八年级数学说课稿

2024-08-15 稿件

八年级数学说课稿1

  八年级数学说课稿篇一:《一次函数》

  一次函数说课稿各位老师,你们好!我今天说课的内容是《一次函数》,现在给大家说一说当初我是如何跟学生一起学习这节内容的,希望各位多加指导!我将从以下几个方面给大家做一详细介绍:

  一、 说教材

  (一)本节内容在教材中的地位和作用

  本课的内容是人教版八年级上册第14章第2节第2课时,就是课本115到116页的内容。在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

  (二)说教学目标

  基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:

  知识技能:

  1、理解直线y=kx+b与y=kx之间的位置关系;

  2、会利用两个合适的点画出一次函数的图象;

  3、掌握一次函数的性质.

  数学思考:

  1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;

  2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

  情感态度:

  1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;

  2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

  (三)说教学重点难点

  教学重点:一次函数的图象和性质。

  教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。

  二、说教法学法

  1、教学方法

  依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。因此我选用了以下教学方法:

  1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。

  目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。

  2、直观教学法——利用多媒体现代教学手段。

  目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。

  2、学法指导

  做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。本着这样的原则,课上指导学生采用以下学习方法。

  1、应用自主探究。培养学生独立思考能力,阅读能力和自主探究的学习习惯。

  2、指导学生观察图象,分析材料。培养观察总结能力。

  三、 说教学程序设计

  (一)、创设情境,导入新课

  活动1:观察:

  展示学生作图作品(书P28例2),强调列表及图象上的点的对应关系。

  课前一两分钟对学生上交的作图作品进行快速筛选,进量多选出一部分,课上多肯定多表扬多鼓励。再从中选取一两幅优秀的作品上课为示例。

  目的有四:

  1、根据学生的年龄特征:都具有强烈的表现自我的心理。大部分学生盼望在课上教师能展示自己的作品,这样将最大限度地调动学生的学习积极性,其作图会比平时更规范更准确;也可以说完成了变教师课上被动讲为学生课外主动学习的过程,这样以来学生的所获更多,印象更深;

  2、课上展示学生作品本身就是对学生完成作业情况的肯定,这又恰好给予了学生足够的成功感和荣誉感,这便增加了学生学习数学的信心,乐意学习数学,激发了学习热情,听课更加专心。

  3、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。

  4、令教师对学生有了更深层次的了解,能更好地把握课堂。

  (二)尝试探索、体验新知:

  活动1、观察探索:

  比较两个函数图象的相同点与不同点?

  第一步;根据你的观察结果回答问题。(书中原问题1、2、3)

  目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。

  第二步:在学生作出的两条平行直线中,教师先引导学生观察正比例函数图象的交点情况,引用两点法(两点确定线);在此基础上引导学生发现“直线y=--6x+5与坐标轴交点”并思考:一次函数y=--6x+5又如何作出图象?

  目的:这样通过启发学生视觉见到的两点,即与坐标轴的.交点{(0,b),和(-b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。

  活动2:知识再体验:在同一直角坐标系中画出四个K值不同的一次函数图象,并观察分析。

  目的:进一步巩固两点作图法,为探究一次函数的性质作准备。

  活动3:展示“上下坡”材料,解决象限问题。(多媒体展示)

  目的:让学生触发漫画中“上下坡”的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。

  活动4:师生互动(师生角色互换),提高拓展。(多媒体展出内容)

  目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。

  (三)课堂小结

  引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受.

  目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。

  (四)作业布置

  加强“教、学”反思,进一步提高“教与学”效果。

  四、说板书设计

  采用了如下板书,要点突出,简明清晰。

  一次函数

  正比例函数图像的画法:确定两点为(0,0)和(1,K)一次函数选择的两点为:(0,k)和(-bk,0)

  五、说课后小结

  实践证明,在教学中,充分利用教学方法的优势,为学生创造一个好的学习氛围,来引导学生发现问题、分析问题从而解决问题。多媒体课件支撑着整个教学过程,令学生在一个生动有趣的课堂上,能愉快地接受知识。

  八年级数学说课稿篇二:《平行四边形的性质及应用》

  一、教材分析

  1、 教材所处的地位和作用。

  《平行四边形的性质》是人教版八年级数学第二学期第十九章第一节内容。它是在学生掌握了平行线、三角形及简单图形的平移等几何知识的基础上学习的。平行四边形及其性质在实际生产和生活中有广泛的应用,它是本节的重点,又是全章的重点。学习它不仅是对已学平行线、三角形等知识的综合应用和深化,又是下一步学习矩形、菱形、正方形及梯形等知识的基础,起着承上启下的作用。

  2、 教学目标

  根据新课标的要求及学生的实际情况,本节我制定了如下目标:

  (1)知识目标

  理解平行四边形的定义,探究平行四边形的性质;利用平行四边形的性质进行有关的证明和计算,解决简单的实际问题。

  (2)能力目标

  通过观察、猜测、归纳、证明,能运用数学语言合乎逻辑地进行讨论与质疑,发展学生合理的推理意识,培养主动探究的习惯。

  (3)情感目标

  通过平行四边形性质的应用过程,培养学生独立思考的习惯,在数学学习活动中获得成功的体验。进一步认识数学与生活的密切联系,体验数学来源于生活又服务于生活。

  3、教学重点、难点

  基于以上的分析,我认为本节课的重点是:平行四边形性质的探究与应用;难点是:平行四边形性质的探究,即如何添加辅助线将平行四边形问题转化为三角形问题来解决的思想方法。

  二、学情及教法分析

  农村的学生基础知识薄弱,主动学习的积极性不高,学习能力较差,针对这种情况及本节课的特点,结合我校课题“因材施教,当堂达标”发挥学生主体地位,教师“引导—辅导—指导—讲评—归纳”有目的的辅助学生学习。

  1、利用直观形象的图片、模型,引导学生在观察、操作、猜测、验证与交流等数学活动中发现平行四边形的性质。发挥学生的观察能力、联想力,大胆猜测平行四边形的可能性。

  2、注重学生参与,合作交流,让学生在教师的指导下自始至终处于积极思维,主动探究的学习状态,同时借助多媒体进行演示,以增加教学的直观性。

  三、学法指导

  1、观察猜想。以学生的观察、猜想为主,要求学生多观察,大胆猜想,主动探索来了解平行四边形的性质。

  2、合作交流。采取积极引导、主动参与、互相交流来组织教学,使学生真正成为教学的主体,体会成功的喜悦。

  3、抽象概括。指导学生学会观察分析,从具体实例中抽象出平行四边形的图形,概括出平行四边形的定义,培养学生的抽象思维。

  4、总结归纳。通过例题探索、练习反馈、收获园地,引导学生总结归纳本节课学习的主要内容和解决问题的方法以及注意的问题,发挥学生的积极性和主动性,培养学生良好的学习习惯。

  四、教学过程

  (一)温故思新,情境导入

  首先复习四边形的定义及四边形的有关性质。然后课件显示章前图和一些图片。提出问题:你能从图中找出我们熟悉的几何图形吗?

  这个问题是以农田鸟瞰图作为本章的章前图,学生可以见识各种四边形的形状。通过查找长方形、正方形、平行四边形、梯形等起到复习的作用,为进一步比较系统地学习这些图形做准备,并明确本章的学习任务。

  (二)自主学习,发现问题

  通过观察图片,让学生举出身边存在的平行四边形的例子。通过举例,为学生提供参与活动的时间和空间,调动学生的主观能动性,激发求知欲,培养学生形象思维。

  然后自学课本83页—84页例1上面的内容,教师出示问题:

  1、通过观察图片,找出图形的共同特征,说出平行四边形的定义?

  2、你会用符号表示一个平行四边形吗?想一想用符号表示时要注意什么问 题?

  如图 平行四边形ABCD记作:□ABCD(略)

  3、通过观察测量自做的平行四边形你能发现平行四边形的特点吗?

  边:对边平行且相等

  角:对角相等,邻角互补

  4、你能证明你发现的结论吗?

  此环节的设计意图:从实例图片中抽象出平行四边形的几何图形,培养学生的抽象思维,让学生感受到数学与我们生活的密切联系。通过自学加深理解,发现问题,提高自主学习能力。感受动手测量,猜想的乐趣,培养猜想的意识。教师巡视引导,帮助学生自学。

  (三)合作交流,解决问题

  小组合作交流,共同解决自主学习过程中发现的问题:寻找证明的.方法。当学生有疑惑时,教师巡视辅导:我们目前证明线段、角相等的方法是什么?(利用三角形全等来证明)。而图中没有三角形该怎么办?引导学生得出需构造辅助线,将四边形问题转化为三角形问题来解决。学生完成证明,归纳平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等,邻角互补。并引导学生写出性质的几何语言。

  设计意图:通过交流和引导,明确目前证明线段、角相等的常用方法是证明三角形全等。学生完成证明,验证猜想的正确性,让学生感受到数学的严谨性,数学结论的确定性和证明的必要性。对平行四边形性质的归纳,培养了学生的合作交流能力和概括能力,突出了教学的重点。

  (四)小组展示,学以致用

  1、小组代表展示交流的结果,通过实物投影讲解平行四边形性质的证明过程。培养学生语言组织能力和思维逻辑能力。

  2、探究例1 :

  小明用一根36米长的绳子围成一个平行四边形的场地,其中一条边AB长为8米,其他三条边各长多少?

  教师引导学生审题,学生弄清题意后教师示范解题过程,并重点强调解答中平行四边形性质的几何表述。

  设计意图:通过运用平行四边形的性质,学会解决简单的实际问题,让学生认识到数学在现实世界中有着广泛的应用,培养了学生的应用意识。

  3、跟踪反馈:

  (1)在□ABCD中,AB=5,BC=3。求它的周长。

  (2)一个平行四边形的外角是38 ,这个平行四边形的每个内角的度数分别是多少?为什么?

  (3)剪两张对边平行的纸条,随意叉叠放在一起,转动其中一张,重合的部分构成了一个四边形。线段AB和DC有什么关系?

  练习(2)(3)需说出理由,这对学生的语言表达能力有一定的要求,因此要求学生有条理的写出解题过程。

  (五)课堂小结:

  1、这节课你的收获是什么?

  2、还有什么困惑?

  设计意图:通过评价反思引导学生概括本节课学习的内容,对知识进行梳理,这样有利于强化学生对知识的理解和记忆,提高分析和小结的能力。

  (六)达标检测:

  1、选择题:

  (1)平行四边形的两邻角的角平分线相交所成的角为( )

  A、锐角 B、直角 C、钝角 D、不能确定

  (2)平行四边形的周长为24cm,相邻两边的差为2cm,则平行四边形的各边长为( )

  A、4cm,4cm,8cm,8cm B、5cm,5cm ,7cm,7cm

  C、5.5cm,5.5cm,6.5cm,6.5cm D、3cm,3cm,9cm,9cm

  (3)下面的性质中,平行四边形不一定具有的是( )

  A、对角互补 B、邻角互补 C、对角相等 D、对边相等

  2、填空题:

  (1)如图所示,DE∥AB, EF∥BC,DF∥AC, 图中有_______个平行四边形。

  (2)平行四边形的一组对角度数之和为200°,则平行四边形中较大的角为____________

  3、解答题:

  如图,在□ABCD中,∠A+∠C=160°,求∠A、∠B,∠C,∠D的度数。

  (七)板书设计

  19.1.1平行四边形的性质(1)

  定义:两组对边分别平行的四边形 例1 :(略)

  记作:□ABCD

  性质:平行四边形的对边相等且平行;

  平行四边形的对角相等,邻角互补

  本节课根据学生的认知规律,本着激发兴趣,积极投入,由易到难,突破难点,突出重点,充分发挥学生的主体地位,使学生在自主探索,积极思考,合作交流的过程中掌握知识,提高技能,这一主体思路下设计的。

  以上是我对本节课的一些初浅的认识和想法,有不足之处,希望各位老师批评指导。

八年级数学说课稿2

  一、教材分析

  1、教材的地位及作用

  “分式的基本性质”是人教版八年级上册第十一章第一节“分式”的重点内容之一,它是后面分式变形、通分、约分及四则运算的理论基础,掌握本节内容对于学好本章及以后学习方程、函数等问题具有关键作用。

  2、教学重点、难点分析:

  教学重点:理解并掌握分式的基本性质

  教学难点:灵活运用分式的基本性质进行分式化简、变形

  3教材的处理

  学习是学生主动构建知识的过程。学生不是简单被动的接受信息,而是对外部信息进行主动的选择、加工和处理,从而获得知识的意义。学习的过程是自我生成的过程,是由内向外的生长,其基础是学生原有知识与经验。本节课中,学生原有的知识是分数的基本性质,因此我首先引导学生通过分数的基本性质,这就激活了学生原有的知识,然后引导学生通过分数的基本性质用类比的方法得出分式的基本性质。让学生自我构建新知识。通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用. 最后引导学生对本节课进行小结,使学生的知识结构更合理、更完善。

  二、目标分析:

  数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。教学的目的就是应从实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识,形成技能,发展思维,学会学习,使学生生动活泼地、主动地、富有个性的学习,促进学生全面、持续、和谐地发展。为此,我从知识技能、数学思考解决问题、情感态度四个方面确定了教学目标:

  1、知识技能:1)了解分式的基本性质

  2)能灵活运用分式的基本性质进行分式变形

  2、数学思考:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。

  3、解决问题:通过探索分数的基本性质,积累数学活动的经验。

  4、情感态度:通过研究解决问题的过程,培养学生合作交流意识与探索精神。

  三、教法分析

  1、教学方法

  数学是一门培养人的思维,发展人的思维的重要学科。在新课程理念下,获得数学知识的过程比获得知识更为重要。基于本节课的特点,课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

  2、学法指导

  现代新教育理念认为,学习数学不应只是单调刻板,简单模仿,机械背诵与操练,而应该采用设置现实问题情境,有意义富有挑战性的学习内容来引发学习者的'兴趣。,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究,主动总结,主动提高,突出学生是学习主体,他们在感知识知识的过程中无疑提高了探索、发现、实践、总结的能力。

  3、教学手段

  我所采用的教学手段是多媒体辅助教学法。

  四、程序分析

  活动1 创设情境,引入课题

  教师提出问题,下列分数是否相等?可以进行变形的依据是什么?需要注意的是什么?类比分数的基本性质,你能猜想出分工有什么性质吗?学生思考、交流,回答问题。在活动中教师要关注:(1)学生对学过的知识是否掌握得较好;(2)学生对新知识的探索是否有深厚的兴趣。

  设计意图:通过具体例子,引导学生回忆分数的基本性质,再用类比的方法得出分式的基本性质。这样安排,首先激活了学生原有的知识,为学习分式的基本性质做好铺垫。体现了学生的学习是在原有知识上自我生成的过程。

  活动2 类比联想,探究交流

  教师提出问题:如何用语言和式子表示分式的基本性质?学生独立思考、分组讨论、全班交流。

  设计意图:教师引导学生用语言和式子表示分式的基本性质,体现了学生的学习是在原有知识上自我生成的过程。这样安排,学生的知识不是从老师那里直接复制或灌输到头脑中来的,而是让学生自己去类比发现、过程让学生自己去感受、结论让学生自己去总结,实现了学生主动参与、探究新知的目的。

  活动3 例题分析 运用新知

  教师提出问题进行分式变形。学生先独立思考问题,然后分小组讨论。教师参与并指导学生的数学活动,鼓励学生勇于探索、实践,灵活运用分式基本性质进行分式的恒等变形。在活动中教师要关注:(1)学生能否紧扣“性质”进行分析思考;(2)学生能否逐步领会分式的恒等变形依据。(3)学生是否能认真听取他人的意见。

  活动4 练习巩固 拓展训练

  教师出示问题训练单。学生先独立思考完成,并安排三名同学板演。教师巡视,注意对学习有困难的学生进行个别辅导。在活动中教师要关注:(1)大部分学生能否准确、熟练完成任务;(2)学生能否用数学语言表述发现的规律;(3)学生在运算中表现出来的情感与态度是否积极。

  设计意图:通过思考问题,鼓励学生在独立思考的基础上,积极地参与到对数学问题的讨论中来,勇于发表自己的观点,善于理解他人的见解,在交流中获益。第二个问题指明了分式的变号法则。

  活动5 小结评价 布置作业

  学生思考在教师的引导下整理知识、理顺思维。在活动中教师要关注:(1)学生对本节课的学习内容是否理解;(2)学生能否从获取新知的过程中领悟到其中的数学方法。

  设计意图:学生对学习情况进行反思,主要包括:对自己的思考过程进行反思;对学习活动涉及的思想方法进行反思;对解题思路、过程和语言表述进行反思;等等。帮助学生获得成功的体验和失败的感受,积累学习经验。对所学内容进一步系统化,使学生的知识结构更合理,更完善。

八年级数学说课稿3

尊敬的各位评委,各位老师:

  大家好,今天我说课的内容是人教版八年级下册第十九章《四边形》的第三节《梯形》.

  一、教材分析

  (一)本节课在教材中的地位及作用:本节课是中考考纲中规定的必考内容,它对整章节教学起承上启下的作用,学好梯形会有举一反三、以一当十的作用。

  (二)课时安排:两课时。本节课是第一课时,第二课时是梯形的判定及应用

  (三)教学目标1. 知识与技能目标:掌握梯形的有关概念、等腰梯形的性质和五种基本辅助线。

  2.过程与方法目标:⑴使学生在探究梯形相关的概念和等腰梯形的性质的过程中发展学生的说理意识;

  ⑵在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略.

  3.情感、态度与价值观目标:让学生们体会数学活动充满着思考与创造的乐趣,体验与同学合作交流的愉悦;

  (四) 教学重点、难点:本节课的教学重点分成三个层次1、掌握梯形的定义,认识梯形的其他相关概念;2、熟练应用等腰梯形的性质;3、通过实际操作研究梯形的基本辅助线作法。

  本节课的教学难点确定为:灵活添加辅助线,把梯形转化成平行四边形或三角形。原因是解决梯形问题往往要转化成平行四边形和三角形来处理,经常需要添加辅助线,对于刚刚接触梯形的学生难免会有无从下手的感觉,往往会有题目一讲就明白但自己不会分析解答的情况发生。

  为达成以上的教学目标,解决重点、突破难点,我的课堂教学设计的指导思想为:努力实现对传统课堂教学模式的五个突破——以学生主体观念突破教师中心、以学生主体活动突破课堂中心、以学生主体参与突破讲解中心、以学生主体经验突破书本中心、以学生主体能力发展突破考试中心。在这样的理念下,我设计了如下的教法、学法和教学程序:

  二、教学方法:

  根据《新课标》的要求,立足于学生的生活经验和已有的数学活动经验,本节课我采用“引、动、导、探”教学法,实施“二、四、六”教学模式,即两个探究层次、四个教学环节、六步教学程序。如陶行知先生所说的:在方法上应该是“行”为先,“知”为后。

  三、学习方法:

  初二的学生已经基本具备了《新课标》中要求的“初步的空间观念”《新课标》指出:有效的数学学习活动不能单纯依赖模仿和记忆。为了充分体现《新课标》的要求,本节课采用“做、思、问、辩、议”的五步学习法.正如波利亚所说的:“学习任何知识的最佳途径,都是自己去发现。”

  四、教具、学具准备:

  多媒体,小黑板,常用画图、剪纸工具,矩形纸片,平行四边形纸片,信纸

  五、教学程序:

  共有六步

  (一)情境引发

  (二)活动探索、研究发现

  (三)深化建构

  (四)迁移运用

  (五)系统概括(

  六)布置作业,拓展思维

  这六步教学程序在教案中都详细介绍了,我只把教学的主线和总的设计意图说一说

  在前三个环节我都是以剪纸为主线:俗语说:良好的开端是成功的.一半所以我先是利用平行四边形纸片剪梯形,然后是利用矩形纸片剪特殊梯形,再利用剪出的等腰梯形研究发现等腰梯形的性质,这样一环扣一环的完成教学目标,并解决本节课的两个重点。这样设计的目的是:如《新课标》中所说的“数学教学是数学活动的教学”所以在设计这节课时我没有一味的照本宣科,而是让学生们在操作中发现,在操作中探究,在操作中升华,借助于优美的课件使课堂真正成为学生的舞台,以自己的行动实践了一句话“教是为了不教”

  在第四个环节迁移运用里本着“学以致用”的原则,在这里我设计了“练一练,议一议,试一试,想一想”四个环节。

  由学生独立完成, 用实物展台展示学生解答过程,集体评价、完善,规范学生的解题过程.并着重解决梯形的辅助线问题,由学生归纳、补充、完善,在黑板的主板面——中间位置逐一列出。

  设计意图:解决梯形问题的策略很多,在这里我没有单纯的就辅助线来研究辅助线而是把知识点蕴含在习题中,再归纳总结。华应龙老师说:最好的课堂,本质上是一种“有助于启动和启发思维的酵母”。我就想通过这样做使学生的思维自然而然的过渡到本节课的难点上,这样设计培养了学生的发散思维,通过一题解决一类问题.顺利的突破了本节课的难点

  在第五个环节系统概括里我没有采用传统的学生或老师小结的方式而是以探究课题的方式出现从下面三个题目中任选一个作为探究课题:1、平行四边形和梯形的区别和联系;2、我看等腰梯形的特殊性;3、解决梯形的常用方法。以小组为单位共同完成,将探究结果以文章的形式呈现。我这样设计的目的是这三个题目就是本节课的主要内容无论学生选择哪一个,在浏览、思考、准备、生成的过程中即达到了概括的目的又发展了学生的能力。

  在第六个环节在作业内容的设计上,我改变了传统的以巩固知识为目的的单一的作业形式,留的两项作业都是考察学生能力的

  1、拓展性作业:在平行四边形(矩形)纸片上画一条裁剪直线,将该纸片裁剪成两部分,并把这两部分重新拼成如下图形:(1)等腰梯形(2)直角梯形.(要求:所拼成的图形互不重叠且不留空隙)

  2、发挥想象,以梯形为基础图案设计通钢三中第九届运动会的会徽

  我这样设计的目的是:即是学生乐于接受的又突出体现实践性、探究性、发展性,使学生所学知识得以升华,在设计会徽时还可以适当的对学生进行情感教育,同时为下节课的学习埋下伏笔.

  六、四点说明 :

  1、板书设计分为三个部分:(左)梯形定义和性质;(中)梯形五种辅助线的作法及图形;(右)大屏幕。这堂课的板书力求做到形象直观,适当运用彩粉笔,突出重难点,便于学生理解,起到深化主题,回顾中心的作用。2、时间的大体安排 :情境引发大约3分钟,活动探索、研究发现,大约15分钟,深化建构约8分钟,迁移运用大约13分钟,系统概括及布置作业6分钟。

  3、教学反思需要课后填写4、整个设计要突出体现的特色:让学生动手操作,让学生实践验证,让学生自己设计,学生能说的我不说,学生能做到的我不做,努力做到“教是因为需要教”

  七、教学预测:

  本节课内容较多尤其是辅助线的几种作法在一课时内完成,有部分学生在探究问题的深度和广度上可能会有所欠缺。以上是我基于《梯形》在教材中的地位和初二学生的认知特点在新课程理念指导下作出的教学设计,敬请各位专家批评指正。谢谢!

八年级数学说课稿4

  这一节课,是依据苏科版新课程实验教材,八年级数学上册第四章实数,第二节《立方根》的内容设计的。本节内容承接了《平方根》的教材编排模式,与平方根一节一起给学生建立‘开方’的运算模式,为下一节《实数》概念的建立和运算模式的建立打基础。所以,说本节课具有‘承前启后’的作用,应当是合适的。

  说课标

  数学课程标准对“实数”一章中关于本节知识的要求是:①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。②了解立方与乘方会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根。因而,本节确立的教学目标,在知识技能方面要求了解立方根的概念,用三次根号表示一个数的立方根。方法方面用类比法学习立方根及开立方运算。情态价值方面则发展求同存异思维。

  (一)学习目标:

  1 、知识目标:

  (1)理解并掌握立方根的概念,会用符号表示一个数的立方根。

  (2)能用立方运算求某些数的立方根,了解开立方与立方互为逆运算。

  (3)理解并掌握正数、负数、0的立方根的特点。

  (4)区分立方根与平方根的不同。

  2 、能力目标:

  (1)通过学习立方根,培养学生理解概念并用定义解题的能力。

  (2)通过用类比的方法探寻出立方根的概念、表示方法及运算。

  (3)通过经历探索和合作交流,归纳总结出平方根与立方根的异同。

  (二)学习重、难点:

  1、学习重点:立方根的概念和求法。

  2、学习难点:理解立方根的性质;比较立方根与平方根的异同。

  说教学法分析

  当前高效课堂的主流就是培养学生的能力,使学生学会学习,学会解决实际问题。在学习过程中让学生自主探索、观察猜测、合作交流、分析推理、归纳总结,充分体现学生的主体地位,体会参与的乐趣,成功的.喜悦,感知数学的奇妙。

  说教学重点

  了解立方根的概念性质,会用概念解题。

  说教学难点

  应用时的符号问题

  教具准备

  鉴于需要类比教学,容量大,因此采用多媒体课件教学

  说教学流程

  在教学过程中,我采用班班通辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  1、创设情境复旧导新

  在课堂的引入上采用了一个求立方根的实际应用问题,已知体积,求正方体的棱长。由实际应用问题引入学生易于接受。体现了数学源于生活。

  再对已学过的相似运算---平方根进行复习,为接下来与立方根进行比较打下基础。初步体会类比思想

  2、启发诱导探索新知

  首先出示学习目标,让学生明白本节课我要学什么,怎样学,达到什么要求。接下来结合导学案和教材,导读自学,自主探究。设计意图:学生自学教材通过自学感悟理解新知,体现了学生的自主学习意识。

  最后,我通过三个活动将新知细化

  活动一:立方根的概念

  设计意图:使学生学会“文字语言”与“符号语言”这两种表达方式。整堂课充分发挥学生的主体作用,真正获取知识,解决问题。

  活动二:立方根的性质

  这是本节的一个难点。考虑到这个结论与平方根的相应结论不同,采用了先启发学生思考的办法,安排一个口答题,求一些具体数的立方根,在学生经过观察、思考并有了一些感性认识之后,自己总结出有关正数、0、负数立方根的特点,其后,通过合作探究学生归纳总结出平方根与立方根的异同。强调:用根号式子表示立方根时,根指数不能省略;以及立方根的唯一性。

  3、引导探究延伸新知

  活动三:求一个数的立方根

  (1)表示各数的立方根(定义的理解)

  (2)求下列各式的值(概念、性质、公式的综合运用)

  设计意图:组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果。使学生从中体会到从特殊到一般的数学思想,同时,让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。

  4、归纳小结巩固新知

  设计意图:引导学生对知识要点进行总结,梳理学习思路。

  5、课堂达标拓展延伸

  设计意图:此环节体现出课堂的价值不仅是让学生学会知识,检验新知学习效果,而且培养学习能力,提升素质,达到了兵教兵,兵强兵的目的。

  说板书设计

  立方根

  1、一个数a的立方根可以表示为:

  读作:三次根号a,其中a是被开方数,3是根指数,不能省略。

  2、立方根的性质:

  (1)正数的立方根是正数;

  (2)负数的立方根是负数;

  (3)0的立方根是0。

  3、比较立方根与平方根的异同

  4、黑板右边学生板演、展示。

八年级数学说课稿5

  内容介绍

  我是辽阳县唐马中学的张海英我上课的内容是九年义务教育北师大版数学教材八年级上册第四章三节《菱形》。下面我从教材分析,教法分析,学生分析与学法指导,教学过程四个方面谈一谈我对这节课的理解与设计。

  一、教材分析

  (一)地位和作用《菱形》紧接《平行四边形的性质》、《平行四边形的判别》之后,纵观整个初中数学教材,它是在学生掌握了平行四边形的性质与判别之后,具备了初步的观察,操作等活动经验的基础上讲授的。这一节既是前面所学知识的继续,又是后面学习矩形、正方形等知识的基础,起着承前启后的作用,同时又为九年级进一步学习平行四边形,特殊的平行四边形奠定基础。

  (二)鉴于本节课在整个教材体系中的地位和作用,我确定了本节课的教学目标如下:

  1、知识与技能,知道菱形在现实生活中的广泛应用,熟悉菱形的有关性质和判别条件,并能灵活运用。

  2、过程与方法:经历探索菱形的性质和判别条件的过程,在观察、操作和分析的过程中进一步增强主动探究的意识,体会说理的基本方法。

  3、情感态度与价值观。体验数学活动来源于生活又服务于生活,体现菱形的图形美,提高学生的审美情趣。

  重点:菱形的性质与判别方法

  难点:性质与判别方法的灵活运用

  二、教法分析

  针对本节课的特点,我准备采用“创设情境——观察讨论——总结归纳——知识运用”为主线的教学模式,观察、分析、讨论相结合的方法。教学中引导学生经过观察、思考、探索、交流获得知识,形成技能,在教学过程中注意创设思维情境,坚持学生主体,教师主导,在合作交流的气氛下进行师生互动,培养学生的自学能力和创新意识,让学生在教师的`指导下自始至终处于一种积极思维,主动探究的学习状态。同时借助教具演示,以增加教学的直观性,更好的理解菱形的性质与判别,解决教学重点与难点。

  三、学生分析与学法指导

  在日常生活中,学生经常会遇到各种几何图形也包括菱形,但学生对这一图形的认识是直观的、肤浅的,因此在教学中既要利用原有直观感知及平行四边形的相关知识为基础,探索菱形的性质及判别方法,又要尝试利用它们解题。在本节课的教学中,要帮助学生学会运用观察,分析,比较,归纳,概括等方法,得出解决问题的方法,使传授知识与培养能力融为一体,使学生不仅学到科学的探究方法,而且体验到探究的乐趣,领会到成功的喜悦。

  四、教学过程

  (一)具体图片导入新课。

  (二)出示本节课的学习目标,鼓舞学生树立信心,完成目标。

  (三)通过课件演示,一般平行四边形变为菱形的过程,得出菱形定义,对比两图形异同点得出菱形的性质

  (四)通过剪菱形探索菱形的判别方法。

  (五)通过判别正误,例题教学,自我检测来尝试运用、巩固菱形的性质、判别

  (六)回顾学习目标,检验完成情况,谈谈本节收获。

  (七)作为课堂教学的延伸,布置作业。

八年级数学说课稿6

尊敬的各位评委、各位老师:

  大家好!今天我说课的题目是《整式的乘法》,下面我就教材、教法与学法指导、教学设计和教学反思四个方面来向大家介绍一下我对本节课的理解与设计。

  一、说教材

  1、教材的地位与作用:本节课是学生在学习了单项式乘以单项式、单项式乘以多项式之后安排的内容,既是单项式与多项式相乘的应用与推广,又为今后学习乘法公式作准备。同时,还可以激发学生对数学问题中蕴含的内在规律进行探索的兴趣和培养学生知识迁移的能力;其得出的过程涉及数形结合,整体代换等重要的`数学思想。因此,它在整个初中阶段“数与式”的学习中占有重要地位。

  2、教学目标:根据教材内容和学生实际情况,我确定了三个教学目标:

  (1)知识与能力:通过自己的探索,用几何和代数两种方法得出多项式与多项式的乘法法则;

  (2)过程与方法:在学生探究的过程中培养学生的思维能力及分析和解决问题的能力,体会数形结合的思想和整体代换的思想;(3)通过数学活动,让学生对数学产生好奇心和求知欲,从而体会到探索与创造的乐趣。

  3、教学重难点:多项式乘以多项式法则的推导过程以及法则的归纳和应用。

  二、说教法和学法指导:

  为了充分调动学生的参与意识,更好地落实各项目标,本节课以学生的数学活动为主线,以让学生参与为本课的核心,以自主、合作、探究、实践为学生的主要学习方式,在此基础上,我采用了如下的教学方法:尝试法、实践法、讨论法、发现法,让学生全员参与,全员活动,让学生和老师、学生和学生之间互动,特别是让学生展示、点评、质疑,充分调动了学生的积极性,发挥学生的潜能。

  三、说教学设计:

  本节课的主要教学过程设计了“导学达标——探究释疑——拓展延伸——内化迁移”四个基本环节。

  1、导学达标:

  在这个环节首先检查了学生的预习案完成情况,针对预习中存在的问题进行点拨。然后由一个实际问题引入课题,激发学生兴趣,最后再解读本课的学习目标、重难点,让学生带着目标和问题展开本节课的学习。

  2、探究释疑:

  这一环节一共设计了两个探究活动。

  第一个探究活动让学生进行了拼图游戏,通过比较所表示的拼出的大长方形面积,从而发现多项式乘以多项式的法则,然后和预习案中用代数方法所得出的结论进行比较。此时,教师引导学生进一步认识到多项式乘以多项式本质上与单项式乘以多项式一样都是乘法分配律的应用,从而突破了难点,进而让学生体会到转化以及数形结合的思想。

  在得出多项式乘法的法则后,我让学生试着用文字表述它,学生的叙述开始不一定完善,在此教师要帮助学生认识到法则的本质,并最终得出多项式与多项式的乘法法则:

  多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.

  接下来我设计了一道例题,例题是课本的题目,其目的是熟悉、理解法则。完成例1时,教师引导学生严格按照法则来做,并认真板书,规范了学生的解题过程,起到了示范作用。在完成例题之后,为了让学生检验自己对法则的理解和掌握程度

八年级数学说课稿7

  各位评委,大家好!

  今天我要说的课题是义务教育人教版初中八年级十七章第一节“反比例函数”。我将从如下步骤进行。

  一、说教材

  1. 内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。

  2.学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。

  二、说教学目标

  根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:

  1.从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

  2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

  三、说教法

  本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。

  四、说学法

  我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的`转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。

  五、说教学过程

  (一)创设情境,发现新知

  首先提出问题

  问题1:小明同学用50元钱买学习用品,单价y(元)与数量x(件)之间的关系式是什么?

  【设计意图及教法说明】

  在课开头,我认为以一个简单的数字问题引入,目的是让学生在很快的时间里说出显而易见的答案,便于增强学生学好本课的自信心,使他们能愉快地进行新知的学习。

  问题2:我们知道,电流I、电阻R、电压U之间满足关系式U=IR,当U=220V,

  (1)你能用含有R的代数式表示I吗?

  (2)利用写出的关系式完成下表。

  R/Ω 20 40 60 80 100

  I/A

  当R越来越大时,I怎样变化?当R越来越小呢?

  (3)变量I是R的函数吗?为什么?

  【设计意图及教法说明】

  因为数学来源于生活,并服务于生活,问题2是一个与物理有关的数学问题,这样设计便于使学生把数学知识和物理知识相联系,增加学科的相通性,另外通过本题的学习,可以让学生在情境中体会变量之间的关系,问题2先让学生独立思考,然后再同桌交流,最后小组讨论并汇报,此问题中的(1)(2)问题比较简单,学生可以独立完成,但对于问题(3),老师要给适当的指导。

  问题2的深化:舞台灯光可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼,这样的效果是通过什么来实现的?

  【设计意图及教法说明】

  学生可以根据问题2以及学过的物理知识来解释这个问题,这样既增强学生学习新知的积极性,又达到了解决问题的目的。

  问题3:京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?

  【设计意图及教法说明】

  问题3是一个行程问题,先让学生独立思考、同桌讨论,最后列出正确的函数关系式,进一步体会函数是刻画变量之间关系的数学模型,为形成反比例函数的概念打基础。

  (二)合作探究,获得新知

  1.出示问题

  想一想,你还能举出类似的例子吗?

  【设计意图及教法说明】

  这个环节目的在于让学生亲身经历观察、思考、抽象、概括、补充、完善的过程,让学生尝试用自己的语言说明他们的新发现,培养他们的归纳能力和自主探索与合作交流的良好学习习惯,在这期间教师就是他们的合作者、引路人,边听、边问、边指导,初步形成反比例函数的概念。

  2.启发学生建构新知

  反比例函数的定义:一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数。

  反比例函数自变量不能为0!

  反比例函数的一般形式:y= k/x(k为常数,k≠0)

  反比例函数的变式形式:k=yx,x=k/y(k为常数,k≠0)

  【设计意图及教法说明】

  这种从不同的问题情境中抽象出相同的数学模型,再进行抽象得出概念的过程,并非教师所强加,而是学生通过自己分析走向概念,突破本节课的难点,使学生的自豪感和成功感在活动中得以提升,体现类比、转化、建模等数学思想,把本节课推向高潮。

  (三)反馈练习,应用新知

  根据学生认知的差异性,我设计了基础过关和拓展训练两类练习题。

  1.基础过关

  (1)下列函数的表达式中,x表示自变量,那么哪些是反比例函数?每一个反比例函数相应的k的值是多少?

  ①y=x/5 ②y=6x-1 ③y=-3x-2 ④xy=2

  【设计意图及教法说明】

  此题较简单,以口答的形式进行,设计的目的是重视基础知识的教学和面向全体学生的教学,并告诫学生判断一个函数是否是反比例函数不能单从形式上判断,一定要严谨认真,同时也完成了随堂练习1。

  (2)做一做

  ①一个矩形的面积为20cm2,相邻的两条边长分别是xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?

  ②某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?

  ③y是x的反比例函数,下表给出了x和y的一些值:

  a.写出这个反比例函数的表达式;

  b.根据函数表达式完成下表。

  表略。

  【设计意图及教法说明】

  通过三个实际问题的解决,培养了学生“发现问题”、“解决问题”的能力,也达到了学以致用的目的。

  2.能力拓展

  (1)你能举个反比例函数的实例吗?与同学进行交流。

  (2)y=5xm是反比例函数,求m的值。

  【设计意图及教法说明】

  问题(1)是一个开放性的题,既解决了随堂练习2,也培养了学生的发散性思维。问题(2)能助于学生抓住关键点,澄清易错点(反比例函数中k≠0),并且加强了新旧知识的联系。

  (四)归纳总结,反思提高

  通过这节课的学习你有哪些收获?还有哪些问题?与同伴进行讨论。

  (如:你学到了什么?懂得了什么?你发现了什么?还有什么困惑?应注意什么?还想知道什么?)

  【设计意图及教法说明】通过问题式的小结,让学生再次归纳、总结本节课的重点,弥补教学中的不足。

  (五)推荐作业,分层落实

  必做题:课本第134页习题1、2题。

  选做题:已知y与2x成反比例,且当x=2时,y=-1,求:

  (1)y与x的函数关系式。

  (2)当x=4时,y的值。

  (3)当y=4时,x的值。

  【设计意图及教法说明】作业以推荐的形式进行,必做题体现了对新课标下“学有价值的数学”、“人人能获得必要的数学”的落实,选做题体现了让“不同的人在数学上得到不同的发展”。

八年级数学说课稿8

  我今天说课的课题是《不等式的基本性质》,它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:

  本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

  根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标:

  知识与技能:

  1。 感受生活中存在的不等关系,了解不等式的意义。

  2。 掌握不等式的基本性质。

  过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

  情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

  教学重难点:

  重点:不等式概念及其基本性质

  难点:不等式基本性质3

  教法与学法:

  1。 教学理念: “ 人人学有用的数学”

  2。 教学方法:观察法、引导发现法、讨论法.

  3。 教学手段:多媒体应用教学

  4。 学法指导:尝试,猜想,归纳,总结

  根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。

  下面我将具体的教学过程阐述一下:

  一、创设情境,导入新课

  上课伊始,我将用一个公园买门票如何才划算的例子导入课题。

  世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?

  (此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的.不等关系式)

  紧接着进一步提问:若人数是x时,又当如何买票划算?

  二、探求新知,讲授新课

  引例列出了数与数之间的不等关系和含有未知量120<5x的不等关系。那么在不等式概念提出之前,先让学生回顾等式的概念,“类比”等式的概念,尝试着去总结归纳出不等式的概念。使学生从一个低起点,通过获得成功的体验和克服困难的经历,增进应用数学的自信心,为下面的学习调动了积极。

  接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。

  (1)a是负数;

  (2)a是非负数;

  (3) a与b的和小于5;

  (4) x与2的差大于-1;

  (5) x的4倍不大于7;

  (6) y的一半不小于3

  关键词:非负数,非正数,不大于,不小于,不超过,至少

  回到引入课题时的门票问题120<5x,我们希望知道X的取植范围,则须学习不等式的性质,通过性质的学习解决X的取植

  难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。

  以上是我对这节课的教学的看法,希望各位专家指正。谢谢!

八年级数学说课稿9

  各位评委:

  大家好!今天我说课的题目是《黄金分割》 ,所选用的教材为北师大版八年级数学下册第四章《相似图形》第2节的内容。我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析等七个方面阐述我的设计意图。

  一、教材分析:

  1、教材中的地位和作用

  《相似图形》本章是对图形全等内容的进一步拓广与发展。学习相似图形,离不开线段的比和比例线段,《黄金分割》将从一个崭新的角度加深同学们对比例线段和线段的比的认识,是第一节内容的延续和拓展,因此基于本节课的地位,确定教学目标如下:

  2、教学目标设计:

  知识技能目标:(1)掌握黄金分割的定义及黄金分割点的作法;(2)会进行黄金分割的有关计算。

  过程方法目标:经历黄金分割的引入及黄金分割点作法的探究过程,掌握数形结合法在数学解题中的运用。

  情感态度目标:

  在现实情境中体会黄金分割的文化价值,提高学生对黄金分割价值的审美能力,培养同学们主动参与、积极思考、合作交流的学习品质。增强学生的实践意识和自信心 。

  3、本课重点、难点分析:

  学习重点:黄金分割的定义,并能运用。(理由:核心概念是黄金分割,黄金分割点、黄金比。围绕核心,让学生体会知识的形成过程对学生学习新知识是十分必要的,给学生提供思考、探索、发现、创新的最大空间,可使学生在整个教学过程中始终处于积极的思维状态,进而培养学生的创新意识,因此本节课的重点是认知黄金分割的定义及黄金分割的运用)。

  学习难点:探究线段黄金分割点的作法。(对于黄金分割的作图,可以使用三角板和刻度尺,因为他们所学的尺规作图有限,不易想到,估计接受作图时有困难,所以本节课的难点是黄金分割的作图)。

  二、学情分析:

  从认知状况来说,学生在此之前已经学习了线段的比,对比例性质已经有了初步的认识,但对于黄金分割的理解,(由于其抽象程度较高)估计学生可能会产生一定的困难,所以教学中应予以简单明白的分析,让学生主动参与到教学中。

  三、关于教法与学法:学生是学习的主人,教师是组织者、引导者、合作者。学生对黄金分割了解甚少,为调动学生的积极参与我采用的

  教法是:引导发现法、直观演示法、实验法、讨论法、练习法等多种教学方法优化组合。

  学法是:自主探索、合作交流的学习方式。

  四、教学过程的设计

  设计过程中注重了“探究”、“互动”等环节,总体流程为 “创设问题情境、引入概念---自读探知、合作探究---师生互动、探究作图---应用与拓展—巩固练习等环节。具体教学过程如下:

  一)、创设问题情境、引入问题(2分钟)

  1、欣赏多媒体图片 ,引入课题——黄金分割

  〔设计意图〕唤醒学生对美的感受,营造一个感受美、关注美、探究美的氛围,搭建一个自主体验、合作探究、自主构建的认知平台。

  二)自读探知、合作探究(10分钟)

  1、这堂课从放手让学生度量本课中的五角星点C到点A、点B的距离及AB间的距离,

  〔设计意图〕这样通过学生亲自动手操作、计算,亲自经历知识的形成过程,自己发现AC/AB=BC/AC,形成初步概念,培养学生综合运用线段比的能力和探究的能力,同时养成良好的读书习惯。

  2、然后小组合作,观察、测量、计算手中的正五角星(老师课前准备好的大小不等的共四类),教师引导作有关测量(测量时尽可能精确,减少误差)。测量结果并不相等 引导学生探究问题并阅读课本形成概念。

  同时说明在科学研究中,我们往往要做成千上万次实验,以获得一个较为准确的数值。数学活动也是如此。可以借助计算器帮计算,发现:

  〔设计意图〕“有意义的数学学习不能单纯依赖模仿与记忆,而动手实践,自主探索与合作交流也是重要的数学学习方式”。依据学生已有的知识背景和活动经验,为学生提供了操作、思考与交流的机会。对自读探知的疑惑明了,增强合作交流意识,让学生在合作交流中体验成功与快乐。

  3、 黄金分割的定义:

  在线段AB上,点C把线段AB分成两条线段AC和BC,如果那么称线段AB被点C黄金分割(goldensection),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.其中≈0.618.

  推导黄金比值。用配方法解得比值为≈0.618

  〔设计意图〕通过探索交流合作过程得出定义就比较容易,但对于初二的学生尚未学习一元二次方程,所以黄金比只要接受事实即可,用配方法解一元二次方程,是为了为学有余力的学生提供学习的空间,也为提供理论依据。突出了本课的重点---黄金分割的'定义。

  〔设计意图〕为了使学生对黄金分割有一个更深的认识,通过判断使学生了解由黄金分割可以得到什么。并能进行有关计算,及时发现和补救教与学中的遗漏和不足。

  特别提示1:一条线段有2个黄金分割点。C点靠近A端AC就是较短边。

  特别提示2:黄金比并不为黄金分割所专有,只要任两条线段的比值满足这一常数,就称这两条线段的比为黄金比。黄金比没有单位。

  特别提示3:必须满足位置和数量两个条件,才能判断一个点是一条线段的黄金分割点。

  灵活变形公式计算 较长:全=较短:较长(根据=≈0.618进行计算)(C是线段AB的黄金分割点,AC>AB.分别能计算较长边、较短边、全长、比值)。

  三)师生互动 探究作法 (9分钟)

  问题探究:如何作一条线段的黄金分割点?

  本节难点,突破办法:如何作长度是的线段,是突破此题的关键

  (1)引导学生作长度为、的线段;(2)假设AB=2,就需AC=-1;(3)理解为什么这样作。

  如图,已知线段AB,按照如下方法作图:

  (1)经过点B作BD⊥AB,使BD=AB.

  (2)连接AD,在DA上截取DE=DB.

  (3)在AB上截取AC=AE.则点C为线段AB的黄金分割点.

  〔设计意图〕问题是为了激发学生的兴趣,难点突破是基于学生能够在数轴上作出有关的无理数,构造直角三角形算斜边的方法可以得,引入作法是为了提起学生探索的欲望,同时进一步巩固学生对黄金分割的认识.

  活动1:请同学们仿照老师的作法画出上图.

  活动2:探索作法的正确性.自己有困难时可以互相交流,试着证明一下以上结论.教师参与其中,共同证明,加以提示.

  不失一般性(作法的正确性),设AB=2a,则 BD=DE=a

  还有其他的画法吗?留作学生探讨

  〔设计意图〕活动1锻炼学生动手操作的能力,进一步巩固黄金分割点的作法.估计学生操作不规范予以矫正。活动2 通过上面给出的找黄金分割点的方法,为不同学生的发展创造条件。为学有余力的学生提供足够的材料。在自己的实际证明过程中体会成功的喜悦,而教师在这个环节中扮演着一个合作者、参与者的角色.。

  四)应用拓展(6分钟)

  1、阅读111页“想一想”巴台农神庙. 分组讨论,让学生充分交流,然后得出结果:

  宽与长的比是黄金比的矩形叫做黄金矩形.还有黄金三角形等(在幻灯片中简单提及即可)

  〔设计意图〕通过巴台农神庙介绍黄金矩形,让学生体会其文化价值,扩展学生的知识,简单介绍黄金三角形,同时也加深学生对黄金分割的理解。

  2、再次展示另一组古今图片,介绍黄金分割在现实生活中的广泛运用,加深对本节知识,陶冶学生情操,进一步体会黄金分割的人文价值。

  五)巩固知识,随堂练习(8分钟) (黄金分割点的另外作法)

  练习1、任意作一条线段采用如下方法也可以得到黄金分割点:如图,设AB是已知线线段,在AB上作正方形ABCD;取AD的中点E,连接EB;延长DA至F,使EF=EB;以线段AF为边作正方形AFGH.点H就是AB的黄金分割点.

  你能说说这种作法的道理吗?

  〔设计意图〕(1)让学生掌握更多黄金分割的作法,拓展其思路,(2)进一步判断某一点是否为一条线段的黄金分割点,练习学生的语言组织能力和表达能力.

  六)回顾小结(4分钟)

  现在请同学们回顾本节课所学的内容,说说看你有什么收获或疑惑。

  〔设计意图〕通过学生回忆本节课所学内容,获取新知的途径等方面进行小结,给学生一个充分发挥自己个性的机会,各抒己见,体现了课堂中学生的主体作用。

  七)布置作业(1分钟)

  作业:A类113页:习1、2 B类 113页习 3 C类*为妈妈策划她应穿多高的高跟鞋合适?

  〔设计意图〕作业分层布置,在完成达标的基础上拓宽和加深,加强学生综合能力和创造才能的培养。也是尊重学生个体差异的表现。

  五、关于板书设计

  体现知识之间的联系,有利于知识的系统化。设计板书如下:

  六、教学媒体设计:

  根据本节教学内容的特点,设计制作了多媒体课件,课件分为三部分:第一部分,情境展示。通过展示图片让学生直观感知黄金分割在建筑艺术生活领域的美学价值。第二部分,知识呈现,激发学生学习兴趣,有利于突破教学重点、难点,促使学生乐意投入到现实的探索性的数学活动中去。第三部分,实践应用。目的是提高学生审美情趣,数学源于生活且服务于实践,进一步探究美、创造美,提高课堂效率。

  七、关于教学评价:

  本节课既注重了对双基的评价,又注重了对学生情感态度的评价:

  1、注重对学生双基的评价。如 设计的关于黄金分割定义的判断题;学生对比值的计算等。

  2、注重对学生观察、动手及参与能力的评价。如欣赏各种美丽的图片并观察特点;动手测量并计算线段的比;探讨黄金分割点的作法等。

  3、选择生活中的问题评价学生应用数学的意识和能力。如帮妈妈设计高跟鞋的高度问题。

  以上是我对本节课的设计理念及设计思路,不妥之处,敬请批评指正。

八年级数学说课稿10

  一、教材分析

  (一)教材的地位和作用

  现实世界中,四边形装点着我们的生活。宏伟的建筑物、铺满地砖的地板、别具一格的窗棂、天空飞舞的风筝处处都有平行四边形的身影。本节课是在学生已掌握了全等三角形、四边形的有关知识和平行线的性质的基础上学习的,既是已学知识的综合运用,更是下一步研究各种特殊平行四边形的基础,具有承上启下的作用。通过本节教学,把研究平行四边形转化为全等三角形的方法向学生渗透“转化”的数学思想,探究平行四边形的性质过程提高学生分析、解决问题的能力。因此,本节课无论是在知识的学习,还是对学生能力的培养上都起着十分重要的作用。

  (二)教学目标知识教学点目标:使学生理解并掌握平行四边形的概念及性质,并能运用这些知识进行有关的证明与计算。从而解决简单的实际应用问题。

  能力教学点目标:在性质的探索、发现与证明的过程中,培养学生的观察能力及逻辑推理论证能力,渗透“转化”的数学思想。

  情感、态度、价值观目标:通过探究学习,增强发现问题、解决问题的意识,养成合作交流的习惯。通过列举现实生活中的平行四边形形状的实例,使学生明白几何图形来源于生活,学习几何是为了解决实际问题,培养学生科学的学习态度。

  (三)教学重点、难点与课时设计教学重点:平行四边形的定义及性质。教学难点:平行四边形性质的理解。

  二、说教法

  根据本节课的教材内容特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用观察发现法为主,多媒体演示法为辅。教学中,设计启发性思考问题,创设问题情境,引导学生思考。教学适时运用电教媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

  三、说学法

  1、根据自主性和差异性原则,让学生“观察→猜想→概括→验证→交流→应用”的学习过程中,自主参与知识的发生、发展和形成的过程,使学生掌握知识。

  2、学生一题多解,并及时引导学生小结方法,克服思维定势。例题讲解采取分解图形的方法,使学生体验并学习“转化”的数学思想。

  3、利用实际生活中的.图形,使获取新知识的过程成为水到渠成,增强学生学习的成就感及自信心,从而培养浓厚的学习兴趣。

  四、说教学过程

  教学程序设计:教学流程图

  展概性性课示念质质外

  图的的的作片形猜巩业揭成想固自

  示与与与我课讲验应检题解证用测

  教学过程:

  (一)、观赏生活中的图片,引入课题(电脑演示)下面的图片中,有你熟悉的哪些图形?

  设计意图:从学生身边熟悉的事物中选取学习素材,易于学生接受,激发学生的学习兴趣。同时,让学生明确本节课的学习内容。

  (二)、开启智慧

  1、操作活动:

  让学生进行如下操作后,思考以下问题:(幻灯片展示)

  将一张纸对折,剪下两张叠放的三角形纸片。将它们相等的一组边重合,可以得到一个四边形。设计意图:学生在拼图活动中可以获得丰富的感知,经历和体验图形的变化过程,引导学生感悟知识的生成、发展和变化.

  2、观察、讨论:

  (1)两张纸片拼成了怎样的图形?它是四边形吗?

  (2)这个图形中有没有互相平行的线段?你是怎样得到的?(3)用简洁的语言刻画这个图形的特征,并与同伴交流。

  设计意图:通过拼图游戏,让学生经历了平行四边形概念的探究过程,自然而然地形成平行四边形的概念,符合学生的认知规律.避免了以往概念教学的机械记忆,同时发展了学生的探究意识,培养了学生思维的广阔性.

  3、平行四边形的定义。

  4、介绍平行四边形的书写方式及对角线、对边、对角、邻角的定义。

  5、学生动手画一个平行四边形ABCD。

  设计意图:通过动手画图操作使学生对平行四边形及其相关元素获得丰富的直观体验,为探究图形性质打下坚实基础。

  (三)、知识源于悟:

  1、做一做(让学生实际动手操作)(出示幻灯片)

  先将复制后的四边形与原来的四边形重合,然后绕一个顶点旋转180°,再平移该四边形,它还能与原来的四边形ABCD重合吗?

  (教师用展示整个旋转变化过程)

  2、讨论:(小组交流)

  (1)通过以上活动,你能得到哪些结论?

  (2)平行四边形ABCD对边、对角分别有什么关系?能用数学知识验证你的结论吗?

  3、结论:平行四边形的对边相等

  平行四边形的对角相等

  平行四边形的邻角互补

  设计意图:以学生原有的知识为出发点,引导学生进行小组学习,通过一系列的动手、操作、观察、实践、思考、探索、交流来获取知识和学会学习,使他们更好体会合作交流、互相评价、互相尊重的学习方式。同时让学生经历数学知识的形成的过程,能很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得富有成效的学习体验。从而培养学生数学学习的探究能力、分组合作能力、逻辑思维能力和推理论证能力等。

  4、填表:分边、角总结平行四边形的性质,并用几何语言叙述。

  设计意图:规范学生的几何语言。同时也使学生清楚,平行四边形的定义既可以作为性质运用,也能作为证明一个四边形是平行四边形的方法,在此为平行四边形的判定做了一个铺垫。

  (四)、随堂练习

  1、在平行四边形ABCD中,已知∠A=50°,BC=3cm,则∠B=____,∠D=____,AD=______。

  2、在□ABCD中∠ADC=125,∠CAD=21°,求∠ABC,∠CAB的度数.

  3、平行四边形ABCD中,若在AD上取一点E,CB上取一点F,且AE=CF,试测量比较BE,DF的大小并说明理由。

  设计意图:1主要是引导学生归纳小结帮助学生熟练掌握平行四边形的性质。

  2、3是应用性质解题部分,2采用学生板演,教师巡回的辅导方式,让学生巩固所学知识,检验本节课对知识的掌握情况,并对书写格式,及时的订正和指导。3采取小组合作解答,互帮互助。让学生熟练性质定理,为以后的证明和计算打好基础。

  (五)、新课小结:

  通过本节课的学习,你有什么收获?(同桌互讲,小组交流,师生共同小结)

  设计意图:引导学生归纳小结本节课的知识要点,使学生养成学习→总结→学习的良好习惯,发挥自我评价的作用,也培养学生的语言表达能力。

  (六)、作业设计:

  1、必做题:P99习题4.1第

  1、3题。

  2、选做题:利用平行四边形设计美丽的图案,表达你美好的愿望。

  五、课后反思

  1.注重学生对数学学习兴趣的培养

  以实际生活中的图片引入,通过动手画图和实验探索来激发学生的好奇心和求知欲。2.注重对“基础知识”、“基本技能”的理解、掌握和创新能力的培养本节课通过变式、探究及其相关应用来体现这一基本思想。3.注重师生之间的互动和交流

  学生是学习活动的主人,教师是学习活动的引导者、组织者和参与者,在此过程中,教师始终关注学生学习的情绪体验,注重对学习过程的评价。通过归纳整理,培养学生善于反思的良好学习习惯,为自身的发展打下坚实基础。

八年级数学说课稿11

  一、说教材

  本节课是在学生掌握了一般三角形基础知识和初步推论证明的基础上进行学习的,担负着训练学生学会分析证明思路的任务,在培养学生逻辑推理能力方面有着非常重要的作用。等腰三角形两底角相等的性质是今后论证两角相等的的依据之一,等腰三角形底边上的三条主要线段重合的性质是今后论证两条线段相等、两个角相等及两条直线垂直的重要依据,因此在教材中处于非常重要的地位。

  二、说教学目标

  知识与能力:探索并掌握等腰三角形性质定理,能运用它们进行有关的论证和计算。理解等腰三角形和等边三角形性质定理之间的联系。过程与方法:培养学生对命题的抽象概括能力,逐步渗透几何证题的基本思想方法:分析法和综合法。情感与态度:引导学生进行规律的再发现,培养学生勇于实践、大胆探索的精神。加强学生数学应用意识。

  三、教学重点与难点

  重点:等腰三角形的性质定理。难点:等腰三角形三线合一性质的运用四、说教法与学法课堂教学要体现以学生发展为本的精神,因此本堂课我采取了“开放型的探究式”教学模式,从问题提出到问题解决都竭力把参与认知过程的主动权交给学生,使学生全面参与、全员参与、全程参与,真正确立其主体地位。而教师只是作为数学学习的组织者、引导者、合作者,及时地给以引导、点拨、纠正。五、说教学过程:学生的学习过程是在其原有认知基础上的主动建构,因此我依据学生的认知规律将教学过程分为以下五个环节:

  一、回顾与思考电脑展示人字型屋顶的图像,提问:

  1、屋顶设计成了何种几何图形?

  2、我们都知道它是一种特殊的三角形,那么它特殊在哪里呢?(两腰相等,是轴对称图形)

  3、它的对称轴是哪一条呢?由日常生活中的等腰三角形引出课题,目的在于培养学生从实际问题中抽象出数学问题的能力。同时创造丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,特别是问题3,其实就是等腰三角形三线合一性质的伏笔。除了这些特殊点,等腰三角形还有其它特殊性质吗?这节课我们就要一起来研究等腰三角形的性质(由此引出课题)现代教学论认为,在正式进行发现过程前要让学生对探索的目标、意义认识得十分明确,做好探索的物质准备和精神准备。

  二、观察与表达

  1、观察猜想请同学们拿出准备好的等腰三角形,与教师一起按照要求,把两腰叠在一起,观察一下你有什么发现。教师用多媒体课件演示等腰三角形ABC叠合情况,请学生思考你能得出哪些结论。

  2、得出定理学生回答发现后,教师给予指导,用规范的数学语言进行逐条归纳,得出两个性质定理:

  定理1:等腰三角形两底角相等。

  定理2:等腰三角形的顶角平分线、底边上的中线和高线互相重合。

  通过让学生动手操作,观察、猜想,体验知识的发生、发现过程,变灌注知识为学生主动获取知识。

  学习内容不再以定论的形式呈现,而是以问题形式间接呈现;学习的`心理机制不再是仅仅是同化,而是顺应。

  三、了解与探究

  3、探索定理

  一、(A组口答,B组独立解答)

  A组:

  1、等腰直角三角形的两个锐角各等于几度?

  2、若等腰三角形顶角为40度,则它的顶角为几度?

  3、若等腰三角形底角为40度,则它的底角为几度?

  B组:

  1、若等腰三角形一个内角为40度,则它的其余各角为几度?

  2、若等腰三角形一个内角为120度,则它的其余各角为几度?

  3、一个内角为60度,则它的其余各角为几度?(A组口答,B组独立解答)由此引出推论:等边三角形各个角都相等,且各个角都等于60°。

  二、根据性质2填空:

  (1)∵AB=AC,AD⊥BC,

  ∴

  (2)∵AB=AC,BD=CD,

  ∴

  (3)∵AB=AC,∠1=∠2,

  ∴

  为了对定理进行进一步探索,设计了以下练习:练习一的整体设计遵循低起点、小分阶、大容量、高密度的原则,其目的是要学生掌握应用等腰三角形性质定理1与三角形内角和定理求角的度数的规律,但教师不是直接将规律灌输给学生,而是让学生在练习过程中自己发现规律,使学生获得从问题中探索共同属性的思维能力。从认知结构看,利用三线合一性质来证明角相等、线段相等或垂直与学生原有认知结构联系较少,需要建构新的认知结构,是一种“顺应”过程,对学生来说有一定困难,因此设计了下面一组填空题,帮助学生进行建构活动。同时,提醒学生注意性质应用应以等腰三角形为前提,为例2的教学作了辅垫,起到分散难点的作用。

  四、应用与提高应用举例:

  如图,某房屋的顶角∠BAC=120°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上的∠B,∠C,∠CAD的度数。

  例1:求证等腰三角形两底角平分线相等AEDBC由于这是个用文字语言叙述的的几何命题,师生共同商讨,将解题过程分为以下几个步骤:

  ①根据命题画出相应的图形,并标出字母

  ②通过分析题设结论,将命题翻译为几何符号语言,写出已知与求证。

  ③探索证法在寻求证法时启发学生从“已知”、“求证”两方面出发进行思考。

  从已知出发:

  a:由AB=AC联想到什么

  b:BD、CE是△ABC的角平分线联想到什么

  c:由a、b联想到什么

  d:由a、b、c联想到什么

  e:由d联想到什么

  从求证出发:证明两条线段相等通常用什么方法?(全等三角形)。这两条线段分别在哪两个三角形中?这两个三角形全等吗?如何证明?本课从居民建筑人字梁结构中抽象出几何问题,通过探索实践活动得出结论,在这里,再将得到的结论应用到实践中,从而解决了人字梁结构中的实际问题。这样既有前后呼应,又体现了“数学来源于生活,应用于生活”的思想,有利于加强学生的数学应用意识。

  “证明”的教学所关注的是,对证明基本方法和证明过程的体验,而不是追求所证命题的数量、证明的技巧。因此在例1教学中,有意让学生来确定学习任务与步骤,充分调动其学习积极性。

  分析法和综合法是基本的数学思想方法,因此在这里要求学生从两方面都能够思考问题。但这对于刚接触论证几何不久的学生来说,有一定的难度。所以,由教师提出一系列问题,引导学生进行联想。

  本题是通过三角形全等来证明两条角平分线相等,而这对全等三角形可是△ABD和△ACE也可是△BCE和△CBD分别用到了公共边和公共角这两对元素,因此在教学过程中将充分利用这一点,组织学生探索证明的不同思路,并进行适当的比较和讨论,有利于开阔学生的视野。四、应用与提高例2:已知:如图,△AOBDCO’ABC中,AB=AC,O是△ABC内一点,且OB=OC,AO的延长线交BC与D.

  求证:BD=CD,AD⊥BC

  思考:(1)本题的结论有何特

  殊之处?——证明两个结论

  (2)你准备如何得出这两个结论?——分别认证或同时证明

  (3)哪一种简捷?利用什么性质?

  在此基础上请学生按照例1的思考方法自己寻找解题思路,可以在小组间进行讨论。

  变式拓展:

  (1)如图,在例2中若点O是△ABC外一点,AO连线交BC于D,如何求证?

  (2)若点O在BC上呢?

  经过例1的学习,学生已有一定推理基础,因此应放手让学生自己去发现证题思路,从而学到新的研究数学学习的方法,并逐渐内化为自己的经验。同时也体现了自主探索、合作交流的学习方式。

  在这里有意通过变式让学生经历图形变换过程,并使他们感受到在一定条件下,图形变换不会改变图形的实质,最后将点O移到BC上,使学生体验了从一般到特殊的过程。想一想:记一块等腰直角三角尺的底边中点为,再从顶点悬挂一个铅锤,把这块三角尺放在房梁上,如果悬线通过点M就能确定房梁是水平的,为什么?通过想一想进一步突出重点与难点,也有利于引导学生运用数学的思维方式去观察、分析现实生活,增强应用数学的意识。五、心得与体会

  通过今天这堂课的研究,我明确了,我的收获与感受有,我还有疑惑之处是。请学生按这一模式进行小结,培养学生学习-总结-学习-反思的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。六、作业(1)作业本上相应的作业。(2)已知:D、E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE(1)进一步巩固和提高所学知识(2)及时反馈、查漏补缺(3)体现层次性与开放性六、说评价

八年级数学说课稿12

  一、教材分析:

  本节的教学内容是第13章第2节的第5小节,在本节课之前,学生已经进行了“边角边”、“角边角”、“角角边”的学习探索。三角形全等的证明既是几何推理证明的起始部分,对学生的后续学习起着铺垫作用,是后面等腰三角形、四边形与特殊四边形的学习基础,同时也是培养提高学生逻辑思维能力的良好素材,对学生的演绎推理能力锻炼有非常重要的作用。

  二、学生情况分析

  在本节学习之前,学生已经经历了一周的推理证明的训练,所以学生的证明能力已经有所提升,解题思路也有所凝练,相对而言储备了一定的方法和技巧,但是对于辅助线的引用练习的不是很多,因此学生还没有什么经验。

  三、教学目标、重点和难点

  (一)教学目标:

  1、让学生通过实践操作探索出“边边边”的基本事实,并掌握其推理格式。

  2、能够应用“边边边”的基本事实解决实际问题。

  (二)教学重点:

  掌握“边边边”的基本事实。

  (三)教学难点:

  灵活运用“边边边”解决问题。

  四、教法学法

  (一)教法

  在本节课的课堂教学中我采用讲授、讨论式、演示、互动式、体验式、操作式、谈话、练习等教学方法,凸显学生的'主体地位和教师的主导地位,突出课标的四性<实践性、趣味性、自主性、开放性>,适时启发点拨引导,适当采用多媒体教学手段,帮助学生更好地掌握知识、熟练技能、培养学生的能力,

  (二)学法

  我采用自主、探究、合作的学习方法,让学生在动手操作、动脑思考、交流讨论的过程中学习本节课的知识、掌握方法、提高技能、形成能力;达到体验中感悟情感、态度、价值观;活动中归纳知识;参与中培养能力;合作中学会学习。

  五、教学过程

  复习引入:复习已经学过的全等三角形的三种判定方法,为新知做好铺垫;然后引入新课,激发学生的学习兴趣。

  明确目标:简洁明了的学习目标使学生在开始学习之初就能够明确目标,明确努力的方向,做到有的放矢。

  定向学习:在整个自学过程中,我注意用语言引导学生,使其把握住主旨目标,充分利用教材和导学提纲完成自学。由于上一阶段的学习和练习,学生储备了一定的经验,所以要自主完成例1应该是不成问题,而且基础训练的内容学生也能比较容易完成。

  精讲点拨:在“边边边”的简单应用的基础上,再稍加拓展。

  巩固训练:在此环节中我着重加入了对辅助线的引导渗透,对学生的思维能力进行拓展、提升,以确保让尖子生吃的饱。

  六、课后反思

  在教学过程中,我注重调整了自己的“角色”,因为学生已经结合教材进行了自学,所以在课堂上,更应实现学生的自主,故课堂即是学生的演练场,教师就针对学生出现的问题进行点拨、指导,对于共性问题重点提示,引起全体同学重视,从而加深印象。正所谓问题即课题,有疑、有错才有讲解!本节课的教学,按照本人的设计非常顺畅的进行下去了,学生对于我在三角形全等这一部分知识的处理方式,都能够适应、接受,这也反映出这样的教学方式对于学生新知识的接受还是比较适合的。教无定法,不同的知识、不同的学生,可能要采用不同教学方式,需要我们因课因人灵活选择。

八年级数学说课稿13

  今天,我说课的题目是《角的平分线的性质》第一课时,下面,我从教材分析、教学内容、教学目标、学情分析、教法与学法、教学过程的设计等六个方面对我的教学设计加以说明.

  一、教材分析

  本节课选自新人教版教材《数学》八年级上册第十一章第三节,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.角平分线的性质为证明线段或角相等开辟了新的途径,简化了证明过程,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.

  二.教学内容

  本节课的教学内容包括角的平分线的作法、角的平分线的性质及初步应用.

  内容解析:

  教材通过充分利用现实生活中的实物原型,培养学生在实际问题中建立数学模型的能力.作角的平分线是几何作图中的基本作图.角的平分线的性质是全等三角形知识的.延续,也是今后证明两个角相等或证明两条线段相等的重要依据.因此,本节内容在数学知识体系中起到了承上启下的作用.

  三、教学目标

  1、基本知识:了解尺规作图的原理及角的平分线的性质.

  2、基本技能

  (1)会用尺规作图作角的平分线。

  (2)会利用全等三角形证明角平分线的性质。

  (3)能运用角的平分线性质定理解决简单的几何问题

  3、数学思想方法:从特殊到一般

  4、基本活动经验:体验从操作、测量、猜想、验证的过程,获得验证几何命题正确性的一般过程的活动经验

  目标解析:

  通过让学生经历动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力和数学建模能力了解角的平分线的性质在生产,生活中的应用培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情.

  四、学情分析

  刚进入初二的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学重点定为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用,难点是角平分线的性质的探究

  教学难点突破方法:

  (1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习.

  五、教法和学法

  本节课我坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,采用引导式探索发现法、主动式探究法、讲授教学法,引导学生自主学习、合作学习和探究学习,指导学生“动手操作,合作交流,自主探究”.鼓励学生多思、多说、多练,坚持师生间的多向交流,努力做到教法、学法的最优组合.

  教学辅助手段:根据本节课的实际教学需要,我选择多媒体PPT课件,几何画板软件教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变.这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握.

  六.教学过程的设计

  活动1.创设情景

  [教学内容1]

  生活中有很多数学问题:

  小明家居住在一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P点,要从P点建两条管道,分别与暖气管道和天然气管道相连.

  问题1:怎样修建管道最短?

  问题2:新修的两条管道长度有什么关系,画来看一看.

  [整合点1]利用多媒体渲染气氛,激发情感.

  教师利用多媒体展示,引领学生进入实际问题情景中,利用信息技术既生动展示问题,同时又通过图片让学生身临其境般感受生活。学生动手画图,猜测并说出观察到的结论.引导学生了解角的平分线有很多未知的性质需我们来解开,并板书课题.

  [设计意图]依据新课程理念,教师要创造性地使用教材,作为本课的第一个引例,从学生的生活出发,激发学生的学习兴趣,培养学生运用数学知识,解决实际问题的意识,复习了点到直线的距离这一概念,为后续的学习作好知识上的储备.

  活动2.探究体验

  [教学内容2]

  要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用如图所示的简易平分角的仪器来画角的平分线.出示仪器模型,介绍仪器特点(有两对边相等),将A点放在角的顶点处,AB和AD沿角的两边放下,过AC画一条射线AE,AE即为∠BAD的平分线.

  教师继续引导,用多媒体展示实验过程,学生口述,用三角形全等的方法证明AE是∠BAD的平分线.

  [设计意图]帮助学生体验从生产生活中分离,抽象出数学模型,并主动运用所学知识来解决问题.

  从上面的探究中可以得到作已知角的平分线的方法.

  [教学内容3]

  把简易平分角的仪器放在角的两边时,平分角的仪器两边相等,从几何作图角度怎么画?BC=DC,从几何作图角度怎么画?

  教师提问,学生分组交流,归纳角的平分线的作法,口述证明角平分线的过程.

  [设计意图]根据画图过程,从实验操作中获得启示,明确几何作图的基本思路和方法,师生交流并归纳.

  教师先在黑板上示范作图,再利用多媒体演示作图过程及画法,加深印象,并强调尺规作图的规范性.

  利用三角形全等证明角平分线,进一步明确命题的题设与结论,熟悉几何证明过程.

  [教学内容4]

  作一个平角∠AOB的平分线OC,反向延长OC得到直线CD,请学生说出直线CD与AB的位置关系.并在此基础上再作出一个45的角.

  学生独立作图思考,发现直线AB与CD垂直.

  [设计意图]通过作特殊角的平分线,让学生掌握过直线上一点作已知直线的垂线及特殊角的方法,达到培养学生的发散思维的目的.

八年级数学说课稿14

  《平方差公式》

  我说课的内容是八年级上册第十四章《乘法公式》的第一课——平方差公式。我设计的说课共分四大环节:

  一、教学设计理念

  根据《课程标准》,数学课不仅是数学知识的学习,更要体现知识的认知发展过程,关注学生学习的兴趣,引导学生参与探索,在探索中获得对数学的体验与应用。

  鉴于此,我对本节课的设计流程是:观察发现——归纳验证——应用拓展,以解决自主学习为基础,建立合理的数学训练,使学生在知识获得、过程经历、合作交流得到提升。

  二、教材分析

  (1) 教材的地位和作用

  平方差公式是多项式乘法的后续学习及再创造活动的结果,体现教材从一般——特殊的意图,教材为学生在数学活动中“获得数学”的思想方法、能力素质提供了良好的契机,是学生感受数学再创造的好素材,同时对平方差公式在整式乘法、因式分解及其代数运算中起着举足轻重的作用,是今后学习的坚实基础。

  (2) 教学目标

  知识与技能:

  理解和掌握平方差公式,并能灵活运用公式进行简单运算。

  过程与方法:

  经历平方差公式的探索,体会观察发现—归纳验证—应用拓展这一数学方法,培养学生分析、归纳能力。

  情感态度与价值观:

  感悟具体到抽象的探究方法(一般到特殊);通过几何验证感知数形结合思想。在应用中,激发学生学习兴趣和信心。

  (3) 教学重点、难点

  教学重点:理解、掌握平方差公式并能正确运用公式。

  教学难点:明确公式的结构特征及对公式的变式运用。

  三、教法与学法

  (1)教法

  本节课采用探究式教学法,从两项式的乘法中发现规律,又通过多项式的乘法法则进行验证及探究平方差公式的几何意义,从而培养学生观察概括能力,在探索中由旧到新,由学到“思”,由“思”到知识方法的提升,体验探索数学的方法,同时展示学生探索成果,让学生感受学习数学是一件快乐的事。

  (2)学法

  让学生学会从观察发现——归纳验证——应用拓展这一数学方法,以问题为线索,学生在动口、动手、动脑中使知识再创造,从中让学生明确获取知识只有通过自 己的探索才能不仅“知其然”,而且“知其所以然”,透过表象看公式特征,而不是死记硬背,在应用中学会知识的迁移,抓住公式的结构特征,提高灵活运用能力。

  四、教学过程(略)

  教学环节

  教学内容

  学生活动

  设计意图

  教案设计说明:

  本节课主要是学习平方差公式,它是多项式乘法的再创造,采用体验探索式教学法,让学生观察发现——归纳验证——应用拓展中收获学习数学方法,在教学中,给学生留有充分的时间和空间,激发学生的学习积极性。

  通过探究的教学设计,为学生提供数学活动的机会,帮助他们在自主探索和合作交流的过程中,真正理解代数的基础知识、技能和思想方法,获得广泛的数学活动经验,提高学生探索、发现和创新能力。并让学生有条理地表达自己的思考过程,让学生沉浸于知识的探索中,为突破难点,采用小组合作,先体验后归纳,从中感悟数形结合及整体的数学思想,趣味应用题激发兴趣。师生互动,着重培养学生的观察概括能力,有意培养学生的推理能力。

  五、有效性辅导

  有效性辅导是提高英语教学有效性的'延伸。教师要诊断学生在听课、作业、检测中遇到了不明白的问题,教师辅导学生的目的在于让学生清楚、明白这些问题。辅导可采用个别辅导,集体辅导,也可采用要点辅导,评语激励,把学生遇到问题中的基础知识落实到实处,减轻学生心理压力,从而提高学生的学习兴趣,增强学生学习自信心。

  六、有效性反思

  有效性反思是提高英语课堂教学有效性的再创造。反思是科研中常用的一个术语,不少人认为,反思就是“找不足”,这不完包含了反思的内涵,反思可以说“找问题”,也就是说反思是发现问题、提出问题、分析问题、解决问题的思考过程。有效性教学反思是指教师借助一定的科研方法不断探究与解决自身在教学过程中的得失,将“学会教学”与“学会学习”有机结合起来,努力提升自身教学实践的科学性,优化自己的教学过程,使自己成为高水平,学者型的教师。教学反思贯穿整个教学过程的始终(教学前反思,教学中反思,教学后反思),在整个教学过程中,通过反思,优化备课,优化课堂教学结构,优化辅导,优化检测,优化作业,从而提高每个环节,每节课的有效性。

  总之,在实施新课程以来,有效性英语课堂教学实践是课改的关键,要实现“教得轻松,学得有效,考得满意”为落脚点的实效性教学模式,请你不妨从“有效性备课,有效性授课,有效性作业,有效性检测,有效性辅导,有效性反思”等方面来实践。

八年级数学说课稿15

  一、教材中的地位及作用

  《变化的鱼》是北师大版八年级上册第五章的第三节。主要内容是坐标变化和图形变换之间的关系。本册第三章学习了图形变换的平移和旋转,本章第一、二两节学习了平面直角坐标系和如何在坐标系内确定一个点,本节内容就是把这二者有机结合起来,为学生提供了一个探索坐标变化和图形变换之间的关系的一个平台,在经历图形的坐标变化和图形变换的探索过程中,培养形象思维能力,体会数形结合思想。该课时内容在整个中学数学学习中是一个转折点,具有承前启后的作用。通过本节课的学习,为相似、位似、函数及其图象的学习奠定基础,而且这一节内容,将向学生明确提出数形结合这一思想,要求学生逐步掌握利用平面直角坐标系建立模型解决生活中遇到的实际问题。

  二、学情分析

  我所任教八年级学生大部分处于城乡结合部,形象思维能力和动手能力较强,逻辑思维能力偏弱,课堂主动性不够。对于本节,在之前学生已经学习了简单的图形变换以及直角坐标系的相关知识,为本节的学习奠定了基础,但本节内容也不是两种知识的简单叠加,由于二者的综合,加大了知识的深度,给学生的理解上带来很大的难度。因此,在教学中,应遵循学生的自身特点和本节的内容实际来进行设计。

  三、教学目标

  知识与技能目标:在同一直角坐标系中,感受图形上点的坐标变化与图形的平移、拉伸、压缩之间的关系;进一步体会点与坐标一一对应的思想。

  过程与方法目标:让学生经历图形坐标变化与图形的平移、伸长、压缩之间的关系的探索过程,发展学生的形象思维能力,培养学生数形结合意识。

  情感、态度与价值目标:通过培养学生对问题的观察、思考、交流、类比、归纳、动手操作等过程,发展学生的探索精神、合作意识、归纳能力。

  四、重点难点

  重点:探索并掌握图形坐标变化与图形变换之间的内在关系。

  难点:坐标变化和图形拉伸、压缩间的关系。

  五、教法与学法分析

  1、“教”的本质在于引导,引导的艺术在于含而不露,指而不明,开而不达,引而不发、为了充分调动学生的学习积极性,变被动学习为主动愉快的学习,使数学课上得生动、有趣、高效,所以本节课采用的教法为:

  (1)情景式教学法:课堂开始通过多媒体动画,激发学生的学习动机。

  (2)探究式教学法:将启发、诱导贯穿教学始终,唤起学生的求知欲望,促使他们动手、动脑、动嘴,积极参与教学全过程,在教师指导下生动活泼地、主动地、富有个性地学习,成为学习的主人。

  2、教学中,学生是学习的主体,教师为学生学习的引导者、合作者、促进者,所以学法确定为:

  (1)探究学习法。把问题留给学生,引导他们去解决问题。

  (2)合作学习法。和小组的同学一起探讨、交流,利用集体的智慧去解决问题。

  六、教学过程

  教学过程是教学目标的体现过程,是教法学法的实施过程,是教学理念的展现过程,是使知识与能力在现实背景中自然呈现的过程。结合本节的教学内容及重难点教学过程如下:“情景引入——新课导入——探索新知识——举一反三——触类旁通——巩固拓展”。

  教学环节师生活动过程设计意图

  情景引入利用多媒体向学生展示一段动画,在动画和音乐声中,让学生进入课堂状态,同时,让学生对本堂课产生好奇和疑问。利用优美的音乐和动画,激发学生的探识欲望

  新课导入课件中直接演示作图过程:在坐标系中标出以下点:(0,0)(5,4)(3,0)(5,1)(5,—1)(3,0)(4,2),(0,0),并顺次连接。

  问题:所作图形象什么?

  通过多媒体,在坐标系中拖动一条可以随意移动的直线鱼,让学生观察,在这条鱼移动的过程中,什么发生了变化?什么没变?

  让学生讨论总结出自己的结论,教师不作任何说明。

  要求学生在讨论的基础上去作图:让鱼向右移动3个单位。

  作出图形,比较所作图形是否和所得结论吻合。

  多媒体演示作图过程和前后两条鱼的变化过程。开门见山的直接作图,既复习了前面所学知识,又让学生对本节将要学习的内容有了初步的认识。

  问题引入。

  探索新知想一想议一议

  一、在前面问题的基础上,由学生直接说出:当向左游动2个单位时,图形的坐标发生了什么变化?向上或向下游动2个单位时,图形的坐标又发生了什么变化?

  通过课件演示其变化过程,验证学生的答案。

  二、针对一般情况,当坐标发生什么样的变化时,图形横向平移或纵向平移?

  由前面的作图和演示,学生已经知道:要让鱼移动,必须改变图形的坐标。再次在坐标系中拖动那条可以随意移动的鱼,让学生在已有一定认知之后再来仔细观察,思考,总结更全面的规律。

  综合学生的结论,引导他们得出如下结论:

  当纵坐标不变,横坐标增加时,图形向右平移;纵当坐标不变,横坐标减少时,图形向左平移。横坐标增加或减少a(a>0)时,图形向右或向左平移a个单位。

  当横坐标不变,纵坐标增加时,图形向上平移;当横坐标不变,纵坐标减少时,图形向下平移。纵坐标增加或减少a(a>0)时,图形向上或向下平移a个单位。把整个探索过程交给学生去做,教师只作为一个协助者,让学生通过思考、讨论、动手操作等过程得出结论,既能加深对本节内容的`印象,又培养了他们学习和解决数学的能力。

  教学环节师生活动过程设计意图

  举一反三想一想议一议并回答

  1、对于前面的结论,反过来是否成立?

  让学生仔细对照所作图形,充分思考,鼓励他们去讨论。

  2、观察以下图形,蓝、黑鱼是在红鱼的基础上怎样变化而来的,坐标发生怎样的变化?(1红,2蓝,3黑)

  (1)第二条是第一条向左平移4单位得到,横坐标减少4;第三条是第一条向右平移6单位得到,横坐标增加6。

  (2)第二条是第一条向上平移4单位得到,纵坐标增加4;第三条是第一条向下平移5个单位得到,纵坐标减少5。

  (3)第二条是第一条向左平移5个单位向上平移3个单位得到,横坐标减少5纵坐标增加3;第三条是第一条向右平移3个单位向下平移4个单位得到,横坐标增加3纵坐标减少4。通过上面的学习,学生已经学到了当纵坐标或横坐标改变时,图形将纵向或横向平移,在此基础上来让学生自己得出当图形改变时点的坐标改变的规律,以达到培养学生利用扩散思维进行自我学习的能力。

  培养学生利用所学知识解决问题的能力

  教学环节师生活动过程设计意图

  触类旁通大胆猜测:通过前面的学习,我们知道当鱼的横、纵坐标增加或减少时,鱼就能左右游动或是上下游动。现在,请同学们思考一个问题:当坐标扩大或缩小一定的倍数关系时,鱼会发生怎样的变化呢?

  由学生猜测讨论,并和其他组的同学分享本组的结论。

  在学生都有自己结论的基础上,要求学生完成以下作图:

  作图验证按以下要求作图:在第一条鱼的基础上横坐标扩大为原来的2倍;

  作完图形和周围同学比较是否一样;所得图形和猜测所得结论是否吻合。

  在这个结论的基础上依次说出以下几种情况的结论:

  当(1)横坐标缩小为原来的

  (2)纵坐标扩大为原来的2倍

  (3)纵坐标缩小为原来的

  讨论活动:由学生分组讨论图形平移和坐标变化之间的关系,然后组织学生进行阐述,最后集合学生结论总结规律:

  规律:当横坐标扩大为原来的n倍(n>1)(或缩小为原来的)时,图形被横向拉伸为原来的n倍(或被压缩为原来的);

  当纵坐标扩大为原来的n倍(或缩小为原来的)时,图形被纵向拉伸为原来的n倍(或被压缩为原来的)

  拓展思考:当(1)横、纵坐标扩大为原来的2倍;

  (2)横、纵坐标缩小为原来的。

  图形又会发生什么样的变化?这一部分的设计,还希望通过这样的方式,让学生体会解决数学问题的一般方法“大胆猜测——小心验证——合理求证”,进一步培养学生的猜想探索能力

  教学环节师生活动过程设计意图

  巩固拓展归纳巩固:

  引领学生学生复习图形平移,图形拉伸、压缩和坐标变化之间的关系巩固本节所学知识点

  课外思考

  图中红、蓝色的鱼与黑色的鱼对应顶点的坐标之间有什么关系,这些鱼可以看作黑色的鱼如何变化而来的?图中红色的鱼与蓝色的鱼对应顶点的坐标之间有什么关系,你能将红色的鱼通过适当的变化得到蓝色的鱼吗?请写出具体变化过程。

  课堂内外的延伸

  课外拓展:

  课本P165第3题

  七、评价与反思

  1、这一节课的设计是建立在学生已有的知识经验基础之上,利用多媒体演示,通过猜测、分组讨论、动手作图等方式帮助学生在探索图形变换和坐标变化之间关系的过程中,获得数学知识。

  2、教学过程中注重激励学生的学习热情,注重过程评价,注重发现问题与解决问题评价。鼓励学生动脑、动手、动口,积极交流讨论。

  3、通过这节课的学习,学生初步掌握了探究数学问题的基本方法,了解怎样建立数学模型解决实际问题,学会从生活中去发现数学,去找到数学的美,把数学和生活紧紧联系在一起,让学生体会到数学形象生动的一面。

  4、存在问题:由于学生还没有经历过图形相似的学习,对于图形的拉伸和压缩可能有一定的难度。解决办法:让学生充分交流讨论,积极动手去验证,自己得出结论,加深他们对这一知识的理解。

八年级数学说课稿16

  大家好!

  今天我说课的题目是《三角形的内角》,我将从如下方面作出说明。

  一、教材分析

  (一)教学内容的地位

  本节课是在研究了三角形的有关概念和学生在对 “三角形的内角和等于1800 ”有感性认识的基础上,对该定理进行推理论证。它是进一步研究三角形及其它图形的重要基础,更是研究 多边形问题转化的关键点;此外,在它的证明中第一次引入了辅助线,而辅助线又是解决几何问题的一种重要工具,因此本节是本章的一个重点。

  (二)教学重点、难点:

  三角形内角和等于180度,是三角形的一条重要性质,有着广泛的应用。虽然学生在小学已经知道这一结论,但没有从理论的角度进行推理论证,因此三角形内角和等于180度的证明及应用是本节课的重点。

  另外,由于学生还没有正 式学习几何证明,而三角形内角和等于180度的证明难度又较大,因此证明三角形内角和等于180度也是本节课的难点。

  突破难点的关键:让学生通过动手实践获得感性认识,将实物图形抽象转化为几何图形得出所需辅助线。

  二.教学目标

  基于以上分析和数学课程标准的要求,我制定了本节课的教学目标,下面我从以下三个方面进行说明。

  (一)知识与技能目标:

  会用平行线的`性质与平角的定义证明三角形的内角和等于1800,能用三角形内角和等于180度进行角度计算和简单推理,并初步学会利用辅助线解决问题,体会转化思想在解决问题中的应用。

  (二)过程与方法目标:

  经历拼图试验、合作交流、推理论证的过程,体现在“做中学”,发展学生的合 情推理能力和逻辑思维能力。

  (三)情感、态度价值观目标:

  通过操作、交流、探究、表述、推理等活动培养学生的合作精神,体会数学知识内在的联系与严谨性,鼓励学生大胆质疑,敢于提出不同见解,培养学生良好的学习习惯。

  三、学情分析

  七年级学生的特点是模仿力强,喜欢动手,思维活跃,但思维往往依赖于直观具体的形象,而学生在小学已通过量、拼、折等实验的方法得出了三角形内角和等于180度这一结论,只是没有从理论的角度去研究它,学生现在已具备了简单说理的能力,同时已学习了平行线的性质和判定及平角的定义,这就为学生自主探究,动手实验,讨论交流、尝试证明做好了准备。

  四、教学方法与学法指导:

  根据新课程标准的要求,学习活动应体现学生身心发展特点,应有利于引导学生主动探索和发现,因此,我采用了动手操作— 观察实验—猜想论证的探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体 现了教师是教学活动的组织者、引导者、合作 者,学生才是学习的主体。并教给学生通过动手实验、观察思考、抽象概括从而获得知识的学习方法,培养他们利用旧知识获取新知识的能力。

  五.教学活动程序:(设计为六个环节:)

  我结合七年级学生的年龄特点,采用了“1.情景激趣 引出课题”的环节引入课题,这样可以激发学生学习兴趣和求知欲,为探索新知识创造一个最佳的心理和认知环境。让学生说明三角形内角和是180度,是本节课的重点、难点,为此我设计了“2.自主探索 动手实验 ”“3.讨论交流 尝试证明”以下两个环节。 定理的掌握必须要有训练作为依托,因此我设计了“4.应用新知 巩固提高。为了培养学生学习数学的兴趣,在竞争中体验成功的快乐。我设计了“5. ‘渔技’大比拼”这4道习题既含盖了方程的思想又包括了整体的思想,还让学生提前感受到了反证法的方法,有利于学生掌握重要的数学思想方法。回顾使人记忆深刻,反思促人进步。在“6.畅谈体会 课外延伸 ”这一环节我选择从三个方面,让学生进行 回顾反思和作业补充。我认为学生要从一堂课中得到收获不仅仅是知识上的,更重要的是让他们通过这种方式,获取比知 识本身更重要的东西,那就是数学方法,数学能力以及对数学的积极情感。

  六.设计说明与教学反思

  本节课的设计从学生已有的知识经验出发,遵循学生的认知规律,将实物拼图与说理论证有机结合,在动手操作,合情推理的基础上进行严密的推理论证,使学生对知识的认识从感性逐步上升到理性。以问题为载体,在探究解决问题策略的过程中学会知识、感悟方法、训练思维、发展能力,练习的设计起点低、范围广、有梯度,以满足不同程度学生的需要。树立大数学观 ,把课堂探究 活动延伸到课外,在课与课之间,新旧知识之间,数学与生活之间搭建桥梁,为学生长远的发展奠基。

  本节课的教学在一种轻松愉快的氛围中完成,大部分学生能参与活动中,突出了重点 ,突破了难点。完成了教学任务。取得了较好的教学效果。练习除注重基础外 并进行了延伸。拓宽了学生思维的空间。美中不足的是,还有少部分学习基础较差的学生可能没有在参与活动中去思考,收获不大。

  新课程的教学评价对老师和学生都提出了新的要求 :因此整个教学过程中我对学生的如下方面作出了多元化的关注:1、关注学生探索结论、分析思路和方法的过程。2、关注学生说理的能力和水平。3、关注学生参与教学活动的程度。以期待人人都能学有 所得,不同的学生在课堂上得到不同的发展。

  以上是我对这节课的初浅认识,希望得能到各位专家、各位老师的指导,谢谢大家!

八年级数学说课稿17

  一、说教材

  “数据的分段整理”是苏教版小学数学四年级上册第九单元《统计与可能性》中的内容。分段整理数据是基本的统计活动,在第一学段,学生已经能够按统计对象的某些属性,如品种、形状、颜色、用途……进行分类统计。本单元继续教学把一组数据按大小分成若干段进行统计,并把统计获得的数据填入相应的统计表里。本课时是初步教学分段统计数据,所以例题和习题都明确了数据以及各段的数值范围,不要求学生独立设计分段。 本课时内容主要是数据的分段整理。 教材通过创设学校准备为鼓号队员购买服装,想请全体学生出谋划策的教学情境,引出怎样购买鼓号服这一学习任务。 使学生能想到要按身高数据分段整理,感受分段整理的必要性。然后引导学生自主分段整理数据,完成统计表,分析整理后的数据,根据分析结果解决实际问题。

  《数学课程标准》指出,教师不应只做教材忠实的实施者,而应该做教材的开发者和建设者,要学会创造性地使用教材。为了更加贴近每个学生生活经历,让学生有话可说,我对教材进行了重新开发,把购买鼓号队服改为购买校服。围绕购买校服而产生的一系列问题,引导学生经历“收集数据——分段整理——制作统计表—— 分析数据”的全过程,而学习重点放在分段整理数据上,整理的方法采用 多种方法,在交流比较的过程中逐步优化,突出 画“正”字的方法 ,得到的数据仍然采用单式统计表描述。所以教学中应突出数据分段的必要性、分段方法以及如何分段整理,使学生在活动中掌握这部分知识,形成相关的统计技能。为今后更进一步学习统计图表、概率等知识打好基础。

  二、说学情

  四年级的学生由于在第一学段中对数据统计过程已有所体验,并学会了一些简单的收集,整理和描述数据的方法,能根据统计结果回答一些简单的问题。在此基础上,再次经历统计过程,让学生进一步体会收集和整理数据的必要性,感受统计是解决问题的.方法之一。

  根据小学儿童好动、注意力容易分散、求知欲强等心理特征,在教学中,我注重创设与学生生活的环境、知识背景密切相关的,又是学生感兴趣的学习情境。从学生熟悉的事物出发,有效地组织、引导学生进行观察、交流、反思等活动,并使全体学生参与到实践活动之中。

  三、说教法与学法

  《数学课程标准》指出,数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。传统的严格意义上的教师教和学生学,应该不断让位于师生互教互学,彼此形成一个“学习共同体”。

  根据教材内容的特点,结合学生实际,在教学中我灵活采用谈话法、观察法、讨论法、练习法等多种教学方法。引导学生通过搜集全班同学的身高数据、根据服装型号分段、用画“正“字等方法整理、绘制统计表、利用统计数据到服装厂定做校服等。用统计方法解决问题。学生在迫切完成任务和强烈的探究兴趣驱动下, 对本来枯燥的统计知识产生一种新鲜感和真实感,每个学生都能自觉地参与到学习中。学生能自然而然地根据已有的生活经验,通过调查访问、探究尝试、合作商讨、交流反思等多种学习方法,真实经历用统计解决问题的全过程 ,特别是学会了分段整理的方法,从而获得了成功的愉悦体验。

  A、重视激活学生的生活经验

  本课的导入,给学生做校服的情境, 使学生能想到要按身高数据分段整理,感受分段整理的必要性。然后引导学生自主分段整理数据。学生经历了统计的全过程,感受到统计表与身边的人和事是息息相关的。最后,布置学生写一份建议书,也是深有教育价值的。

  B、重视引导学生进行分析

  数据统计的全过程有数据收集,数据整理,统计制表,分析数据,得出结论五个环节,其中分析数据是重要的环节,也是课程标准中强调的内容。在“女生1分钟跳绳检测”一题中,我引导学生尝试分析“你 看了这张统计表,你知道了什么?”在“空气质量”一题中,我让学生说“ 看了这些数据,你觉得常州市的空气质量情况如何?为什么?作为一个常州的小市民,你觉得能为改善常州的环境做些什么?”学生的分析是推己及人,丰富多彩的,是符合孩子心理实际的。设计这样的分析,我认为是统计中必不可少的环节,也是对学生进行行为习惯教育的良好载体。

八年级数学说课稿18

尊敬的各位领导,各位老师:

  大家好!今天我说课的内容是初中八年级数学人教版教材第十八章第一节《勾股定理》(第一课时),下面我分五部分来汇报我这节课的教学设计,这就是"教材分析"、"学情分析"、"教法选择"、"学法指导"、"教学过程"。

  一、教材分析

  (一) 教材地位和作用

  勾股定理是几何中的重要定理之一,它揭示的是直角三角形中三边的数量关系,将几何图形与数字联系起来。它在数学的发展中起过重要的作用,在生产生活中有着广泛的应用。而且它在其它自然学科中也常常用到。因此,这节课有着举足轻重的地位。

  (二)教学目标

  根据新课程标准的要求和本课的特点,结合学生的实际情况,我确定了本课的教学目标:

  1、知识与技能方面

  了解勾股定理的文化背景,经历探索勾股定理的过程,掌握直角三角形三边之间的数量关系, 并能简单应用。

  2、过程与方法方面

  经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,能感受到数学思考过程的条理性,发展数学的说理和简单的推理的意识,和语言表达的能力,并体会数形结合和特殊到一般的思想方法。

  3、情感态度与价值观方面

  (1)通过了解勾股定理的历史,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

  (2) 通过研究一系列富有探 究性的问题,培养学生与他人交流、合作的意识和品质。

  (三)教学重点难点

  教学重点:掌握勾股定理,并能用它来解决一些简单的问题。

  教学难点:勾股定理的证明。

  二、学情分析

  我们班日常经常使用多媒体辅助教学。经过一年多的几何学习,学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确 归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。 现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和表现自己才华的机会;更希望教师满足他 们的创造愿望。

  三、教法选择

  根据本节课的教学目标、教学内容以及学生的认知特点,结合我校的“当堂达标”教学模式,我在教法上采用引导发现法为主,并以分析法、讨论法相结合。设计" 观察——讨论—归纳"的教学方法,意在帮助学生通过自己动手实验和直观情景观察,从实践中获取知识,并通过讨论来深化对知识的理解。本节课采用了多媒体辅 助教学,能够直观、生动的反应图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学形象性,更好的提高课堂效率。

  四、学法指导:

  为了充分体现《新课标》的要求,培养学生的观察分析能力,逻辑思维能力,积累丰富的数学学习经验,这节课主要采用观察分析,自主探索与合作交流的学习方 法,使学生积极参与教学过程。在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步体会观察、类比、分析、从特殊到一般等数学思 想。借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主人。

  五、教学过程

  根据《新课标》中"要引导学生投入到探索与交流的学习活动中"的教学要求,本节课的教学过程我是这样设计的:

  (一)创设情境,引入新课

  一个设计合理的情境引入可以说在一定程度上决定着学生能否带着兴趣积极投入到本节课的学习中。为了体现数学源于生活,数学是从人的需要中产生的,学习数学的目的是为了用数学解决实际问题。我设计了以下题目:

  星期日老师带领全班同学去某山风景区游玩,同学们看到山势险峻,查看景区示意图得知:这座山主峰高约为900米,如图:为了方便游人,此景区从主峰A处向地面B处架了一条缆车线路,已知山底端C处与地面B处相距1200米,

  ∠ACB=90° ,你能用所学知识算出缆车路线AB长应为多少?

  答案是不能的。然后教师指出,通过这节课的`学习,问题将迎刃而解。

  设计意图:以趣味性题目引入。从而设置悬念,激发学生的学习兴趣。 教师引导学生把实际问题转化为数学问题,这其中渗透了一种数学思想,对于学生也是一种挑战,能激发学生探究的欲望,自然引出下面的环节。

  紧接着出示本节课的学习目标:

  1、了解勾股定理的文化背景,体验勾股定理的探索过程。

  2、掌握勾股定理的内容,并会简单应用。

  (二)勾股定理的探索

  1、猜想结论

  (1)探究一:等腰直角三角形三边关系。

  由课本64页毕达哥拉斯的故事,探究等腰直角三角形三边关系。结合课件中格点图形的面积,学生自主探究,通过计算、讨论、总结,得出结论:等腰直角三角形的斜边的平方等于两直角边的平方和。

  在此过程中,给学生充分的时间、观察、比较、交流,最后通过活动让学生用语言概括总结。

  提问:等腰直角三角形有这样的性质,其他的直角三角形也有这样的性质吗?

  (2、)探究二:一般的直角三角形三边关系。

  在课件中的格点图形中,利用面积,再次探究直角三角形的三边关系。学生自主探究,通过计算、讨论、总结,得出结论:在直角三角形中,两直角边的平方和等于斜边的平方。

  设 计意图:组织学生进行讨论,在此基础上教师引导学生从三边的平方有何大小关系入手进行观察。教师在多媒体课件上直观地演示。通过学生自己探索、讨论,由学 生自己得出结论。这样,让学生参与定理的再发现过程,他们通过自己观察、计算所得出的定理,在心理产生自豪感,从而增强学生的学习数学的自信心。

  2、证明猜想

  目前世界上证明该勾股定理的方法有很多种,而我国古代数学家利用拼接、割补图形,计算面积的思路提供了很多种证明方法,下面我们通过古人赵爽的方法进行证 明。学生分组活动,根据图形的面积进行计算,推导出勾股定理的一般形式:a + b = c。即直角三角形两直角边的平方和等于斜边的平方、

  设计意图:通过利用多媒体课件的演示,更直观、形象的向学生介绍用拼接、割补图形,计算面积的证明方法,使学生认识到证明的必要性、结论的确定性,感受到前人的伟大和智慧。

  3、简要介绍勾股定理命名的由来

  我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即 “勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中、我国称这个结论为"勾股定理",西方毕达哥拉斯于公元前五世纪发现了勾股定理, 但他比商高晚出生五百多年。

  设计意图:对比以上事实对学生进行爱国主义教育,激励他们奋发向上。

  (三)勾股定理的应用

  1、利用勾股定理,解决引入中的问题。体会数学在实际生活中的应用。

  2、教学例1:课本66页探究1

  师生讨论、分析: 木板的宽2、2米大于1米,所以横着不能从门框内通过.

  木板的宽2、2米大于2米,所以竖着不能从门框内通过.

  因为对角线AC的长度最大,所以只能试试斜着 能否通过.

  从而将实际问题转化为数学问题.

  提示:

  (1)在图中构造出一个直角三角形。(连接AC)

  (2)知道直角△ABC的那条边?

  (3)知道直角三角形两条边长求第三边用什么方法呢?

  设计意图:此题是将实际为题转化为数学问题,从中抽象出Rt△ABC,并求出斜边A C的长。本例意在渗透实际问题和勾股定理的知识联系。通过系列问题的设置和解决,旨在降低难度,分散难点,使难点予以突破,让学生掌握勾股定理在具体问题中的应用,使学生获得新知,体验成功,从而增加学习兴趣。

  (四)、课堂练习 习题18、1 1、5。 学生板演,师生点评。

  设计意图:通过练习使学生加深对勾股定理的理解,让学生比较练习题和例题中条件的异同,进一步让学生理解勾股定理的运用。

  (五)课堂小结

  对学生提问:"通过这节课的学习有什么收获?"

  学生同桌间畅谈自己的学习感受和体会,并请个别学生发言。

  设计意图:让学生自己小结,活跃了气氛,做到全员参与,理清了知识脉络,强化了重点,培养了学生口头表达能力。

  (六)达标训练与反馈

  设计意图:必做题较为简单,要求全体学生完成;选作题有一点的难度,基础较好的学生能够完成,体现分层教学。

  以上内容,我仅从"说教材","说学情"、"说教法"、"说学法"、"说教学过程"五个方面来说明这堂课"教什么"和"怎么教",也阐述了"为什么这样 教",让学生人人参与,注重对学生活动的评价, 探索过程中,会为学生创设一个和谐、宽松的情境。希望得到各位专家领导的指导与指正,谢谢!

八年级数学说课稿19

  一、说教材

  (一)教材的地位和作用

  今天我说课的内容是北师大版数学八年级上册第三章图形的平移与旋转的第一节《生活中的平移》。学生在前面已学习了轴对称及轴对称图形,在此基础上还将学习生活中的旋转与旋转设计图案等内容。同轴对称一样,平移也是现实生活中广泛存在的现象,是现实世界运动变化的最简捷的形式之一,它不仅是探索图形变换的一些性质的必要手段,而且也是解决现实世界中的具体问题以及进行数学交流的重要工具。为综合运用几种变换(平移,旋转,轴对称,相似等)进行图案设计打下基础。《生活中的平移》对图形变换的学习具有承上启下的作用。

  (二)教学目标

  根据上述教材分析,以及新课程标准,考虑到学生已有的认知结构、心理特征,制定如下教学目标

  知识目标:

  通过具体实例认识平移,理解平移的基本内涵,理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质。

  能力目标:

  通过探究归纳平移的定义,特征,性质,积累数学活动经验,提高学生的科学思维能力.

  情感目标:

  经历观察,分析,操作,欣赏以及抽象,概括等过程,经历探索图形平移基本性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识.

  (三)教学重点与难点

  平移是现实生活中广泛存在的现象,它不仅是探索图形变换的一些性质的必要手段,而且也是解决现实世界中的具体问题以及进行数学交流的重要工具。探索平移的基本性质,认识平移在现实生活中的广泛应用是学习本节内容的重点。

  平移特征的获得过程,教科书中仅用了一段文字,很少的篇幅,对于这个特征,不是要学生死记硬背,而是要学生具备一定的探究归纳能力,对八年级的学生来说,有一定的难度,因此本课的难点是平移特征的探索及理解。

  上面是对教材的地位与作用、教学目标以及教学重难点的分析,接下来我将说说学情:

  二、说学情

  1.学生已经学习学习了轴对称及轴对称图形,对图形的变换已经有了了解,有了一定的学习基础。

  2.八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习。

  下面为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:

  三、说教法与学法

  基于教材特点与学生情况的分析,为有效开发各层次学生的潜在智能,制定教法、学法如下:

  1.遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、类比、归纳、学习。

  2.借用多媒体课件与实物辅助教学,力求使每个学生都能在原有的基础上得到发展,既满足了学生对新知识的强烈探索欲望,又排除学生许学习几何方法的缺乏,和学无所用的顾虑,让他们在学习过程中获得愉快与进步。

  四、说教学过程

  课堂结构:(一)创景引趣 (二)探究归纳 (三)反馈练习 (四)实际运用 (五)感情点滴 (六)布置作业六个部分.

  (一)创景引趣

  课开始,我先由学生很熟悉的生活经历引入,让学生在轻松,愉快的心情下开始学习。如问同学们,你们小时候去过游乐园吗,在游乐园中你们玩过哪些游乐项目,在玩这些游乐项目时你们想过什么,你们想过它里面蕴含着数学知识吗?现在,我就展示几幅画面,让大家在重温美好童年生活的同时,找一找这些项目中,哪些项目的运动形式是一样的 (课件展示),观看游乐园内的一些项目,如:旋转木马、荡秋千、小火车、滑梯等等,引导学生发现这些项目有什么特征,从而引出本节课研究内容:生活中的平移。

  (二)探究归纳

  在引入的基础上,探索新知,出示课件观看几个运动的图片,如:手扶电梯上的人,缆车沿索道缓缓上山或下山,传送带上的商品,大厦里的电梯,辘轳上的水桶。

  分小组讨论以上几种运动现象有什么共同特点,鼓励学生敢于在小组,班上交流自己的见解和探索的规律,培养学生自主探索,合作交流等良好的学习习惯。在自主探究合作交流中学生的自豪感和成功感得到升华,也增强了学习数学的自信心和创新能力。通过观察生活实例,让学生对平移运动形成直观上的初步认识。同时,通过两个问题的提出,帮助学生理解平移运动不会改变物体的大小,形状以及在平移过程中,物体上的每个部位都沿相同方向移动了相同的距离。通过课件演示以及让学生亲自参与,既使学生理解了平移运动的'两大要素是方向和距离,也增强了学生的动手能力。借助于课件动态演示,有力启发学生,培养学生兴趣,使学生思维逐步展开,从而突破了学生学习的难点。为达到本课教学目的奠定了坚实的基础。课件将图形的平移运动分解为点,线,面的平移运动,利用不同颜色区分让学生能清晰而准确地找出对应点,对应线段及对应角, 把平移的性质设计成了四个问题,深刻理解平移的性质,并能全面地对平移的性质进行概括。使重点突出,难点突破。

  (三)反馈练习

  学生对所学知识是否掌握了呢 为了检测学生对本课教学目标的达成情况,进一步加强知识的应用训练,我设计了三组题目。第一组题走进知识平台;第二组题跨入知识阶梯;第三组题攀登知识高峰。由易到难,由简单到复杂,满足不同层次学生需求,针对解答情况,采取措施及时弥补和调整。

  (四)知识拓展

  为了活跃课堂气氛,增强知识的趣味性和综合性,让学生举生活中平移实例。由学生在格纸上平移图形和动手在电脑上再现平移过程,再次激起学生的探究欲望。通过走进生活的图片欣赏引出下一节内容,并进一步使学生认识:数学源于生活,并运用于生活.这就将枯燥的数学问题赋予有趣的实际背景使内容更符合学生的特点,既激发了学生兴趣,又轻松愉悦地应用了本节课所学知识。使解决数学问题不再是一种负担,而是一种享受,激发学生学习数学的潜能,让学生亲身经历将实际问题抽象成数学模型并进行包括解释与应用的过程,体验数学来源于生活又服务于生活。

  (五)及时总结

  可以从知识获得途径,结论,应用,数学思想方法等几个方面展开,在教师引导下由学生自主归纳完成。如“我发现了什么……我学会了什么……我能解决什么……”等,这样有利于强化学生对知识的理解和记忆,提高分析和小结能力.

  (六)布置作业

  结合学生实际水平,准备布置两部分作业,一部分是必作题体现新课标下落实“学有价值的数学”,达到“人人都能获得必需数学”,另一部分是选做题让“不同的人在数学上得到不同的发展”。

  五、说板书设计

  本节课我将采用重点式的板书。重点式的板书将教材内容中最关键的知识加以概括、归纳,列成条文,按一定顺序板书,这种板书,条理清楚,重点一目了然。

八年级数学说课稿20

  对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教学背景、教法学法、教学过程、教学设计说明四个方面具体阐述我对这节课的理解和设计。

  1、教材的地位和作用

  本节内容分两课时完成。我设计的是第一课时的教学,主要内容是分式概念、掌握分式有意义,值为0的条件。因为它是在学生学习了分数、整式及因式分解的基础上,又一代数学习的基本内容,是小学所学分数的延伸和扩展,而学好本节课,为今后继续学习分式、函数、方程等知识作好铺垫,特别是对“分式有无意义的讨论”为以后学习反比例函数作了铺垫。因此它起着承上启下的作用。

  2、教学目标

  一节课的教学目标准确与否,直接关系到这节课的整体设计,关系到学生发展的水平和教学效果的好坏,因此预设教学目标时,我力求准确。依据新课程的要求,我将本节课的教学目标确定为以下3个方面:

  (1)知识与技能目标:让学生经历用分式表示现实情境中数量关系的过程,从而了解分式概念,学会判别分式何时有意义,进一步培养学生代数表达能力和分析问题、解决问题的能力、以及创新能力。

  (2)过程与方法目标:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。

  (3)情感与态度目标:通过丰富的数学活动,使学生获得成功的经验,体验数学活动充满探索和创造,体会分式的模型思想,培养学生的辩证唯物主义观点。

  3、教学重难点及关键:

  分式概念是《分式》这一章学习的起点和基础,因此我把理解分式的概念确定为本节课的教学重点。又由于初中学生的认知结构中存在着这样的障碍:不善于概括数学材料、缺乏对字母及其他数学符号用于运算的能力,所以判定分式有意义、分式的值为0时的条件,自然就成了本节课的教学难点。而部分学生容易忽视分式的分母值不能为0这个条件,因此我认为突破这个难点的关键是通过类比分数的意义,加强对分式分母值不能为0的理解。

  一、教法学法分析

  1、学情分析

  由于我校八年级学生,基础比较扎实,学习能力较强。通过小学分数的学习,学生头脑中已经形成了分数的相关知识。学生可能会用学习分数的思维去认识、理解分式。但是分式的分母不再是具体的数,而是抽象的含字母的整式,会随着字母的取值的变化而变化。为了帮助学生确实掌握所学内容,我在教学过程中特别设置了巩固性练习,对于教材中的例题和习题将作适当的延伸和拓展及变式处理.

  2.教学方法:

  针对本班学生情况,为了适合学生已有的认识水平和认知规律,更好地突出重点、化解难点,在教学过程中,我采用“引导——发现式教学法”,引导学生运用类比的思维方法进行自主探究. 在实施教学的过程中注意学生分析问题、解决问题等能力的培养。让学生全面地掌握分式的意义,体会到数学不是一门枯燥的学科,对学习数学充满信心。为了提高课堂效果,适当的辅以多媒体技术, 激发学生的学习兴趣,同时也增大教学容量,提高教学效率。

  3.学法指导

  观察、概括、总结、归纳、类比、联想是学法指导的重点。

  在课堂教学中,不是老师单纯的传授知识,而是在老师指引下让学生自己学。要把教法融于学法中,在学法中体现教法。在活动过程中,我将引导学生体会用类比的方法,扩展知识的过程,培养他们学习的主动性和积极性。让学生通过对问题的讨论归纳,在与老师的交流中学习知识,从而达到 “学会”和 “会学”的目的。

  二、教学过程(多媒体教学)

  《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”在教学过程中,我充分考虑到如何更多地向学生提供从事数学活动的机会,坚持以知识为载体,思维为主线,能力为目标的设计原则, 所以我将本节课的教学过程设为以下六个环节:

  第一环节是“创设情景、提出问题 ”:为了引导学生从自己熟悉的生活背景中发现、掌握和运用数学,在现实情境中进一步理解用字母表示数的意义,在这一环节里我设计一道有关四川汶川特大地震捐款的事例,并设置了6个问题。从学生熟悉的整式及其运算入手,引导学生从旧知中去发现分式,找到新知的“生长点”和学生思维的“最近发展区”,从而更好地进行分式概念的建构活动。落实教学目标。

  针对学生的发现,在第二个环节 “类比联想 形成概念”

  我将采用“议一议”的方式引导学生继续观察新式子的特征,类比分数,合理联想。从而使学生水到渠成地概括出分式的概念及一般表示形式。

  第三环节“指导运用 巩固概念”

  通过小组内互举例子,互说判定过程,鼓励学生积极参与活动,在活动过程中强化分式概念,并及时纠正学生可能因分数负迁移所造成的认知障碍,注意辨析 与 的本质区别和 不是分式的问题,指出判断一个代数式是不是分式,不是决定于这个式子里是否含分数线,关键要看分母中是否含有字母。最后指出“整式和分式统称为有理式”。同时还让学生明白:分数线具有 (1)表示括号;(2)表示除号双重意义。

  到此学生对分式的概念有了初步的认识,但并不完整。接下来如何识别分式有意义,是本节课的难点,也是探究学习的好素材。课本中分式有意义的条件是直接给出的,而我在以往的教学中发现学生往往忽视这个条件或是对分母整体不为零认识模糊,为了更好地突破难点,

  我在第四环节“循序渐进 再探新知”

  创设了以下活动供学生自主探究分式有意义的条件:

  首先是组织学生独立填写表格:

  表格的设计,是为了让学生通过对分式中的字母赋值,将“代数化”了的分式还原为他们熟悉的分数。通过填表,不同层次学生的发现将会有差异,此时正是倾听与交流的好时机,通过互相说服和推广,他们最终会达成共识:分式的'值与字母取值有关,分式并不都有意义。继而引导学生通过再次类比分数,将陌生问题向熟悉问题转化,自主得出“分式有意义”的条件,建立完整的分式概念,同时渗透从特殊到一般的数学思想。

  我抓住这一契机,给出:

  (2)、概括分式在什么条件下有意义(对一般表达式 里的分母B作出取值限定:B不能等于零)为了能让学生对刚获得的新知识进行最基本的应用,在这一环节我安排了例题1是一个有关分式求值及判别分式何时有意义的问题,比较简单,可以由学生在自主完成的基础上同桌交流,然后师生评述,使全体学生特别是学有困难的学生都能达到基本的学习目标,获得成功感。

  我又顺水推舟,再给出以下分式,让学生讨论,(实践练习1):当x取什么值时,下列分式有意义?你知道吗?(采用组内合作然后组间抢答的形式。)(1)、 (2)、 (3)、 接下来,我又乘胜追击,问学生:(变式练习):那么以上各分式,当 取什么值时,分式无意义?

  几个问题由浅入深、由易到难,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,消化知识。

  (五)、变式延伸,进行重构

  在掌握了如何求当未知数取什么值时,分式是有意义还是无意义以后,我将带领学生进入本节课的另一个难点,对学生来讲思维又将象每个跳动的音符一样活跃起来了。我问学生:例2:同样的,以上各分式,当 取什么值时,分式的值为零?

  由于学生对新概念的理解在本质方面还是肤浅的,很多学生可能只考虑满足分子为零即可,所以我给学生几分钟的讨论时间,这时就有考虑问题较周到的学生通过(2)(3)两个题发现问题并不是那么简单,找出了症结。这样我就能及时的对症下药,指出“分式的值为零必须在分式有意义的前提下进行的。因此,分式的值为零必须满足两个条件:

  (1)、分子的值为零;(2)、同时分母的值不等于零。从而进一步改善学生原有的认知结构

  为了使这堂课所学到的知识与技能,顺利地纳入他们已有的知识结构中,

  所以在接下来的第(六)环节“ 巩固深化 分层作业”里,我将引导学生反思:我们是如何得到分式概念的?分式和我们以前学过的什么知识有联系?我们用了哪些方法进一步揭示了分式意义的本质?在以上的学习过程中你的收获有哪些?最后教师整理学生的发言,归纳小结:

  A、分式是两个整式相除的商,分数线可以理解为除号,并含有括号的作用.

  B、分式的分子可以含有字母,也可以不含有字母,但分母必须含有字母.

  C、分式分母的值不能为0,否则分式无意义.

  D、分式的值要为0,需满足的条件是:分子的值等于0且分母值不为0

  E、有理数的分类(有理数包括整式和分式)。

  (2)、作业布置

  (设计意图)考虑到学生的个体差异,以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。其中有一题自编涉及用分式表示数量关系的实际问题的题型。这样设计对学生是个挑战,可以激发他们的思维和兴趣,通过这样的逆向思维,可以更好地发展学生的数感、符号感,同时培养学生的创新意识。

  以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。

  三、教学设计说明

  回顾整节课的设计,我主要着力于以下三个方面:

  (一)、关于教材处理:认真处理教材,目的只有一个——为我的学生尽可能多地提供参与活动的机会,在本节课中主要体现在以下几点:

  1、通过创设情景、引导学生观察、类比;联想已有知识经验;分析新的问题等活动,让学生充分感受知识的产生和发展过程,让学生始终处于积极思维状态之中。

  2、通过分式概念、分式有意义的条件等探究活动,让学生亲历发现事物特征、规律的过程,激发学生的学习兴趣,增强自信心,引发自行学习的内在动机。

  3、在学生学习了分式的概念后,通过一组由浅入深、由易到难的题组(例题及变式训练),逐题递进,落实本节课的教学难点。在教学形式上采用学生“互举例子、组内合作、组间抢答等多种方式,激活学生的思维,营造良好的课堂氛围。

  4、问题设计注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展

  5、小结部分通过师生共同反思,目的是为了更好地促进新旧知识之间的联系,使新知识与学生头脑中原有的旧知识建立逻辑性的稳固联系,从而形成新的认知结构。

  6、通过创设开放性问题发展学生的创造性思维能力。根据学生的个性差异,遵循因材施教的原则,设计分层作业,使不同层次的学生都能通过作业有所收获。

  (二)、关于教与学方法的选择:我在设计中始终关注:如何精心组织,让学生在丰富的活动中探索、交流与创新,因此我选择了“引导—发现教学法”,具体做法如下:

  (1)、应用数、式通性的思想,类比分数,引导学生独立思考、小组协作,完成对分式概念及意义的自主建构,突出数学合情推理能力的养成;

  (2)、加强应用性,通过再探新知、变式延伸两个环节,发展数学应用意识,突出分式的模型思想。

  (三)、关于评价:学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情.我在活动中注重运用态势、语言对学生进行即兴评价,肯定成绩,使其具有成就感,提高他们学习的兴趣和学习的积极性。

  总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展的。

  • 相关推荐

【八年级数学说课稿】相关文章:

小学数学优秀说课稿03-24

小学数学说课稿模板03-07

小学数学说课稿范文03-24

小学数学说课稿(精选13篇)01-28

苏教版小学数学说课稿(精选10篇)03-18

小学数学说课稿格式(精选10篇)11-16

初中数学正数和负数说课稿(精选10篇)02-14

说课稿02-03

八年级数学评课稿11-05