轴对称教案

2024-05-03

轴对称教案精选

  教学目的

  1.使学生对整章的学习内容做一回顾,系统地把握全章的知识要点和基本技能。

  2.通过例题和练习,使学生能较好地运用本章知识和技能解决有关问题。

  重点、难点

  判断图形是否是轴对称图形,线段的垂直平分线、角平分线的性质、等腰三角形的性质和判定及其应用是教学重点,而灵活运用上述性质解决问题、轴对称图案的设计是教学难点。

  教学过程

  一、知识回顾

  问题1:轴对称图形的定义是什么?

  它是判断图形是否是轴对称图形的依据。

  问题2:是否会画轴对称图形的对称轴?

  找出轴对称图形的任一组对称点,连结对称点,画对称点所连线段的垂直平分线,即得到该图形对称轴。

  问题3:轴对称图形对称点的连线与对称轴有什么关系?

  轴对称图形对称点的连线被对称轴垂直平分。

  问题4:线段垂直平分线、角平分线具有什么性质?

  线段垂直平分线上的点到线段两端的距离相等;角平分线上的点到角两边的距离相等。

  问题5:等腰三角形有什么性质?

  等腰三角形底边的中线、高线、顶角的平分线互相重合,等腰三角形的两个底角相等(等边对等角),等边三角形的三个角都等于60°。

  问题6:如何判断三角形是等腰三角形?等边三角形?

  如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);有两个角是60°的三角形是等边三角形,有一个角是60°的等腰三角形是等边三角形。

  二、例题

  1.下列图案是轴对称图形的有()

  A.1个D.2个C.3个D.4个

  2.如右图所示,已知,OC平分∠AOB,D是OC上一点,DE⊥OA,DF⊥OB,垂足为E、F点,那么

  (1)∠DEF与∠DFE相等吗?为什么?

  (2)OE与OF相等吗?为什么?

  三、巩固练习

  如右图所示,已知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=l0cm,∠A=49°14′54″.求△BCD的周长和∠DBC度数。

  四、课堂小结

  通过本节课复习,同学们应掌握本章知识和技能,并运用所学知识和技能解决问题,

【轴对称教案】相关文章:

轴对称图形教案06-29

生活中的轴对称教案09-26

有关于轴对称教案03-20

数学参考教案:《轴对称的性质》08-30

《认识轴对称图形》优秀教案06-27

《轴对称变换》教案设计07-28

关于简单的轴对称图形教案07-20

轴对称图形教案设计08-21

有关《轴对称图形》的教案分析06-29