要精心设计一份教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么什么样的教案才是好的呢?以下是小编整理的植树问题教案,欢迎阅读,希望大家能够喜欢。

  植树问题教案 篇1

  教学目标:

  知识技能目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

  2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、通过实践活动激发热爱数学的情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点:

  理解“植树问题(两端要种)”的特征,应用规律解决问题

  教学难点:

  理解“间距数+1=棵数,棵数-1=间距数

  教学过程:

  一、设计情景、引入课题

  1、教学“间隔”的含义

  师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的`右手。(五指伸直、并拢、张开)

  (课件出示)师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

  2、举例生活中的“间隔”

  师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

  3、理解间隔数,引入课题。

  在一条路上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)

  二、探索新知,探究规律

  1、出示招聘启事

  在操场边,有一条20米长的小路。学校计划在小路一边种树,要求每隔5米栽一棵。特聘请校园设计师数名,要求设计植树方案一份,择优录取。

  2、出示例题,理解题意:

  师:(课件出示例题。)

  师:谁能读一读?这道题告诉我们什么数学信息?求什么问题?你认为这道题中什么词语最关键?

  (课件解释关键词语,加深学生理解)

  师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。

  3、出示合作要求。

  (1)教师讲解小组合作要求。

  (2)学生4人小组开始合作学习,利用学具设计出植树方案。(可以用不同的形式表达)

  (3)教师巡视,指导学生小组合作。

  (4)小组作品展示,及小组评价。教师及时点评学生的设计方案,并及时鼓励学生。

  (5)引导学生总结出在实际生活中的植树情况可以分为三种:第一种两端都栽,第二种:只栽一端,第三种:两端都不栽。

  4、以小组为单位探究棵数与间隔数间的关系:

  (1)数一数:数出棵数和间隔数。

  (2)比一比:比较出棵数和间隔数之间的规律。

  两端都要栽时,植树的棵数比间隔数多1(棵数=间隔数+1)。

  只栽一端时,植树的棵数与间隔数相同(棵数=间隔数)。

  两端都不栽时,植树的棵数比间隔数少1(棵数=间隔数-1)。

  三、课堂小结、反馈练习

  1、公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  2、广场上的大钟5时敲响5下,8秒敲完。 12时敲12下,需要多长时间敲完?

  植树问题教案 篇2

  第一课时

  教学目标

  1、使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

  2、掌握“植树问题”的第一种情况:“两端都要种”(即间隔数比株数少1的情况)。

  3、培养学生认真审题的好习惯。

  重难点

  重点:掌握“两端都要种的植树问题”的解题方法。

  难点: 掌握已知间隔长度和全长,求间隔数的方法,以及已知间隔数和间隔长度,求全长的方法。

  教学过程

  一、引入。

  1、春天是植树的季节,同学们,你们每年都参加植树造林的活动吗?美化绿化自己的家园,你们可曾注意到植树中也有很多学问,由于植树的线路不同,植树的情况也就不同,你们想了解植树中的学问并学会怎样解决植树问题吗?这个单元我们共同来研究你们想要解决的问题。

  2、小游戏。

  师生共同在毛线两端系个扣,然后等距离每隔一段系个扣,看一看,数一数,一共可以系几个扣。 学生动手试一试。

  小组讨论,看一看能得出什么结论。

  集体交流,通过刚才的游戏,你得出了什么结论。

  通过操作,观察讨论后得出系扣的个数比间隔数多1。

  3、验证。

  学生拿出一根20厘米的毛线绳,每隔5厘米系一个扣,绳子两端也要系,数一数,一共系了几个扣。

  指名说说自己系了几个扣。 验证扣的个数与间隔数的关系。

  4、练习。

  同桌两人各拿一张纸条,互提要求在纸上分段,要求两端均画上标志。 相互评价,互提建议。

  二、新授

  1、出示教学教材第106页例1。

  (1)读题,理解题意。

  (2)交流从题目中获取的信息和所要解决的问题。

  (3)学生动手试一试。

  (4)小组看图讨论,各自交流。

  想法一:100÷5=20,所以要准备20棵树苗。

  想法二:我用画线段图的`方式帮助思考,如果把一条线段平均分成4段,两端也要栽树,这样就可以栽5棵。照此思路,可以推出间隔数比棵数少1。

  (5)猜测。

  猜一猜,谁的思路对。

  (6)集体反馈,发现规律。

  经过集体交流,发现栽树的棵数比间隔数多1。在100米长的小路上共有20个间隔,那么就可以栽21棵树。

  (7)教师讲解,帮助学生理解规律。

  因为植树总数比间隔数多1,这样我们就可以先求出树与树之间一共有多少个间隔,而每个间隔的长度是已知的,就可以求出一共植树多少棵。

  (8)研究列式的方法。

  100÷5=20(段)

  20+1=21(棵)

  教师表扬能自己正确列式的学生,并请他们阐明思考过程。

  2、尝试。

  (1)出示例题:在一条18米长的水泥路上,从头开始每隔3米摆一盆花,一共摆多少盆花?

  (2)读题,理解题意。

  (3)明确已知条件和所求问题。

  (4)找寻数量间的关系。 同伴探究,并得出结论。

  (5)独立列出算式。

  (6)集体反馈。

  指名板书:18÷3=6(段)

  6+1=7(盆) 请学生分别说出每步的意思。

  3、巩固练习

  1)有一根绳子,每隔2米挂一盏灯笼,起点和终点都挂,共挂了14盏灯笼。这根绳子长多少米?

  2)学校领操台前从起点开始每隔2米插一面彩旗。一共需要多少面彩旗?

  3)新建小区要在一条长1000米的路两旁安装路灯,每隔8米装一盏(两端都装)。一共需要多少盏路灯?

  4)一个小学生从一楼上到三楼用了40秒。照这样计算,他从三楼上到六楼需要多长时间?

  第二课时

  教学目标

  1、理解并掌握“植树问题”的基本解题方法,能解决一些实际生活中的与“植树”有关的问题。

  2、掌握“植树问题”的第二种情况:“两端都不种”(即间隔数比株数多1的情况)。

  重难点

  重点:掌握“两端都不种的植树问题”的解题方法。

  难点:掌握已知棵数和全长,求间隔长度的方法,以及已知棵数和间隔长度,求全长的方法。

  教学过程

  一、复习

  提问:已知全长和间隔长度,怎样求棵数?

  教师根据学生回答板书:棵数=全长÷间隔长度+1 那么已知间隔长度和棵数,怎样求全长呢? 答后板书:全长=间隔长度×(棵数-1)

  二、新授

  今天我们继续来研究另一种植树问题。

  1)出示教材第107页例2。

  (1)读题,理解题意。

  (2)投影出示教材图,帮助理解。

  (3)分组看图讨论。

  (4)尝试列式计算。

  (5)集体交流。

  教师板书:60÷3=20(段) 20-1=19(棵) 19×2=38(棵)

  (6)质疑。

  为什么减1?(因为两端都不种树,所以植树的棵数比间隔数少1)为什么要乘2?(因为是在两馆间的路两旁植树,所以要乘2)

  (7)比较与例1的不同。 先分组讨论,再集体交流。

  例1是两端都要栽树,所以棵数比间隔数多1。 例2是两端都不栽树,所以棵数比间隔数少1。

  (8)教师讲解,帮助学生理解。

  教师讲述:相邻两棵树之间的距离是3米,60米里面有多少个3米,就是多少个间隔。我们知道大象馆和猩猩馆在路两端,也就是说两端不栽树,所以间隔数就比植树的棵数多1。

  2)小游戏。

  这里有一张彩纸条,老师想把它等分成2份,需要用剪刀剪几次?(一次) 请你们拿出彩纸条,分别把它们分成3段、4段、5段,看一看要剪几次。 看一看能得出什么结论。

  总结:剪的次数比纸条的段数少1。

  3)巩固练习

  1、两根栏杆之间每隔3米放一个障碍物,一共放了8个。这两根栏杆相距多少米?

  2、两栋楼之间每隔2米种一棵树,共种了 15棵。这两栋楼相距多少米?

  3、甲、乙两地相距4千米,每隔800米设一个站牌(甲、乙两地各设一个)。甲、乙两地一共设有多少个站牌?

  4、小明家门前有一条35米的小路,绿化队要在路旁栽一排树。每隔5米栽一棵树(一端栽,一端不载)。一共要栽多少棵数?

  学生独立思考小组讨论,后集体交流。 教师指导:棵数=间隔数

  第三课时

  教学目标

  1、使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

  2、掌握“植树问题”的第三种情况:“关于一个封闭图形的植树问题”。

  3、培养学生认真审题的学习习惯。

  重难点

  重点:掌握封闭图形中“植树问题”的解题方法。

  难点:掌握已知株数和全长,求株距的方法,以及已知株数和株距,求全长的方法。

  教学过程

  一、复习

  1、前两节课都学习了有关“植树问题”的哪些情况?

  根据学生的回忆内容,教师整理板书:

  (1)两端都植树,则棵数比间隔数多1。 全长、棵数、间隔长度之间的关系:

  全长=间隔长度×(棵数-1)

  棵数=全长÷间隔长度+1

  间隔长度=全长÷(棵数-1)

  (2)一端植树,则棵数就比在两端植树时的棵数少1,也就是棵数与间隔数相等,全长、棵数、株距之间的关系:

  全长=间隔长度×棵数

  棵数=全长÷间隔长度

  间隔长度=全长÷棵数 (3)两端都不植树,则棵数比间隔数少1。

  棵数=全长÷间隔长度-1

  间隔长度=全长÷(棵数+1)

  2、设想。

  你还知道有关“植树问题”的哪种情况?给同伴做一个介绍,说一说你是从哪知道或学到的。

  3、谈话。

  同学们,今天我们继续来研究第三种“植树问题”,这种情况比较特殊,也很有意思,看谁最先发现规律。

  二、新授

  1、出示教材第108页例3。

  (1)引导学生审题,从图中知道哪些信息?

  生:从情境中知道张伯伯要在圆形池塘周围栽树,池塘的周长是120m,每隔10m栽1棵树,问题是求一共要栽多少棵树。

  (2)引导学生:把这类问题转化成在封闭的图形上植树的问题。

  师:什么是封闭图形呢?

  学生思考后回答:无论什么图形,只要起点和终点重合,即首尾相连就是封闭图形。

  师:观察封闭图形上的棵数与间隔数,你有什么发现?

  生:棵数等于间隔数。 教师板书。

  师:本题该怎么解答呢?

  生:因为圆形池塘是封闭图形,根据“棵数等于间隔数”解答。120÷10=12(棵)

  师:如果把圆拉成直线,你能发现什么?

  生:间隔数与棵数相同,也就是相当于一端栽树,另一端不栽树的情况。

  2、解决实际问题。

  (1)完成教材第108页“做一做”。

  (2)读题,理解题意。

  (3)分析数量关系。

  (4)自主探究或同伴共同探究。

  (5)集体交流。

  (6)教师讲解,帮助学生理解。

  (7)套用关系式进行验证。

  (8)解答。150÷15=10(盏)

  三、巩固练习

  1、一个圆形花坛,它的周长是150米,每隔2米栽一棵树。共需树苗多少棵?

  2、社区有一块正方形活动区,每边都栽种19棵树,四个角各种1棵。共种树多少棵?

  3、时钟6时敲6下,10秒敲完。那么12时敲几下,需要几秒?

  第四课时

  教学目标

  1、使学生能够根据实际条件,解决“植树问题”。

  2、熟练应用解决“植树问题”的方法。

  3、培养学生研究问题的科学素养。

  重难点

  重点:能根据条件研究计算方法。

  难点:熟练运用解决“植树问题”的方法。

  教学过程

  同学们,今天我们用这几天学习的知识来解决一些生活中的实际问题。

  1、解决实际问题。

  四(1)班同学办安全小报,全班48人每人展示一张。在每张作品的四个角都钉上图钉,一共需要多少个图钉?

  (2)读题,理解题意。

  (3)分小组讨论,制订方案。

  学生动手试一试。

  小组讨论,看一看能得出什么结论。 重点是根据条件研究计算方法。

  (4)分小组汇报设计方案。 根据不同的方案进行计算。

  ①共1行,每行48张。列式:(1+1)×(48+1)=98(个)

  ②共2行,每行24张。列式:(2+1)×(24+1)=75(个)

  ③共3行,每行16张。列式:(3+1)×(16+1)=68(个)

  ④共4行,每行12张。列式:(4+1)×(12+1)=65(个)

  ⑤共6行,每行8张。 列式:(6+1)×(8+1)=63(个) 还有其他方法吗?

  最简单的方法是48×4=192(个)。

  但是,这种方法比较浪费图钉,生活中一般不会采用这种方法。

  (5)说一说,你会选择哪种方法布置展板。

  (6)观察算式,发现规律。

  2、拓展。

  (1)板书练习。

  李明上楼,从第一层到第三层要走36级台阶。如果从第一层走到第六层,需要走多少级台阶?(各层之间台阶数相同)

  (2)理解题意。

  (3)尝试解答。

  (4)交流反馈。

  (5)教师讲解,帮助学生理解。

  讲述:我们把从第一层到第二层看作1个间隔,第二层到第三层看作1个间隔,所以李明从第一层到第三层共走了2个间隔,根据“植树问题”的数量关系,可求出每相邻两层楼梯之间的台阶数为36÷(3-1)=18(级)。而从第一层到第六层共走了5个间隔,根据“植树问题”的数量关系可得,18×(6-1)=90(级)。 (6)归纳。

  这道题从表面看并不是“植树问题”,但是我们把层数看成棵数,可以抽象成为一条线段上的点数与间隔数之间的关系。

  3、巩固练习

  (1)计划在一条长8064米的水渠的一条边上植树,包括两端在内,共植169棵。每相邻两棵树之间的距离是多少米?

  (2)椭圆形的跑道周长是400米。每隔40米装一盏红灯,两盏红灯之间装2盏绿灯。一共装多少盏灯?

  (3)舞蹈队排成一个方阵,最外一层的人数为60人,舞蹈队外层每边有多少人?这个方阵共有多少人?

  4、学生独立完成练习二十四的题目,并逐一校对。

  植树问题教案 篇3

  教学目标:

  1、建立并理解在线段上植树(两端都不栽)的情况中“棵数=间隔数—1”的数学模型。

  2、通过画线段图初步培养学生探索解决问题的有效方法的能力,尝试用植树问题的模型解决实际生活中的简单问题,培养应用意识。教学重点:建立并理解“棵数=间隔数—1”的数学模型。教学难点:培养学生探索解决问题的有效方法的能力。

  教学准备:

  课件。

  教学过程:

  一、创设情境,导入新课:

  师:同学们,你们参加过招聘会吗?

  生:没有。

  师:想不想拥有这样一次经历?

  生:想。

  师:瞧,老师带来了一份招聘启示。(课件演示)

  招聘启示:

  新兴学校将对校园进一步绿化,特聘请校园设计师一名。要求设计植树方案一份,择优录取。

  师:愿意试试吗?我们先来看看设计有什么要求。(课件演示)

  为了美化环境,要在的'一条60米长的小路一边植树,每隔3米栽一棵,需要准备多少棵树苗呢?。

  说一说,你们打算怎样植树?

  师:哪位同学愿意来说说你的想法?

  学生汇报讨论结果

  生1:两端都栽。

  生2:头栽尾不栽。

  生3:尾栽头不栽。

  生4:两端都不栽。

  师:从这份要求上,你能获得哪些信息?

  生:路全长有60米,只在路的一边栽,每隔5米栽一棵。

  师:两端都栽要栽多少棵?这节课我们来研究两端不栽的植树问题。

  二、民主导学:

  任务呈现:

  大象馆和猴山相距60 m。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3 m。一共要栽多少棵树?

  1、你都知道了什么?

  2、你认为一共要栽多少棵树?

  师:这道题和上节课学的植树问题有什么不一样呢?

  提示:小路的两端都是场馆,还需不需要栽树呢?还有需要注意的吗?到底要栽几棵,我们还是用前面学习的方法,举简单的例子(9米、12米、15米、21米)画一画,栽一栽?

  自主学习:

  小组四人每人选一个长度,间距还是3米,来画一画,填一填。展示交流:

  师:大家发现棵数和间隔数有什么关系?间距、间隔数和总长有什么关系?

  生:棵数=间隔数—1

  间距×间隔数=总长

  讨论:在两头都不种的情况下,棵数为什么会比间隔数少1呢?师:那大象馆和猴山间栽多少棵数?

  60÷3=20(个)

  20—1=19(棵)

  19×2=38(棵)

  教师追问:为什么要“×2”?(因为小路两旁都要栽树)

  师:大家在做题的时候,一定要判断是“两端要栽”还是“两端不栽”。

  三、检测导结:

  师:在刚才的学习过程中,同学们既发现了规律,又总结了方法,真了不起。老师这里有几道题,把明明难住了,我们来帮帮他。

  1、目标检测:

  一、填一填

  1、一排同学之间有7个间隔,第一排有()个同学。

  2、小红住的楼房每上一层要走20个台阶,从二楼到四楼要走()个台阶。

  二、算一算

  1、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米,一共有几个车站?

  2、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵有多少米?

  3、一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

  2、结果反馈:

  3、反思总结:

  师:通过今天的学习,大家有哪些收获?

  学生畅谈收获。

  师:同学们的收获真不少!通过今天的学习,我们不仅发现了植树问题中两端都栽和两端不栽的规律,而且还学会了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的问题还有一端栽一端不栽,下节课继续研究!

  植树问题教案 篇4

  学习目标:

  1.学生会探究发现一条线段上两端植树和一端植两种情况植树问题的规律。

  2.使学生经历和体验复杂问题简单化的.解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,激发数学兴趣,体会数学价值。

  学习过程:

  一、知识铺垫

  马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?

  1. 你都知道了些什么?

  2. 一共要栽多少棵树?你是怎样想的。

  二、自主探究

  大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3m。一共要栽多少棵树?

  1. 你都知道了 。

  2. 你认为一共要栽多少棵树?你会计算吗?试一试吧!

  总结

  植树问题

  总长( )=( )

  两 端 栽: 棵 数=( ) +1

  一 端 栽: 棵 数=( )

  两端不栽: 棵 数=( ) -1

  三、课堂达标

  1.小明家门前有一条35m的小路,绿化队要在路旁栽一排树。每隔5m栽一棵树(一端栽,一端不栽)。一共要栽多少棵?

  2.一条走廊长32m,每隔4m摆放一盆植物(两端不放)。一共要放多少盆植物?

  3. 一根木头长10m,要把它平均分成5段。每锯下一段需要8分钟。锯完一共要花多少分钟?

  植树问题教案 篇5

  教学内容:人教版五年级上册第七单元第一课植树问题

  教学目标:

  知识与技能:

  (1)理解植树问题中一条线段两端都植树的特征,并能应用规律解决问题。

  (2)通过猜测操作,验证,交流的方式探究两端都不种的植树问题。

  (3)从封闭曲线(方阵)中发现植树问题的规律。

  过程与方法:

  培养学生观察能力、操作能力以及与人合作的能力。

  情感态度与价值观:

  学生通过观察、操作、交流等活动探索新知。

  教学重难点:

  教学重点:在探究活动中发现规律,抽取数学模型,并能够用发现的规律来解决生活中的一些简单实际问题。

  教学难点:基本规律的提炼和方法的应用。

  教学准备:

  教具准备:课件

  学具准备:练习本

  教学过程:

  一、课前谈话。

  同学们,学校旁边有一条长100米的小路,老师要在栽几棵树苗,想请你们当回小小设计师帮忙设计行吗?(行)今天我们来研究研究植树问题中的奥秘。

  二、探究规律。

  (一)1.出示题目

  这条小路长100米,每5米栽一棵小树苗(两端要栽),一共可以栽多少棵?可能会有部分学生会马上列出算式:100÷5=20(棵)

  ①理解题意

  a、 指名读题,从题中你了解到了哪些信息?

  b、 理解“两端”是什么意思?

  指名说一说,然后实物演示。

  指一指哪里是小棒的两端?

  说明:两端要栽就是小路的.两头要种。

  ②学生动手操作。

  拿出小棒,同桌间互相说一说,画一画,摆一摆。

  ③同桌互相讨论后,全班汇报交流

  a、指名说一说:你一共摆了多少根小棒?

  上黑板上来摆给大家看一看。

  b、数一数你们刚才摆的小棒,它们之间有几个间隔?一共摆了几根小棒?

  c、间隔与种树的棵数有什么关系?

  ④师说明:开始大家算出的100÷5=20,这个20并不是表示可以栽20棵树,而是指共有20个间隔。

  2.改变题目条件变为:

  在全长20米的小路一边植树,请按照每隔5米栽一棵的要求设计一份植树方案,并说明理由。(可用线段图表示)

  1.学生试解答

  2.用小棒检验

  3.说一说你的想法

  间隔数与栽树的棵数又有什么关系呢?

  学生试说后,教师小结。

  4. 基本练习:同学们做操,某竖行从第一人到最后一人 的距离是24米,每两人之间相距2米,这一行 有多少人?

  5. 提高练习:园林工人沿公路一侧栽树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  (二)出示例2

  1、学生读题,理解题意

  ①“两馆间的小路”指的是哪一段?

  ②“小路两旁”指的是要栽几边?

  2、学生互相合作,用小棒摆一摆

  师提示:我们现在可以假设大象馆和猩猩馆相距18米,其它条件不变,用小棒摆一摆,说一说。

  要求完成:

  ①你一共摆了几根小棒?

  ②每一边的小棒根数和间隔数之间有什么关系?

  3、全班交流

  4、教师小结

  这种情况属于两端都不种的植树问题,即植树棵数=间隔个数—1。

  (三)用摆小棒的方法教学例3

  教师小结:两端封闭的情况下 植树棵数=间隔个数

  三、练习应用

  1.一要木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

  2. 在教学楼前植树,每4米栽一棵,20米内可以在多少棵树?

  四、课堂总结

  植树问题教案 篇6

  教学内容:

  人教版小学数学五年级上册第106页例1。

  教学目标:

  1、知识与技能目标:

  (1)、初步认识植树问题,理解并掌握在一条直线上“两端都栽”的情况下,间隔数和棵树之间的关系。

  (2)、在理解间隔数和棵树规律的基础上解决简单的“两端都栽”的实际问题。

  2、过程与方法目标:

  (1)、通过观察比较、动手操作、合作交流等活动探究新知,经历知识的形成过程。

  (2)、经历和体验“数形结合”、“化繁为简”的解题策略和数学方法。

  (3)、培养学生的合作意识,养成良好的交流习惯。

  3、情感态度与价值观目标:

  (1)、感受数学在生活中的广泛应用。

  (2)、在自主探究的过程中体验成功的喜悦,树立学生学习数学的决心。

  教学重点:

  通过动手操作、合作交流,探究出植树问题中两端都栽时,间隔数和棵树之间的关系,抽象出植树问题的数学模型。

  教学难点:

  把现实生活中类似的问题同化为“植树问题”,运用植树问题的模型解决一些相关的实际问题。

  教学过程:

  一、谜语导入。

  (1)、师:同学们一定喜欢玩猜谜语吧?(课件出示):两棵小树十个叉,不长叶子不开花。能写会算还会画,天天干活不说话。(谜底:手)

  谁能很快说出谜底?(生口答)。

  师:你思维真敏捷。

  (2)、师:同学们,伸出你的'左手,仔细观察,你能看到数字几?

  (3)、认识间隔、间隔数。

  (预设1:数字5,5个手指;数字4,4个手指缝。)

  师:你观察得真认真!

  师:(课件出示)手指间的空隙,在数学上我们叫做间隔。(板书:间隔。)一只手上有四个间隔,我们就说它的间隔数是4。(板书:“间隔”后加“数”)

  (预设2:生:有5数字5,5个手指头;有数字4,手指之间有4个间隔。

  师:你懂得真多,能告诉大家什么叫做间隔吗?

  生口答,师出示手的图片,板书“间隔”和“间隔数”。)

  (4)、认识生活中的“间隔”。

  师:生活中间隔无处不在。(课件出示:人民大会堂柱子、路灯杆、摆花盆、钟声等),师边放课件边叙述说明。

  师:想一想,生活中还有哪些地方有间隔?

  生充分交流

  (5)、揭示并板书课题。

  师:像这样有间隔现象存在的问题,统称为植树问题。(板书:植树问题)。今天我们就一起来探究有关植树问题的知识。

  二、探究新知。

  (一)、创设情境,提出问题。

  1、出示题目信息:一条新修的公路,全长1000米,在它的一侧种树(两端都栽),每隔5米栽一棵,一共要栽多少棵?

  2、理解题意。

  (1)、从题目中你得到了哪些数学信息?

  (2)、理解题意。

  师:解决问题时,要善于抓住关键词或句子,分析题意。你认为哪些词是比较重要的?

  题目中,“两端都栽”是什么意思?

  师:既然有“两端都栽”的情况,就有“两端都不栽”的情况,也有“只在一端栽”的情况。(课件演示:两端都栽,两端都不栽,一端栽一端不栽三种情况。)今天我们重点研究两端都栽的情况。

  (3)、同学们大胆猜测一下,一共要栽多少棵?

  (指名生答)

  (4)、提出验证。

  a:师:到底哪个结论是正确的呢?我们怎么来验证一下?

  b:生尝试寻求方法。

  生:可以画一画图。

  师:你的想法非常好,可以用一条线段代表1000米长的公路,画一画图,数一数实际种了多少棵。)

  (5)、尝试验证,边叙述边课件演示:因为两端都栽,所以要先在起点栽一棵,然后每隔5米栽一棵,再隔5米再栽一棵,再隔5米再栽一棵……看看一共要栽多少棵。

  师:现在栽了多少米了?就这样一直栽到1000米处吗?

  (预设生:太麻烦了,浪费时间)

  (6)寻求“化繁为简”的数学方法。

  师:老师和你们有同感。1000米的路太长了,你觉得路的总长要是多少米好了?

  生尝试发表自己的想法。

  (预设生:50米、20米、10米

  师:我明白同学们的意思了,就是把路的总长换成比较小的数就行了。你们的想法太棒了!)

  师:在数学研究中,遇到比较复杂的问题时,我们就从简单的问题入手,即把“大数变成小数”进行研究,这样就可以“化繁为简”,找出规律。(板书:大数——小数,化繁为简)。比如,1000米太长了,我们可以转化成20米栽几棵,从而找出规律。

  师:老师在电脑上可以画成小树,你们在练习本上,也画成一棵棵小树吗?怎样表示小树比较简单?

  (预设生:画成小树太麻烦,可以用一个点表示一棵小树比较简单。)

  师:你的方法真好!用线段图来表示,简单明了。(课件演示:小树变点,成为线段图)

  (二)、自主探究。

  (1)、师:同学们,今天你们就来当一次“小小数学家”,研究一下当总长分别是10米,15米、20米、30米时,两端都栽的情况下,棵数有什么规律。请你们拿出题卡,认真画出线段图,并结合线段图把表格中的数据补充完整。

  (2)、生独立填表。

  (3)、汇报交流:谁把你的结果向大家展示一下?

  (师:谁和他的结果一样请举手?

  师:看来大家都做得非常认真!)

  师:为了便于大家观察,我把表格展示在大屏幕上。

  (4)、师:(边课件演示边引导)仔细回忆刚才画线段图填表的过程,认真分析这几组数据,能否说出总长、间隔、间隔数之间存在什么关系?(课件表格下出示:总长o间隔=间隔数)

  间隔数与棵数之间又存在什么样的关系?(课件表格下出示:间隔数o( )=棵数)。

  那么,当两端都栽时,如果知道全长和间隔,怎样求出棵数?

  (5)、学生独立思考,充分交流。

  结合生答,师完成板书:总长÷间隔=间隔数,间隔数+1=棵树。

  (6)、师:如果不画线段图,你能说出总长是50米时,每隔5米栽一棵,两端都栽,一共要栽多少棵吗?

  学生口述答案。

  师:你真了不起!

  (三)、应用规律,解决问题。

  (1)、出示前面的例题。

  师:利用刚才我们发现的两端都栽时,棵数和间隔数之间的关系,你能找到这道题的正确结果吗?

  (2)、生找出正确解法。

  (3)师:200表示什么意思?为什么要加1?(200表示间隔数,因为间隔数加一等于棵树,所以要加一。)

  (师:你讲得太棒了!老师真心佩服你!)

  (4)、师:以后再遇到生活中类似于“两端都栽”的实际问题时,就可以运用我们今天学到的知识进行解决。

  小练笔:运动会上,在一条长200米的笔直跑道的一侧插彩旗(两端都插),每隔10米插一面,一共要插多少面彩旗?

  师:请大家默读题目,然后在练习本上独立完成。

  三、学以致用。

  1、同学们,数学就在我们身边!看,我们的《小苹果》舞蹈比赛中同样蕴含着植树问题的知识。

  (课件配图片出示)五二班学生参加《小苹果》舞蹈表演,其中一列纵队全长18米,如果每两个同学之间相距2米,这列队伍一共站了多少人?

  生独立审题,尝试在练习本上独立完成。

  生交流方法和思路。

  2、钟声与钟声之间也有间隔,你能同化成植树问题进行解答吗?

  (课件出示)广场上的大钟,5时敲5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?

  指名读题,理解题意。

  师:同学们,认真倾听钟声敲响几下?仔细观察它们之间有几个间隔?(课件出示:结合5次钟声,线段图出示四个间隔)

  (学生结合课件演示,说出:钟声敲响5次,共有4个间隔。)

  大钟5时敲5下,有4个间隔,共用了几秒钟?由此能求出什么?那么12时敲12下,有几个间隔?敲完用多长时间吗?请同学们尝试独立在练习本上完成。

  汇报交流,说出思路。

  3、师:你们真了不起。请到知识城堡一展身手吧。

  (课件出示)8个同学站成一队,每两个同学之间距离1.5米。这列队伍全长多少米?

  师:线段图可以帮助我们解决许多数学问题。请同学们在练习本上画出线段图,再解答。

  生汇报交流。

  四、全课总结。通过今天的学习,你有什么收获?

  生充分交流。

  师:在今天的探究活动中,我们不仅发现了植树问题中“两端都栽”的规律,能运用这个规律解决生活中类似的问题,而且知道了数学研究中“化繁为简”方法,会通过画线段图帮助我们解决数学问题。其实,在植树问题中还有许多知识,比如两端都不栽时、只有一端栽时,或在封闭图形上栽时,棵数分别有什么规律呢?我们将在以后的学习中继续探究。

  植树问题教案 篇7

  教学目标:

  1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

  2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

  教学重难点:

  1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

  2.培养学生从实际问题中发现规律,应用规律解决问题的能力。

  3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。

  教学、具准备:

  课件、表格、尺子等。

  教学过程:

  一、教学间隔

  1.教学间隔的含义。

  师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个空也可以说成4个间隔,5个手指之间有4个间隔。那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)

  2.引入植树问题的学习。

  师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。

  二、自主探究 找出规律

  1.课件出示:为迎接2008奥运会,北京市城市规划局准备在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

  师:我们一起来读读题。谁知道每隔5米栽一棵是什么意思?那共需多少棵树苗,谁来猜一猜?

  预设:学生可能大多数对得到20棵。

  师:你们的猜测正确吗?下面我们就一起想办法来验证一下,但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题是我们可以先用比较简单的例子来验证。假设路长只有20米,每5米栽一棵(两端都栽),要栽几棵呢?

  师:下面就请小组同学一起想办法验证一下你们的猜测是否正确?

  全班交流汇报。(重点让用线段图来验证的小组来说明理由。)

  师:这个小组的同学真会想办法,他们用一条线段表示这条小路,平均分成4份,这时出现了几个间隔和几个间隔点?

  生:4个间隔和5个间隔点。也就是把一条小路平均分成4份后,如果两端都要栽树的话,共要栽几棵?(5棵)205不是等于4吗?怎么是5棵呢?多的这一棵是怎么来的?

  师:如果每隔4米栽一棵、每隔2米栽一棵又需要栽多少棵树苗呢?请小组同学一起讨论一下,并将你们解决的方法写在练习纸上。

  根据学生的回答,师填写表格:

  总 长(米)

  20

  全班观察表格寻找规律。

  师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1。(板书:棵数=间隔数+1。)

  师:对得到的这个规律有没有不同意见?

  三、巩固练习

  师:现在我们用得到的这个规律来验证一下你开始的猜测正确吗?

  (1)基础练习。

  师:请看题目,谁愿意来说一说?

  A1. 在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

  A2. 如果是每隔10米栽一棵呢?(口答)

  B.师:同学们真能干!其实在我们的`生活周围存在许多类似的植树问题,这是陈老师家乡重庆的鹅公岩大桥,想知道这座桥上有多少盏路灯吗?

  课件出示:大桥全长1420米,大桥的两侧每隔10米安装了一盏路灯。一共安装了多少盏路灯?

  C.这是我们重庆的轻轨列车,陈老师每天就坐轻轨列车回家。

  课件出示:从学校到老师家一共有14个站,每相邻两个站之间的距离平均是1千米,你知道陈老师的家离学校大约有多少千米吗?

  (2)拓展练习。

  师:老师的家乡重庆是一个美丽的城市,在重庆有一个解放碑,想听听它的钟声吗?

  课件出示解放碑的大钟及题目。

  解放碑的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间呢?

  师:请同学们独立的在练习本上完成。

  小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。

  四、数学文化

  介绍二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?

  五、全课总结

  1.通过这节课的学习你有什么收获?

  2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等(课件图片展示),这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。

  植树问题教案 篇8

  教学内容

  教科书第106-118页例题。

  教材分析

  本单元学习的是有关数学广角的“植物问题”,主要探讨的是关于在一条线段植树的问题,只栽一端、只栽中间、两端都栽等。教材以学生比较熟悉的植树活动为线索,让学生选用自己喜欢的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等探索过程,并启发学生透过现象发现其中的规律,再利用规律回归生活,解决生活实际问题。数学的思想方法是数学的灵魂,本册安排“植树问题”的目的就是向学生渗透复杂问题从简单人手的思想。

  教学目标

  1、理解在线段上植树(两端要栽)的情况中“棵数=间隔数+1”,“间隔数=总长×间隔距离”的关系。

  2、使学生经历和体验复杂问题简单化的解题策略和方法。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点

  引导学生发现植树棵树与间隔数之间的关系。

  教学难点

  理解间隔与棵树之间的规律并运用规律解决问题。

  教学准备:

  多媒体课件、学具

  课时安排:

  1课时

  教学过程

  一、教学“间隔”

  1、教学“间隔”的含义。

  师:同学们,在我们的身边到处有数学。你们喜欢猜谜语吗?老师让你们猜个谜语好不好?出示谜面:(打一  我们在排队时,也出现了间隔数与人数之间的某种关系。下面,请几位同学上来排队(先请三人起来排队)问:有几个人?几个间隔?(再增加1人)再问:有几个人?几个间隔?(再增加1人)继续问有几个人?几个间隔?

  通过观察同学们刚才排队的情况,你们发现了人数与间隔数之间又有什么关系?(人数比间隔数多1,或者间隔数比人数少1……)

  3、引入植树问题的学习。

  师:你们真聪明!发现了手指数与间隔数之间的关系,队列中间隔数与人数之间的关系。像这类隐藏着总数和间隔数之间的关系问题,我们称为植树问题。今天,我们一起来研究有关植树问题。

  板书课题:植树问题(两端都栽)。

  4、刚才我们谈到的手指和队列的问题都是植树问题,大家能说出生活中的相关实例吗?教师举例:(上课和铃声、整点敲钟报时、美国五年一届的总统选举)

  二、引导探究,发现两端要种的规律

  1、课件出示问题:同学们在全长100米的小路一旁植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  让学生读题,理解题意。然后让学生说说这道题的关键词是什么。(每隔5米是指什么,两端要栽……,并重点理解“每隔5米”就是指两棵树之间的距离,也就是间距;两端:也就是这行树的两头)然后教师提问:咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到100米,数一数,是不是就能知道答案呢?(如果要求同学们通过画图证明,每5米1棵,那究竟要画到什么时候呢?其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,那就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:100米的路太长了,我们可以先在短距离的路上种一种,看一看……?我们可以把这条路看作较短的10米、15米、20米……通过画图得出规律,再根据规律求100米路要植树的棵数),这是在我们数学上常用的一种方法叫做“花繁为简法”。

  2、简单验证,发现规律。

  ①简单验证,发现规律。

  学生实践记录单

  出示实践记录单后,教师先示范画线段图,并在线段图上标出“间距,间隔数,线路总长”等,让学生更进一步理解“线路总长、间距、间隔数”。

  同学们在全长10米的小路一边植树,每隔5米种一棵。(两端要种)一共需要多少棵树苗?

  b、在长15米的小路一边植树(两端要栽)每五米一棵,可植多少棵?(线段图),学生通过画图探究,逐渐对总长、间隔距离、间隔数之间的关系进行进一步建模。

  c、在长20米的小路一边植树(两端要栽),每五米一棵,可植多少棵?那么在长25米和30米的小路上呢?

  (1)学生自主活动,完成实践记录单。(学生完成这个表格后,教师展示学生完成情况并提问:怎样求间隔数?怎样求棵数?学生回答,教师板书)

  全长(米)10 15 20 ┉

  间距(米)5 5 5 ┉

  间隔数(段)

  ┉

  棵树(棵)

  ┉

  (2)观察表中的棵数和间隔数,你发现了什么规律?(板书:两端要种:棵数=间隔数+1或间隔数=棵数—1),全班齐读规律。

  ②应用规律,解决问题

  教师:应用这个规律,我们能不能解决例1的问题?(全班学生独立完成)订正时教师提问:100÷5=20这里的20指什么?(间隔数)20+1=21为什么还要+1?(因为两端要种的棵数=间隔数+1)刚才我们通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵数,知道该怎么做了吗?

  3、解决实际问题(口答)

  ①教师说间隔,学生说棵数。(或者教师说棵数,学生说有几个间隔。)

  ②小组内各同学互相出题。

  小结:

  刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,两端要种:棵数=间隔数+1,如果知道了间隔数和间距(每两棵树的距离),怎样求总长呢?(引导学生说出:总长=间隔数×间距(板书)

  4、完成“做一做”

  园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?(先让学生说一说这道题中的间隔数是多少,间距是多少,再让学生独立完成。订正后,教师可再进一步提问:如果在公路的两侧植树,又该怎么做?)

  教师:今天我们学习了怎样求植树的棵数,求间隔数,求植树的路线的总长度,解决这几个问题的关键是相同的,就是要运用好段数与点数之间的规律。

  三、应用规律,解决拓展

  1、植树问题(两端都栽)练习。

  全路长(米)间隔距离(米)间隔数(个)棵数(棵)

  2、广场上的大钟5时敲响5下,8秒钟敲完。10时敲响10下,需要多长的时间?

  3、小明要在全长20m的小路一边植树,每隔5m栽一棵(如下图),请你帮小明设计一下植树方案。(此题留待学生思考,为以后教学只栽一端和两端不栽做铺垫)

  四、谈谈你的收获?

  学生谈谈收获,教师总结。

  五、作业

  完成教科书练习

  六、板书设计

  植树问题(两端都栽)

  棵数=间隔数+1

  间隔数=棵数-1

  间隔数=总长÷间隔距离

  教学反思

  “植树问题”原本属于经典的奥数教学内容,是一种情况较为复杂的问题,但在生活中有许多类似的原型,新课程教材把它安排在五年级上册第七单元的“数学广角”中。其教学侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,借助内容的教学发展学生的思维,提高学生解决问题的能力。

  本节课我教学了课本106-108页例1内容,主要教学两端都栽的植树问题。反思本课教学过程,我觉得以下方面做得比较成功:

  一、重视数学模型的建立过程

  学习数学的目的是为了应用数学,在应用数学去解决各类实际问题时,建立数学模型是十分关键的一步。建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。因此,我在教学中设计了“形成猜想—化繁为简—合作交流—发现规律—梳理方法—应用规律”的教学流程,意在让学生经历“猜想—验证—建立数学模型—应用”这一过程,从而建立“植树问题”数学模型。

  二、注重数学思想的渗透

  在教学中,我直接例题导入,引导学生用画图方法模拟实际栽树。让学生体会到研究问题可以从简单入手,化繁为简,用这样的方法,可以有效的解决问题,把抽象的`数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。其次,通过画线段图,渗透了数形结合的思想;在这个过程中,学生通过猜想、实验、推理、交流等活动,既培养了数学思想能力,学会了一些解决问题的方法,又逐步形成实事求是的科学态度和精神。

  三、注重探究精神和能力的培养

  教学中,我创设情境,鼓励学生用画图的方法来验证猜想的合理性。其后,改变间距,让学生通过画图的方法再次验证,并完成表格,从而发现规律。在用“数形结合”方法探究规律的过程中,学生的动手能力、合作能力和实践精神都得到一定的培养。

  四、关注植树问题模型的拓展和应用

  植树问题的模型是现实世界中一类相近事件的放大,它源于生活,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,我做了两方面的工作:

  一是加强归类,出示生活实例,告诉学生“这些现象的事物间都存在着间隔,把这类问题统称为植树问题”;

  二是进行变式练习。引导学生进一步体会,现实生活中的许多事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,从而使学生感悟数学建模的重要意义。

  这节课虽然取得了一些收获,但也有许多遗憾。

  一是操作的实效性。在学生画图探究间隔数和棵数的规律时,在规定时间内完成任务的小组比较少。这有两方面的原因:首先是我没有充分调动学生动手的积极性,其次是操作方法交待不够清楚,以致部分学生无从下手,出现操作困难,影响操作效果。

  二是练习设计不够精。因为希望把尽可能多的题型呈现给学生,所以没有把握好教学时间。因此,在教学中应该把握好教学的度,相信学生的能力,合理取舍教学内容。

  植树问题教案 篇9

  教学目标:

  (一)利用信息技术平台,提供问题情境,让学生通过生活中的事例探索、掌握解决封闭图形中植树问题的方法。

  (二)通过多媒体课件,渗透数形结合思想,引导学生在解决问题的分析、思考过程中,经历抽取出数学模型的过程。

  (三)在解决问题中,培养学生的独立思考、合作探究的能力,体会数学在生活中的广泛应用

  教学重点、难点:

  教学重点:

  让学生掌握解决封闭图形植树问题的思想方法。

  教学难点:

  探索发现封闭图形情况下棵树与间隔数之间的关系。

  教学过程:

  (一)创设情景,引入问题

  1.问题一:(出示图片)正方形桂花树台一边也要摆花,量一下边长是9米,每一米摆一盆,请大家帮助算一算,要几盆花?

  反馈:谁来告诉大家要摆多少盆花?

  预设:生1:91+1=10盆;生2:91=9盆;生3:91-1=8盆

  师:这里都有91这是什么意思?+1就是求出了什么?不加的就是求出了什么?-1求出了什么?

  小结:同学们用以前学习的植树问题帮我解决了这个数学问题。

  2.问题二:如果桂花树的正方形木台四周都要摆上10盆花,共要多少盆花?

  [通过展示校园中鲜花盛开的美丽景色,创设情境,引出生活中的数学问题,激发学生探究欲望。]

  生1:40盆,

  生2:36盆,

  师:到底是36盆还是40盆,要知道哪个答案是对的,怎么办?

  (让学生互相争论)(听听学生的意见,如果学生说画最好,如果学生说其他,教师可以介入说:老师这儿有个建议。)

  小结:看来有些同学认为用画一画的方法比较好是吧,那就请同学们用自己认为好的方法来验证到底是需要多少盆?

  (二)多元表征,感知模型

  1.出示学习建议:

  (1)你可以自己最喜欢的方法来说明你的答案是怎么来的

  (2)你也可以利用老师提供的材料(材料1),画一画,圈一圈。并写出算式。(花盆可以用符号表示)

  (3)先独立思考,再在小组中说一说你的方法。

  [把学习的主动权交给了学生,放手让学生想一想、画一画、说一说,激活学生已有的生活经验,既满足了学生的表现欲望,又培养了学生自主探索、小组合作学习的意识。]

  2.反馈:你是怎么想的?(先把学生的四种方法都出来,再讲评每一种方法)

  预设:

  生1:102=20,82=16 20+16=36;

  生2:94=36;

  生3、84+4=36;

  生4:104-4=36;

  师:你能解释一下是怎么想的吗?(听完学生说自己的思路如果他没画图的,问一下用同样的'算法,但是画图的)

  [通过多媒体投影直观展示学生思维过程和解决方法,激发学生探究欲望。]

  回顾:刚才我们这四种方法解决了问题.(课件演示)

  [通过信息技术动态展示不同的解题策略,引导学生从不同之中找到相同点,将各种算法统一起来,散而不乱,达到了多样化之后的优化,让学生经历多元表征,充分感知数学模型,实现了信息技术与教学内容的整合。]

  小结:通过同学们的认真思考,利用已有的知识与经验探索出了这四种不同的策略来解决了同一个数学问题。

  (三)探索规律,有效建模

  1.抛出问题:除了给桂花树正方形的台摆鲜花,在学校的其他的还有其他的一些地方也要摆一些鲜花,

  每边6盆,一共要多少盆? 每边4盆,一共要多少盆?

  2.反馈:你是怎么算的?(结合图说明算式的意思)

  预设:

  生1:63=18 46=24

  生2:63-3=15 46-6=18

  生3:63+3=15 46+6=30

  3.讨论:仔细观察这些算式,告诉我们这些封闭图形上每边摆花的盆数,求花盆总数可以怎么求呢?

  小结:我们从正方形,三角形,六边形等等作为研究的材料,发现了在这样的封图形上植树的棵数就是(每边盆数-1)边数=盆数

  4.

  展开:圆坛一周全长16米,如果沿着圆坛一圈每隔2米放一盆花,一共需要几盆花?

  学生自主探索。

  交流评价:一共种几棵?你是怎么想的?你觉得在圆上放花有规律吗?有什么规律?(学生在电脑上进行多媒体演示并讲述想法)

  你还有什么新的发现?(引导学生将在圆坛上摆花的问题和线段上的植树问题联系起来)

  小结:花盆数=间隔数

  [让学生在电脑上直观操作,充分展示学生的思维过程,在思维碰撞中学生们认识到在圆坛上摆花的问题可以和线段上的植树问题联系起来,轻松地找到了新旧知识的结合点。]

  5.提升:在三角形、正方形、正六边形上摆花盆的总数与间隔数是不是也具有这样的关系呢?

  (1)学生探索

  (2)反馈

  (3)演示:将这些图形拉伸为圆,并转化为线段。

  小结:其实在所有封闭图形上,都具有花盆数=间隔数这样的关系。所以我们要求花盆总数,可以先求出间隔数。

  [通过电脑动画的演示,学生可以直观地发现所有的封闭图形植树问题都可以转化为在圆上的植树问题,并且有和在线段上一端栽树的情况一样。这样,又一次沟通了各个封闭图形之间的联系,轻松突破的本课难点。]

  (四)拓展提升,实践应用

  1.学校为了美化校园环境,开展了摆花设计方案征集。有以下三种,请选择一种你最喜欢的图形,算一算如果每边放三盆花,一共可以摆放多少盆花?你还能设计出其他方案吗?

  2.小结

  通过今天这节课的学习,你有什么收获?

  植树问题教案 篇10

  教材分析

  本册教材的数学广角主要是渗透有关植树问题的方法。它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。本课时是本单元的`第2课时,是探讨关于一条线段并且两端都不栽的情况。

  “两端都不栽”与“两端都栽”的区别是比较明显的,可以借助线段图帮助学生建立两者的表象,再正确建立数学模型。

  教学目标

  1、建立“树的棵数=间隔数-1”的数学模型;能利用数学模型解决简单的实际问题。

  2、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的方法。

  3、 体会数学模型的生活意义与作用,体验到学习的喜悦。

  学习重点:建立“树的棵数=间隔数-1”的数学模型。

  学习难点:“两端都不栽”与“两端都栽”有什么联系与区别。

  预设过程

  一、复习两端都栽

  在一条12路的一侧种树(两端都种),每2米种一棵,共需种几棵?

  1、揭题:植树问题。

  2、呈现问题,请学生解决。新课标第一

  3、反馈解法,强调“两端都种”与“间隔数+1”。

  二、研究两端都不栽

  在一条12路的一侧种树(两端都不种),每2米种一棵,共需种几棵?

  1、提出研究课题:要是两端都不种呢?

  2、呈现问题,请学生思考后试解。

  3、反馈解法,强调“两端都不种”与“间隔数-1”。

  4、比较:“两端都种”与“两端都不种”有什么不同?

  三、练习

  1、画示意图,完成P118例2,注意“两端都不种”与“两旁都种”。

  2、画示意图,完成做一做1,注意“两端都种”与“两旁都种”。

  3、画示意图,完成做一做2,发现“锯的次数=段数-1”。

  4、完成补充题,知道“四层楼三个间隔”。

  植树问题教案 篇11

  教学内容:

  义务教育课程标准实验教材五年级上册《植树问题》,117页例1。

  教学目标:

  1. 使学生通过生活中的事例,初步体会解决植树问题的方法。

  2. 初步培养学生从实际问题中探索规律,找出解决问题的有效方法 的能力。

  3. 让学生感受数学在日常生活中的广泛应用,培养学生的应用意识 和解决问题的能力。

  教学重点:

  用解决植树问题的方法解决实际问题。

  教学难点:

  栽树的棵数与间隔数之间的关系。

  教具准备:多媒体。

  设计理念:新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的.组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

  教学过程:

  一、谈话导入:

  师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔一定的距离植树,这就需要计算准备多少棵树苗。还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

  二、揭示学习目标:(媒体出示)

  通过这节课的学习,我们要解决哪些问题呢?

  1. 能根据相关条件,求出需要多少棵树苗或计算两树间的距离。

  2. 能利用植树问题,灵活解决生活中类似的实际问题。

  三、探究新知:

  1. 出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

  师:你会计算吗?(让学生回答)你算的对吗?请同学们自己动脑来验证一下。

  学习提示:(媒体出示)

  ①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵树?请你画线段图来看看。(注意看图上有几个间隔和几个间隔点)

  ②通过上面的分析,你能找出什么规律?和同桌或小组内说说。

  ③现在你能算出一共需要多少棵树苗吗?

  ④你还有别的想法吗,在小组内说说。

  2. 学生自学探讨。(师巡视)

  3. 班内交流。学生回答后,师媒体演示间隔数和间隔点数的关系。

  总结规律:栽的棵数比间隔数多1。

  完成例题。

  四、变化巩固:

  1. 做一做:118页学生独立完成。订正时说说怎么想的,重点让学生明确先求出间隔数,即36棵树有35个间隔。

  2. 122页第2题。独立完成,同桌交流想法,可一生板演。

  五、检测反馈:(独立完成)

  1. 在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共可以种多少棵树?

  2. 5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  3. 从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?

  学生完成后师批阅订正,发现问题及时解决。

  六、总结延伸:

  这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的情况,希望大家开动脑筋,灵活处理。

【植树问题教案】相关文章:

植树问题教案03-03

植树问题教案(精选13篇)12-09

植树问题封闭图形教案08-25

《封闭图形植树问题》教案04-02

植树问题课文教案08-25

植树问题优秀教案(精选12篇)10-27

植树问题教案(通用21篇)04-09

植树问题说课稿12-14

植树问题说课稿12-12