上学期间,大家最熟悉的就是知识点吧?知识点就是一些常考的内容,或者考试经常出题的地方。你知道哪些知识点是真正对我们有帮助的吗?以下是小编收集整理的小学二年级数学归纳知识点,欢迎大家分享。
小学二年级数学归纳知识点 1
(一)乘除四则运算
1.乘法和除法互为逆运算。
2.在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。
3.被除数÷除数=商 除数=被除数÷商 被除数=商×除数
(二)小数四则运算
1.小数加法:
小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。
2.小数减法:
小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.
3.小数乘法:
小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。
4.小数除法:
小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
5.乘方:
求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32
(三)分数四则运算
1.分数加法:
分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。
2.分数减法:
分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。
3.分数乘法:
分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
4.乘积是1的两个数叫做互为倒数。
5.分数除法:
分数除法的意义与整数除法的意义相同。就是已知两个因数的积 与其中一个因数,求另一个因数的运算。
(四)运算定律
1.加法交换律:
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2.加法结合律:
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3.乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4.乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
小学二年级数学归纳知识点 2
1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。
成轴对称图形的汉字:
一,二,三,四,六,八,十,大,干,丰,土,士,中,田,由,甲,申,口,日,曰,
木,目,森,谷,林,画,伞,王,人,非,菲,天,典,奠,旱,春,亩,目,山,单,
杀,美,春,品,工,天,网,回,喜,莫,罪,夫,黑,里,亚。
2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。
只有形状、大小、方向完全相同的图形通过平移才能互相重合。
3、旋转:物体绕着某一点或轴进行圆周运动的现象就是旋转。
(一)填空
1、汽车在笔直的公路上行驶,车身的运动是( )现象
2、长方形有( )条对称轴,正方形有( )条对称轴。
3、小明向前走了 3米,是( )现象。
4、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形叫做( )图形,这条直线就是( )。
(二)判断
1、圆有无数条对称轴。( )
2、张叔叔在笔直的公路上开车,方向盘的运动是旋转现象。( )
3、所有的三角形都是轴对称图形。( )
4、火箭升空,是旋转现象。( )
5、树上的水果掉在地上,是平移现象( )
(三)选择
1、教室门的打开和关闭,门的运动是( )现象。
A.平移B旋转C平移和旋转
2、下面( )的运动是平移。
A、旋转的呼啦圈B、电风扇扇叶 C、拨算珠
小学二年级数学归纳知识点 3
提公因式法
1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.
2.运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:
1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.
2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:
① 列出常数项分解成两个因数的积各种可能情况;
②尝试其中的哪两个因数的和恰好等于一次项系数.
3.将原多项式分解成(x+q)(x+p)的形式.
分式的乘除法
1.把一个分式的分子与分母的公因式约去,叫做分式的约分.
2.分式进行约分的目的是要把这个分式化为最简分式.
3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.
4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.
6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.
分数的加减法
1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.
2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.
3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.
4.通分的依据:分式的基本性质.
5.通分的关键:确定几个分式的公分母.
通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.
6.类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。
8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.
9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.
10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.
11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.
12.作为最后结果,如果是分式则应该是最简分式.
含有字母系数的一元一次方程
1.含有字母系数的一元一次方程
引例:一数的a倍(a0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a0)
在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。
含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。
【小学二年级数学归纳知识点】相关文章:
小学二年级数学的重要知识点归纳08-07
小学二年级数学上册知识点归纳09-05
小学二年级知识点归纳05-31
小学二年级数学第二单元知识点归纳09-28
小学二年级数学上册知识点归纳内容06-26
二年级最新数学《观察物体》的知识点归纳02-15
二年级数学观察物体知识点归纳08-01
二年级数学公约数公倍数知识点归纳04-10
二年级数学上册第三单元知识点归纳10-21
数学三年级乘法的知识点归纳10-25