高一必修五数学教案

2024-06-07 教案

  作为一位无私奉献的人民教师,时常要开展教案准备工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。快来参考教案是怎么写的吧!以下是小编帮大家整理的高一必修五数学教案,欢迎阅读与收藏。

  高一必修五数学教案 1

  学习目标

  1、明确空间直角坐标系是如何建立;明确空间中任意一点如何表示;

  2、能够在空间直角坐标系中求出点坐标

  教学过程

  一、自主学习

  1、平面直角坐标系建立方法,点坐标确定过程、表示方法?

  2、一个点在平面怎么表示?在空间呢?

  3、关于一些对称点坐标求法

  关于坐标平面对称点;

  关于坐标平面对称点;

  关于坐标平面对称点;

  关于轴对称点;

  关于对轴称点;

  关于轴对称点;

  二、师生互动

  例1在长方体中,写出四点坐标

  讨论:若以点为原点,以射线方向分别为轴,建立空间直角坐标系,则各顶点坐标又是怎样呢?

  变式:已知,描出它在空间位置

  例2为正四棱锥,为底面中心,若,试建立空间直角坐标系,并确定各顶点坐标

  练1建立适当直角坐标系,确定棱长为3正四面体各顶点坐标

  练2已知是棱长为2正方体,分别为和中点,建立适当空间直角坐标系,试写出图中各中点坐标

  三、巩固练习

  1、关于空间直角坐标系叙述正确是( )

  A中位置是可以互换

  B空间直角坐标系中点与一个三元有序数组是一种一一对应关系

  C空间直角坐标系中三条坐标轴把空间分为八个部分

  D某点在不同空间直角坐标系中坐标位置可以相同

  2、已知点,则点关于原点对称点坐标为( )

  ABCD

  3、已知三个顶点坐标分别为,则重心坐标为( )

  ABCD

  4、已知为平行四边形,且,则顶点坐标

  5、方程几何意义是

  四、课后巩固练习

  1在空间直角坐标系中,给定点,求它分别关于坐标平面,坐标轴和原点对称点坐标

  2设有长方体,长、宽、高分别为是线段中点分别以所在直线为轴,轴,轴,建立空间直角坐标系

  ⑴求坐标;

  ⑵求坐标;

  高一必修五数学教案 2

  一、教学目标

  1、理解一次函数和正比例函数的概念,以及它们之间的关系。

  2、能根据所给条件写出简单的一次函数表达式。

  二、能力目标

  1、经历一般规律的探索过程、发展学生的抽象思维能力。

  2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。

  三、情感目标

  1、通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。

  2、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。

  四、教学重难点

  1、一次函数、正比例函数的概念及关系。

  2、会根据已知信息写出一次函数的表达式。

  五、教学过程

  1、新课导入

  有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的增加,弹簧的长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,究竟是什么样的关系,请看:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。

  (1)计算所挂物体的质量分别为1千克、 2千克、 3千克、 4千克、 5千克时弹簧的长度,(2)你能写出x与y之间的关系式吗?

  分析:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加0.5厘米,总长度为3.5厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加0.5厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x。

  2、做一做

  某辆汽车油箱中原有汽油 100升,汽车每行驶 50千克耗油 9升。你能写出x与y之间的关系吗?(y=1000。18x或y=100 x)

  接着看下面这些函数,你能说出这些函数有什么共同的特点吗?上面的'几个函数关系式,都是左边是因变量,右边是含自变量的代数式,并且自变量和因变量的指数都是一次。

  3、一次函数,正比例函数的概念

  若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

  4、例题讲解

  例1:下列函数中,y是x的一次函数的是( )

  ①y=x6;②y= ;③y= ;④y=7x

  A、①②③ B、①③④ C、①②③④ D、②③④

  分析:这道题考查的是一次函数的概念,特别要强调一次函数自变量与因变量的指数都是1,因而②不是一次函数,答案为B

  高一必修五数学教案 3

  教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.

  教学目的:

  (1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

  (2)了解构成函数的要素;

  (3)会求一些简单函数的定义域和值域;

  (4)能够正确使用“区间”的符号表示某些函数的定义域;

  教学重点:

  理解函数的模型化思想,用合与对应的语言来刻画函数;

  教学难点:

  符号“y=f(x)”的含义,函数定义域和值域的区间表示;

  教学过程:

  一、引入课题

  1.复习初中所学函数的概念,强调函数的模型化思想;

  2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

  (1)炮弹的射高与时间的变化关系问题;

  (2)南极臭氧空洞面积与时间的变化关系问题;

  (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题

  备用实例:

  我国xxxx年4月份非典疫情统计:

  日期222324252627282930

  新增确诊病例数1061058910311312698152101

  3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

  4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

  二、新课教学

  (一)函数的有关概念

  1.函数的概念:

  设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

  记作:y=f(x),x∈A.

  其中,x叫做自变量,x的.取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

  注意:

  ○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

  2.构成函数的三要素:

  定义域、对应关系和值域

  3.区间的概念

  (1)区间的分类:开区间、闭区间、半开半闭区间;

  (2)无穷区间;

  (3)区间的数轴表示.

  4.一次函数、二次函数、反比例函数的定义域和值域讨论

  (由学生完成,师生共同分析讲评)

  (二)典型例题

  1.求函数定义域

  课本P20例1

  解:(略)

  说明:

  ○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;

  ○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;

  ○3函数的定义域、值域要写成集合或区间的形式.

  巩固练习:课本P22第1题

  2.判断两个函数是否为同一函数

  课本P21例2

  解:(略)

  说明:

  ○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

  ○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

  巩固练习:

  ○1课本P22第2题

  ○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?

  (1)f(x)=(x-1)0;g(x)=1

  (2)f(x)=x;g(x)=

  (3)f(x)=x2;f(x)=(x+1)2

  (4)f(x)=|x|;g(x)=

  三、归纳小结,强化思想

  从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。

  四、作业布置

  课本P28习题1.2(A组)第1—7题(B组)第1题

  高一必修五数学教案 4

  一、学习目标:

  知识与技能:理解直线与平面、平面与平面平行的性质定理的含义, 并会应用性质解决问题

  过程与方法:能应用文字语言、符号语言、图形语言准确地描述直线与平面、平面与平面的性质定理

  情感态度与价值观:通过自主学习、主动参与、积极探究的学习过程,激发学生学习数学的自信心和积极性,培养学生良好的思维习惯,渗透化归与转化的数学思想,体会事物之间相互转化和理论联系实际的辩证唯物主义思想方法

  二、学习重、难点

  学习重点: 直线与平面、平面与平面平行的性质及其应用

  学习难点: 将空间问题转化为平面问题的方法

  三、学法指导及要求:

  1、限定45分钟完成,注意逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。

  2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。

  3、A:自主学习;B:合作探究;C:能力提升

  4、小班、重点班完成全部,平行班完成A.B类题

  四、知识链接:

  1.空间直线与直线的位置关系

  2.直线与平面的位置关系

  3.平面与平面的位置关系

  4.直线与平面平行的判定定理的符号表示

  5.平面与平面平行的判定定理的符号表示

  五、学习过程:

  A问题1:

  1)如果一条直线与一个平面平行,那么这条直线与这个平面内的直线有哪些位置关系?

  (观察长方体)

  2)如果一条直线和一个平面平行,如何在这个平面内做一条直线与已知直线平行?

  (可观察教室内灯管和地面)

  A问题2: 一条直线与平面平行,这条直线和这个平面内直线的位置关系有几种可能?

  A问题3:如果一条直线 与平面平行,在什么条件下直线 与平面内的直线平行呢?

  由于直线 与平面内的任何直线无公共点,所以过直线 的某一平面,若与平面相交,则直线 就平行于这条交线

  B自主探究1:已知: ∥, ,=b。求证: ∥b。

  直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行

  符号语言:

  线面平行性质定理作用:证明两直线平行

  思想:线面平行 线线平行

  例1:有一块木料如图,已知棱BC平行于面AC(1)要经过木料表面ABCD 内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线和面AC有什么关系?

  例2:已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面。

  问题5:两个平面平行,那么其中一个平面内的直线与另一平面有什么样的关系?两个平面平行,那么其中一个平面内的直线与另一平面内的直线有何关系?

  自主探究2:如图,平面,,满足∥,=a,=b,求证:a∥b

  平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的'交线平行

  符号语言:

  面面平行性质定理作用:证明两直线平行

  思想:面面平行 线线平行

  例3 求证:夹在两个平行平面间的平行线段相等

  六、达标检测:

  A1.61页练习

  A2.下列判断正确的是( )

  A. ∥, ,则 ∥b B. =P,b ,则 与b不平行

  C. ,则a∥ D. ∥,b∥,则 ∥b

  B3.直线 ∥平面,P,过点P平行于 的直线( )

  A.只有一条,不在平面内 B.有无数条,不一定在内

  C.只有一条,且在平面内 D.有无数条,一定在内

  B4.下列命题错误的是 ( )

  A. 平行于同一条直线的两个平面平行或相交

  B. 平行于同一个平面的两个平面平行

  C. 平行于同一条直线的两条直线平行

  D. 平行于同一个平面的两条直线平行或相交

  B5. 平行四边形EFGH的四个顶点E、F、G、H、分别在空间四边形ABCD的四条边AB、BC、CD、AD、上,又EF∥BD,则 ( )

  A. EH∥BD,BD不平行与FG

  B. FG∥BD,EH不平行于BD

  C. EH∥BD,FG∥BD

  D. 以上都不对

  B6.若直线 ∥b, ∥平面,则直线b与平面的位置关系是

  B7一个平面上有两点到另一个平面的距离相等,则这两个平面

  七、小结与反思:

  高一必修五数学教案 5

  一、教学背景

  1、教材分析

  《对数函数及其性质》是人教版普通高中课程数学必修1第二章第二节第二部分内容,对数函数是一类特殊的函数,在实际生产过程中运用很广泛。同时,通过对对数函数及其图象和性质的研究,既可以从具体的感性认识上来对函数的图象和性质更好的理解,也可为以后研究幂函数、三角函数等其它函数的图象和性质起示范和铺垫作用。

  2、学情分析

  刚入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,对数函数又以对数运算为基础,同时,初中函数教学要求降低,导致初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。但在此之前,学生已经学习了指数函数及其性质,学生已经初步对新函数的研究方法有所了解,为本节的学习奠定了基础。

  基于以上分析,我制定如下教学目标及重、难点:

  3、教学目标

  知识与技能:

  初步掌握对数函数的概念、图象及性质,并应用性质解决简单数学问题。

  过程与方法:

  经历对数函数性质的探索过程,体会函数思想、分类讨论思想和转化思想在解决具体问题中的应用。

  情感态度与价值观:

  培养勇于探索的精神,培养学生的成功意识,合作交流的学习方式,激发学生学习数学、应用数学的兴趣。

  4、教学重、难点

  重点:理解对数函数的概念,掌握对数函数的图象及性质。

  难点:由图象探究函数性质,应用性质解决具体问题。

  二、教学方法及手段

  1、教法

  根据建构主义的学习理论和新课程标准理念,本节课以自主探究法和讲解法为主,以练习法为辅,引导学生自己观察、归纳、分析,培养学生采用自主探究的方法进行学习,使学生体会学习的乐趣。

  2、学法

  (1)类比学习:通过指数函数类比学习对数函数。

  (2)小组合作学习:将学生分成7个小组,通过小组内讨论交流,归纳得出对数函数的图象和性质。

  3、教学手段

  采用多媒体辅助教学。

  三、教学教程

  1、情境引入

  通过银行的复利计算问题,逐步引出对数函数。

  设计意图:情景来源于生活,通过生活中的'实例来反应对数函数的重要性,目的在于激发学生学习的兴趣,让每一个学生都主动融入到学习中。

  2、新知探索

  通过上述模型,让学生给对数函数下定义。

  学生用描点法画和的图象,教师再借助于计算机再画几个对数函数的图象,让学生观察并总结出一般情况。

  以“你们能根据图象归纳出对数函数的性质吗?”设问,引导学生能过图象的特征得出对应的性质。

  例比较下列各组数中两个值的大小:

  (1)log23.4和log28.5;

  (2) log0.33.4和log0.38.5;

  (3) loga3.4和loga8.5(a>0,且a≠1);

  (4) log23.4和log3.42;

  (5) log3.42和log0.38.5。

  3、巩固练习

  (1)比较大小:

  lg6________lg8;ln1.3________

  (2)比较正数m,n的大小:

  若,则m_____n;若,则m_____n.

  4、总结提炼

  (1)自主探究新知识的方法;

  (2)本节课应用了哪些数学思想。

  5、布置作业

  (1)阅读教材P70~P72,梳理对数函数的概念、图象、性质等知识点;

  (2)教材P74—7、8

  四、板书设计

  2.2.2对数函数及其性质

  一、概念例题

  二、图象

  三、性质

  四、教学反思

  高一必修五数学教案 6

  一、教材分析

  1、教材中的地位与作用:“2.1直线与方程”是苏教版数学必修2的第二章的内容,是解析几何的开篇之作。而“2.1.1直线的斜率”这一节是这一章的第一节,是用斜率与倾斜角来刻画直线方向的,它学习的内容是基础的,学习方法是重要的。是为今后用代数的方法研究解析几何问题的的学习奠定基础,起到了启下的作用。

  2、教学的重点与难点:根据课程标准的要求,本节教学的重点为:直线斜率的本质认识与直线斜率的坐标公式。因为过定点的直线的倾斜程度就是用直线的斜率来刻画的,斜率的是通过直线上两点的纵坐标的差与横坐标的差的比来计算的,反映了用代数的方法来研究几何问题的核心思想。教学的难点为:直线斜率、倾斜角的定义和本质的理解、斜率与倾斜角之间的关系。因为倾斜角实际上是直线相对x轴的倾斜程度来反映直线的倾斜程度的,它与斜率一样,都是刻画直线的倾斜程度,但两者的角度不同,所以存在一定的联系,这一联系正是教学的难点所在。

  二、教学目标的确定

  由于“2.1.1直线的斜率”是“直线与方程”的第一课时,又是解析几何的开始部分。从学生原有的认知上分析,确定教学的目标为:

  1、知识目标:

  (1)理解直线的斜率,掌握过两点的直线的斜率公式

  (2)理解直线的倾斜角的定义,知道直线的倾斜角的范围

  (3)掌握直线的斜率与倾斜角之间的关系

  (4)使学生初步感受直线的.方向与直线的斜率之间的对应关系,从而体会到要研究直线的方向的变化规律,只要研究直线的斜率的变化的规律

  2、能力目标:培养学生的主动探究知识、合作交流的意识,观测、探究、分析问题、解决问题的能力

  3、情感目标:通过课堂教学培养学生的数行结合的美感与严谨治学的生活态度

  三、教学与学法

  1、学法指导:学生原有对直线知识的掌握情况为:在坐标系中能画出直线的图形,而高中则要求学生能用几何量:斜率与倾斜角来刻画直线的倾斜程度,能用代数的方法研究斜率的问题,所以在学法上要指导学生:观测生活中的楼梯的坡度;探究坡度的大小与数学中的斜率有关系;领悟斜率的计算公式;理解斜率与倾斜角的关系。

  2、教法指导:引导学生学会观测目标,点拨生活中的量与量关系的数学本质,合理、严格的定义直线的倾斜角。正确推倒斜率与倾斜角的关系式。

  四、教学过程设计

  1、问题情境,提出课题:从生活实例上楼梯出发:有的楼梯陡一些,有的楼梯平一些。

  问题1:这种“陡”与“平”可以用坡度来刻画,即“高度”与“宽度”的比值大小来刻画,那么直线的倾斜程度又如何来刻画呢?是从学生的生活发展区出发,调动学生的积极性。类比发现在直角坐标系中直线的倾斜程度可以用纵坐标的增量与横坐标的增量的比来刻画。从而引出将要学习的课题――直线的斜率。这样引入课题显得比较自然,也符合学生的思维认知规律。

  2、自主探究,形成概念:

  问题2:刻画直线的倾斜程度—斜率,那么用什么量来表示这种“坡度”呢?

  在直线上任取两点,,如果,那么直线PQ的斜率为( ),同时提醒学生要注意:

  (1)斜率公式与两点的顺序无关,与所选择的直线上两点的位置无关;

  (2)它是一个比值,是一个定值;

  (3)前提是,当时,即与轴垂直的直线,它的斜率是不存在。

  3、解决问题,理解概念

  通过对例1的分析与讲解目的是帮助学生理解经过两点的直线的斜率公式,使学生掌握直线斜率的符号与直线的方向之间的对应关系。还可以进一步提出思考:

  (1)给出斜率,画出符合条件的直线;

  (2)给出直线让学生分析直线斜率的特征。对题目作进一步的探讨。这样有利于培养学生的发散思维,促使良好思维习惯的形成

  例2是画图问题,使学生进一步理解斜率的几何意义,在例2的画图过程中让学生感受直线相对x轴的倾斜程度,应该还与一个角有关系。从而引出直线倾斜角的概念

  问3:如何定义直线的倾斜角呢?倾斜角概念得出后,教师总结:

  (1)直线的倾斜角与斜率一样,也是刻画直线的倾斜程度的量,但直线的倾斜角侧重与直观形象,直线的斜率则侧重与数量关系;

  (2)任何直线都有倾斜角,但不是任何直线都有斜率。

  五、巩固练习,及时反馈

  课本练习1、2、3、4。通过练习一方面可以加深学生对定义、公式的理解;另一方面也旨在了解学生对概念的掌握情况,以便调节后面的教学节奏。

  六、回顾反思,形成系统

  我是引导学生从知识内容和思想方法两个方面进行小结的。通过小结使学生对本节课的知识结构有一个清晰的认识。在小结时不仅概括所学知识,而且还对所用到的数学方法和涉及的数学思想也进行归纳,这样既可以使学生完成知识建构,又可以培养其能力。

  七、作业布置

  所布置的作业都是紧紧围绕着“直线的斜率”的概念及运用。通过作业来反馈知识掌握效果,巩固所学知识,强化基本技能的训练,培养学生良好的学习习惯和品质。

  八、关于评价

  在授课过程中,我根据学生对课堂提问及例习题的解答情况,及时调节课堂节奏,“易”则可加快,“难”则应放慢速度,并借用富有启发性的、阶梯性的提问对学生进行思维引导。

  课后,我将通过批改作业以及与学生谈话等方式,来了解学生对“直线的斜率”概念的掌握情况,检查教学目的的实现程度。同时,对下一步教学工作作出必要的调整和改进。另外,通过对作业的评判和统计课堂练习完成情况,有助于学生认识自我,让他们获得成就感,从而增强其自信心,培养学生积极进取的学习态度。

  高一必修五数学教案 7

  一、教材分析

  函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.

  根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:

  知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;

  过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

  情感态度与价值观在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

  根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用.虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的。因此,本节课的学习难点是函数单调性的概念形成。

  二、教法学法

  为了实现本节课的教学目标,在教法上我采取了

  1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。

  2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。

  3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。

  在学法上我重视了:

  1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

  2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

  三、教学过程

  函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节。

  (一)创设情境,提出问题

  (问题情境)(播放中央电视台天气预报的音乐)。如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:

  [教师活动]引导学生观察图象,提出问题:

  问题1:说出气温在哪些时段内是逐步升高的或下降的?

  问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?

  [设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始。这里,通过两个问题,引发学生的进一步学习的好奇心。

  (二)探究发现建构概念

  [学生活动]对于问题1,学生容易给出答案。问题2对学生来说较为抽象,不易回答。

  [教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,f(t1)=1,t2=10时,f(t2)=4”这一情形进行描述.引导学生回答:对于自变量8<10,对应的函数值有1<4。举几个例子表述一下。然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征。

  在学生对于单调增函数的特征有一定直观认识时,进一步提出:

  问题3:对于任意的t1、t2∈[4,16]时,当t1

  (t1)

  [学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述。

  [教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当时,都有”。告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:

  问题4:类比单调增函数概念,你能给出单调减函数的概念吗?

  最后完成单调性和单调区间概念的整体表述。

  [设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要。但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程。刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强。从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点。

  (三)自我尝试运用概念

  1.为了理解函数单调性的概念,及时地进行运用是十分必要的`。

  [教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明。

  [学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:f(x)=—2x+2,f(x)=x2+2x—3,f(x)=1/x,并画出函数的草图,根据函数的图象说出函数的单调区间。

  [教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集。

  [设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解。

  2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?

  [教师活动]问题6:证明在区间(0,+∞)上是单调减函数。

  [学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较f(x1)与f(x2)的大小、不会正确表述、变形不到位或根本不会变形等困难。

  [教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式。

  [学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断。

  [设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究。

  (四)回顾反思深化概念

  [教师活动]给出一组题:

  1、定义在R上的单调函数f(x)满足f(2)>f(1),那么函数f(x)是R上的单调增函数还是单调减函数?

  2、若定义在R上的单调减函数f(x)满足f(1+a)

  [学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法。

  [设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化。

  [教师活动]作业布置:

  (1)阅读课本P34-35例2

  (2)书面作业:

  必做:教材P431、7、11

  选做:二次函数y=x2+bx+c在[0,+∞)是增函数,满足条件的实数的值唯一吗?

  探究:函数y=x在定义域内是增函数,函数有两个单调减区间,由这两个基本函数构成的函数的单调性如何?请证明你得到的结论。

  [设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯。基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层。学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成。

  四、教学评价

  学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感。学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流,以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯。让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础。

  高一必修五数学教案 8

  一、教材分析:

  集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  二、目标分析:

  教学重点、难点

  重点:集合的含义与表示方法。难点:表示法的恰当选择。

  教学目标

  1、知识与技能

  (1)通过实例,了解集合的含义,体会元素与集合的属于关系;

  (2)知道常用数集及其专用记号;

  (3)了解集合中元素的确定性。互异性。无序性;

  (4)会用集合语言表示有关数学对象;

  2、过程与方法

  (1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。

  (2)让学生归纳整理本节所学知识。

  3、情感。态度与价值观

  使学生感受到学习集合的必要性,增强学习的积极性。

  三、教法分析

  1、教学方法:学生通过阅读教材,自主学习。思考。交流。讨论和概括,从而更好地完成本节课的教学目标。2、教学手段:在教学中使用投影仪来辅助教学。

  四、过程分析

  (一)创设情景,揭示课题

  1、教师首先提出问题:

  (1)介绍自己的家庭、原来就读的学校、现在的班级。

  (2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?

  引导学生互相交流。与此同时,教师对学生的活动给予评价。

  2、活动:

  (1)列举生活中的集合的例子;

  (2)分析、概括各实例的共同特征

  由此引出这节要学的内容。

  设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫

  (二)研探新知,建构概念

  1、教师利用多媒体设备向学生投影出下面7个实例:

  (1)1—20以内的所有质数;

  (2)我国古代的四大发明;

  (3)所有的安理会常任理事国;

  (4)所有的正方形;

  (5)海南省在2004年9月之前建成的所有立交桥;

  (6)到一个角的两边距离相等的所有的点;

  (7)国兴中学2004年9月入学的高一学生的全体。

  2、教师组织学生分组讨论:这7个实例的'共同特征是什么?

  3、每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义。一般地,指定的某些对象的全体称为集合(简称为集)。集合中的每个对象叫作这个集合的元素。

  4、教师指出:集合常用大写字母A,B,C,D,?表示,元素常用小写字母a,b,c,d?表示。

  设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神

  (三)质疑答辩,发展思维

  1、教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。使学生明确集合元素的三大特性,即:确定性。互异性和无序性。只要构成两个集合的元素是一样的,我们就称这两个集合相等。

  2、教师组织引导学生思考以下问题:

  判断以下元素的全体是否组成集合,并说明理由:

  (1)大于3小于11的偶数;(2)我国的小河流。让学生充分发表自己的建解。

  3、让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由。教师对学生的学习活动给予及时的评价。

  4、教师提出问题,让学生思考

  b是(1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,高一(4)班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于。

  如果a是集合A的元素,就说a属于集合A,记作a?A。

  如果a不是集合A的元素,就说a不属于集合A,记作a?A。

  (2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国。日本与集合A的关系分别是什么?请用数学符号分别表示。

  (3)让学生完成教材第6页练习第1题。

  5、教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号。并让学生完成习题1。1A组第1题。

  6、教师引导学生阅读教材中的相关内容,并思考。讨论下列问题:

  (1)要表示一个集合共有几种方式?

  (2)试比较自然语言。列举法和描述法在表示集合时,各自的特点?适用的对象是什么?

  (3)如何根据问题选择适当的集合表示法?

  使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

  设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。

  (四)巩固深化,反馈矫正

  教师投影学习:

  (1)用自然语言描述集合{1,3,5,7,9};

  (2)用例举法表示集合A?{x?N|1?x?8}

  (3)试选择适当的方法表示下列集合:教材第6页练习第2题。

  设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象

  (五)归纳小结,布置作业

  小结:在师生互动中,让学生了解或体会下例问题:

  1、本节课我们学习了哪些知识内容?

  2、你认为学习集合有什么意义?

  3、选择集合的表示法时应注意些什么?

  设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。

  作业:

  1、课后书面作业:第13页习题1.1A组第4题。

  2、元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材。

  高一必修五数学教案 9

  一、说教材

  1、教材的地位、作用及编写意图

  《对数函数》出现在职业高中数学第一册第四章第八节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其 他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

  2、教学目标的确定及依据。

  依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

  (1) 知识目标:理解对数函数的概念、掌握对数函数的图象和性质。

  (2) 能力目标:培养学生自主学习、综合归纳、数形结合的能力。

  (3) 德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。

  (4) 情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。

  3、教学重点、难点及关键

  重点:对数函数的概念、图象和性质;

  难点:利用指数函数的图象和性质得到对数函数的图象和性质;

  关键:抓住对数函数是指数函数的反函数这一要领。

  二、说教法

  教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

  (1)启发引导学生思考、分析、实验、探索、归纳。

  (2)采用“从特殊到一般”、“从具体到抽象”的方法。

  (3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法。

  (4)多媒体演示法。

  三、说学法

  教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

  (1)对照比较学习法:学习对数函数,处处与指数函数相对照。

  (2)探究式学习法:学生通过分析、探索、得出对数函数的定义。

  (3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

  (4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。

  这样可发挥学生的主观能动性,有利于提高学生的各种能力。

  四、说教学程序

  1、复习导入

  (1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。

  设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。

  (2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?

  设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。

  2、认定目标(出示教学目标)

  3、导学达标

  按"教师为主导,学生为主体,训练为主线”的原则,安排师生互动活动.

  (1)对数函数的概念

  引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是 y=logax,见课件。 把函数y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。

  设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。

  因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。

  (2)对数函数的图象

  提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?

  让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。

  教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。

  方法一(描点法)首先列出x,y(y=log2x,y=log x)值的对应表,因为对数函数的定义域为x>0,因此可取x= , , ,1,2,4,8,请计算对应的y值,然后在坐标系内描点、画出它们的图象.

  方法二(图象变换法)因为对数函数和指数函数互为反函数, 图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=( )x 的图象画出y=log x的图象,再出示课件,教师加以解释。

  设计意图:用这种对称变换的`方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。

  这样可以充分调动学生自主学习的积极性。

  (3)对数函数的性质

  在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。

  作了以上分析之后,再分a>1与0<a<1两种情况列出对数函数图象和性质表,体现了从“特殊到一般”、“从具体到抽象”的方法。出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生对比着记忆。

  设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。

  由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)

  设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。

  4、巩固达标(见课件)

  这一训练是为了培养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现“数形结合”和“分类讨论”的思想。

  5、反馈练习(见课件)

  习题是对学生所学知识的反馈过程,教师可以了解学生对知识掌握的情况。

  6、归纳总结(见课件)

  引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

  7、课外作业 :(1)完成P178 A组1、2、3题

  (2)当底数a>1与0<a<1时,底数不同,对数函数图象有什么持点?

  五、说板书

  板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。

  高一必修五数学教案 10

  一、说教材

  1、教材的地位和作用

  《集合的概念》是人教版第一章的内容(中职数学)。本节课的主要内容:集合以及集合有关的概念,元素与集合间的关系。初中数学课本中已现了一些数和点的集合,如:自然数的集合、有理数的集合、不等式解的集合等,但学生并不清楚“集合”在数学中的含义,集合是一个基础性的概念,也是也是中职数学的开篇,是我们后续学习的重要工具,如:用集合的语言表示函数的定义域、值域、方程与不等式的解集,曲线上点的集合等。通过本章节的学习,能让学生领会到数学语言的简洁和准确性,帮助学生学会用集合的语言描述客观,发展学生运用数学语言交流的能力。

  2、 教学目标

  (1)知识目标:

  a、通过实例了解集合的含义,理解集合以及有关概念;

  b、初步体会元素与集合的“属于”关系,掌握元素与集合关系的表示方法。

  (2)能力目标:

  a、让学生感知数学知识与实际生活得密切联系,培养学生解决实际的能力;

  b、学会借助实例分析,探究数学问题,发展学生的`观察归纳能力。

  (3)情感目标:

  a、通过联系生活,提高学生学习数学的积极性,形成积极的学习态度;

  b、通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。

  3、重点和难点

  重点:集合的概念,元素与集合的关系。

  难点:准确理解集合的概念。

  二、学情分析(说学情)

  对于中职生来说,学生的数学基础相对薄弱,他们还没具备一定的观察、分析理解、解决实际问题的能力,在运算能力、思维能力等方面参差不齐,学生学好数学的自信心不强,学习积极性不高,有厌学情绪。

  三、说教法

  针对学生的实际情况,采用探究式教学法进行教学。首先从学生较熟悉的实例出发,提高学生的注意力和激发学生的学习兴趣。在创设情境认知策略上给予适当的点拨和引导,引导学生主动思、交流、讨论,提出问题。在此基础上教师层层深入,启发学生积极思维,逐步提升学生的数学学习能力。集合概念的形成遵循由感性到理性,由具体到抽象,便于学生的理解和掌握。

  四、学习指导(说学法)

  教学的矛盾主要方面是学生的学,学是中心,会学是目的,因此在教学中要不断指导学生学会学习。根据数学的特点这节课主要是教学生动脑思考、多训练、勤钻研的研讨,这样做增加了学生主动参与的机会,增强了参与的意识,教学生获取知识的途径,思考问题的方法,使学生成为教学的主体,进而才能达到预期的教学目的和效果。

  五、教学过程

  1、引入新课:

  a、创设情境,揭示本课主题,同时对集合的整体性有个初步的感性认识。

  b、介绍集合论的创始者康托尔

  2、究竟什么是集合?(实例探究)切合学生现有的认知水平, 以学生熟悉的事物(物体),以实际生活为背景进行探究, 为本课教学创造出一种自然和谐的氛围,充分调动学生的学习热情接待探究过程学生积极思考、交流、作答,教师针对学生的回答启发,引导学生寻找实例中的共同特征,培养学生观察,总结能力范围由具体到抽象,由感性到理性,为下面水到渠成的介绍集合概念做好铺垫。

  3、集合的概念,本课的重点。结合探究中的实例,让学生说出集合和元素各是什么?知识的呈现由抽象到具体进一步熟悉元素与集合的概念,让学生分清实际问题中的集合和元素为后面学习两者间的关系做好铺垫。

  教师在这一环节做好学习指导,确定的对象组成的整体叫集合,如果对象不确定,就不能确定为集合(举例)加深对概念的理解。

  4、 熟悉巩固集合的概念通过例题,练习、帮助学生进一步熟悉和理解集合的概念。

  5、集合的符号记法,为本节重点做好铺垫。

  6、从实例入行手,探索元素和集合的关系,学生能用文字语言描述,如何用数学语言描述,给出元素与集合关系符号表示,在这个环节教师适当引导学生积极主动参与到知识逐步形成过程,便于学生理解和掌握,落实本课的重点,学习指导:

  ⑴集合元素的确定。

  ⑵理解两符号的含义。

  7、 思考交流本课的重要环节在课堂上给学生提供充分的活动时间和空间。通过自由举例,能深化概念。同时还能提升学生的分析能力表达自己见解的能力。

  8、 从所举的例子中抽象出数集的概念,并给出常见数集的记法。

  9、 学生练习:通过练习,识记常见数集的记法,同时进一步巩固元素与集合间的关系。

  10、知识的实际应用:

  问题不难,落实课本能力目标,培养学生运用数学的意识和能力初步培养学生应用集合的眼光观看世界。

  11、课堂小节

  以学生小节为主教师帮助为辅,巩固所学知识,帮助学生认识到要学会梳理所学内容,要学会总结反思,使学生的认识进一步升华,培养学生的鬼纳总结能力。

  六、评价

  教学评价的及时能有效调动课堂气氛,感染学生的情绪,对课堂教学发挥着积极作用,教学过程尊重学生之间的差异培养学生应用集合的眼光看研究对象,注重过程评价与多元评价将教学评价贯穿于本堂课的每个教学环节。

  七、教学反思

  1、 通过现实生活中的实例,从特殊到一般,在具体感知基础上得出集合的描述概念,便于学生理解接受。

  2、 启发探究教学,营造学生的学习氛围,培养学生自主学习,合作交流的能力。

  • 相关推荐

【高一必修五数学教案】相关文章:

高一数学教案必修一202209-30

语文高一必修一教案11-26

高一必修一离骚原文03-26

高一化学必修二知识点精选五篇03-05

高一必修课教学设计05-16

高一语文必修二教案09-27

人教版高一英语必修一教案09-27

高一数学必修2教案08-16

高一必修课教学设计05-16

高一必修英语课文原文03-18